
A Caller-Side Inline Reference Monitor for an
Object-Oriented Intermediate Language

Dries Vanoverberghe? and Frank Piessens

Dries.Vanoverberghe, Frank.Piessens@cs.kuleuven.be

Abstract. Runtime security policy enforcement systems are crucial to
limit the risks associated with running untrustworthy (malicious or bug-
gy) code. The inlined reference monitor approach to policy enforcement,
pioneered by Erlingsson and Schneider, implements runtime enforcement
through program rewriting: security checks are inserted inside untrusted
programs.
Ensuring complete mediation – the guarantee that every security-relevant
event is actually intercepted by the monitor – is non-trivial when the
program rewriter operates on an object-oriented intermediate language
with state-of-the-art features such as virtual methods and delegates.
This paper proposes a caller-side rewriting algorithm for MSIL – the
bytecode of the .NET virtual machine – where security checks are in-
serted around calls to security-relevant methods. We prove that this al-
gorithm achieves sound and complete mediation and transparency for a
simplified model of MSIL, and we report on our experiences with the
implementation of the algorithm for full MSIL.

Key words: security policy enforcement, inline reference monitor

1 Introduction

In today’s networked world, code mobility is ubiquitous. Applications can be
downloaded over the internet, or received as an attachment of emails. This sup-
port for applications from potentially untrustworthy sources comes with a seri-
ous risk: malicious or buggy applications can lead to denial of service, financial
damage, leaking of confidential information and so forth.

One important class of countermeasures addresses this risk by monitoring the
application at run time, and aborting it if it violates a predefined security policy.
The events monitored are called security-relevant events, and they typically are
operating system calls, or platform API method calls.

This paper is about such policy enforcement systems that are rich enough to
enforce policies specified by means of a security automaton [1], an automaton
that defines what sequences of security-relevant events are acceptable. Several
such systems have been designed and prototyped [2–4], and security automata

? Dries Vanoverberghe is a research assistant of the Fund for Scientific Research -
Flanders (FWO)

have been shown to express exactly the policies enforceable by run-time moni-
toring [1]. The code access security architectures present in Java and .NET are
an instance of such systems [2].

In standard policy enforcement systems, monitoring applications is integrated
into the execution system or the trusted libraries. This makes it fairly easy to
show complete mediation [5], the property that the monitor sees every occurrence
of a security-relevant event. This paper zooms in on the inlined reference mon-
itor (IRM) [6] approach, that rewrites untrusted applications and embeds the
monitor directly into the application itself. Ensuring complete mediation is non-
trivial when the program rewriter operates on an object-oriented intermediate
language with state-of-the-art features such as virtual methods and delegates.

This paper proposes a caller-side rewriting algorithm for MSIL – the bytecode
of the .NET virtual machine – where security checks are inserted around calls
to security-relevant methods. We prove that this algorithm achieves sound and
complete mediation and transparency (the property that the behavior of the
rewritten program does not change if it is compliant with the enforced policy)
for a simplified model of MSIL, and we report on our experiences with the
implementation of the algorithm for full MSIL.

Section 2 elaborates on the problem statement. In Section 3, we introduce
a simplified model of MSIL and the .NET Common Language Runtime (CLR)
– the .NET virtual machine, and we propose a program rewriter that achieves
complete mediation. Sections 4 and 5 explain how this system can be extended
to support virtual method dispatch and delegates. In Section 6, we describe the
implementation of our program rewriter for the full .NET CLR. Finally, we cover
related work and conclude in Sections 7 and 8.

2 Problem statement

The design space for IRM systems is rich, and different designs have different
advantages and disadvantages. In particular, the problem of proving complete
mediation is harder for some designs than for others. We discuss some of the
design parameters, and motivate our design choices.

A first important design choice is the security-relevant events. Events can
range from individual bytecode or machine instructions [7] over operating sys-
tem calls [8] to Java method calls [6]. The trade-offs of these choices are discussed
in [7], and broadly speaking the conclusion is that fine-grained monitoring al-
lows expressive policies, but coarser-grained monitoring makes policies simpler
to understand and write, and it is sufficiently expressive for practical purposes.
Our system monitors method invocations.1

Furthermore, the abstraction level of the method calls monitored is impor-
tant. Figure 1(a) shows a simplified architecture for a managed .NET application.
The application calls methods of the API of the platform library, for instance a
method to send data over a network socket. The implementation of this method
1 A method invocation is when the execution enters a new method. Method calls are

first dispatched to find the actual target method before they are invoked.

calls a lower-level native method, implemented in the runtime system. The native
methods in turn performs system calls.

Application

Platform Libraries

Runtime System

Operating System

Abstraction level

API calls

Native calls

Syscalls

(a) Abstraction level

App’

Platform Libraries

Policy

(b) Rewritten application

public void ClientMethod(){
//security checks
Event();
//security checks

}
(c) caller-side

public void Event(){
//security checks
//original code
//security checks

}
(d) callee-side

Fig. 1. Design decisions for a policy enforcement systems

A second important design choice is whether to monitor the high-level meth-
ods that the application calls directly, or the low-level methods that are the most
primitive abstraction of the system resources. Current research usually expresses
security policies in terms of low-level methods [6, 3]. This makes it easy to write
policies that limit access to system resources, for instance limit the amount of
network traffic, or file access. The higher level methods need not be monitored
directly, because their implementations will call the lower level methods.

Unfortunately, as current system libraries can be complex, it can be hard for
application developers to determine the security-relevant behavior of their appli-
cation, since they make use of high-level methods. Furthermore, policy writers
often want to selectively allow certain high-level methods, even if it executes a
low-level method that is forbidden (e.g. using a logging method, even if access
to the file system is not allowed).

In this paper, we use the high-level platform API methods to write poli-
cies. Security-relevant events are invocations of methods defined in the trusted
system libraries from inside the untrusted application. This approach is simi-
lar to monitoring unmanaged applications at the boundary between kernelspace
and userspace. In other words, we monitor the control flow transitions between
Application and Platform Libraries in Figure 1(a).

A third design parameter is where to insert security checks. With callee-side
program rewriting, the rewriter inserts checks inside the body of security-relevant

methods (See Figure 1(d)). In a safe execution mechanism, it is fairly easy to
show that untrusted applications can not circumvent security code. On the other
hand, selectively allowing calls based on the call site is much harder. Since we
only want to monitor calls originating from the (untrusted) application, callee-
side program rewriting is troublesome. Also, the rewriter needs to modify the
trusted system libraries and this can be impossible, for instance when they are
in ROM on a mobile device, or when a third party performs the inlining of the
application as a service (as proposed in the S3MS project [9]).

In this paper, we use caller-side program rewriting, where the rewriter inserts
checks at the call site (See Figure 1(c)).

Finally, a fourth design choice is what to inline: the policy enforcement code
itself, or just a call to an external component that implements the policy. Both
approaches are used in other systems, and the differences between the two ap-
proaches are minor. For convenience reasons – it is easier to formulate the com-
plete mediation property we want to prove – we inline calls to a separate Policy
Decision Point (PDP).

Figure 1(b) shows how the untrusted application is transformed into a new
application and this new application invokes a method in the PDP before and
after each security-relevant event.

Illustration of the issues

IRM’s are a powerful policy enforcement mechanism, but showing that a mon-
itored application cannot subvert the security checks can be complex, in par-
ticular for IRM’s based on caller-side rewriting. The security checks are inlined
statically, and executed before the method call has been dispatched. In modern
execution systems, this raises a number of important challenges:

– When using virtual methods or interfaces, the target method can usually
not be determined statically. At runtime, the target is determined using
the runtime type of the target object. An attacker could try to circumvent
the security policy by casting an object to its base type and executing a
security-relevant method using virtual dispatch. Alternatively, an attacker
might inherit from the trusted system libraries or override the behavior of a
security-relevant method.

– With delegates, the situation is even worse. A delegate points to a set of
methods, and methods can be added to or removed from this set at runtime.
Invoking the delegate invokes all methods in the set. An attacker could try
to hide a call to a security-relevant method by adding it to a delegate and
calling this delegate.

In short, achieving complete mediation with a caller-side program rewriter is
much more challenging than using callee-side program rewriter. This is the key
problem addressed in this paper.

3 Base system

In this section, we prove sound and complete mediation and transparency for a
simplified model of the .NET CLR [10].

3.1 Execution System

Our formal model of the .NET CLR is based on Fruja’s formalization [11]. Our
model in this section supports assemblies (the .NET components, similar to
Java’s jar files), classes with (possibly static) non-virtual methods, and excep-
tions. Later sections discuss the extension to virtual methods. We do not model
interfaces, value types or multithreading. We briefly describe the formal model,
but since it is relatively straightforward, the reader is referred to [11] for details.

The execution system is a virtual machine that loads two assemblies: the
untrusted application (U), and the trusted platform libraries (T). We assume
that U has a method main without input arguments to start the execution. Each
assembly contains a set of classes. A type is a pair consisting of an assembly and
a class name defined in that assembly.

A method reference is a pair of a type and a method name (written as Type ::
MethodName). The function retType maps a method reference to the type of
the return value (or the special return type void). locTypes maps a method
reference to a list of types for the local variables of that method. The function
argTypes defines a list of types for the arguments of a method reference. If the
method is an instance method, the first argument is the implicit this argument.
Finally, the function code maps a method reference into a list of instructions,
the bytecode representation of the body of the method. Table 1 summarizes the
instructions that we will need in this paper. The virtual machine supports more
instructions, but their semantics is straightforward.

An exception handler is a five-tuple defining the position of the beginning
(inclusive) and end (exclusive) of the try block, the type of exception that is
caught, and the position of the beginning and end of the catch block of the
handler. The function excHa maps a method reference into a list of exception
handlers.

The execution state of the virtual machine consists of a heap, a list of activa-
tion records and an exception record. The heap is modeled as a finite map from
addresses to values. heapLookup(heap, address) looks up the value at a given
address in the heap. Furthermore, heapUpdate(heap, address, value) returns a
new heap that results from replacing the content of heap at the given address
by the given value. An activation record is a five-tuple consisting of the current
program counter, a list of addresses of the local variables, a list of addresses for
the arguments, a stack of values (the evaluation stack) and the method reference
of the method that is being executed. The exception record is a pair containing
the currently active exception, and the next exception handler that will be tested
to handle an exception. In our formalization, the active exception is always a
value of the type (T,Exception) or (T, SecurityException)(where T is the trusted
assembly).

instruction explanation

ldc.x load a constant on the evaluation stack
ldloc i load the value of the local variable at index i on the stack
stloc i store the top value of the stack in the local variable at index i

and pop it from the stack
brtrue k branch to the instruction at index k if the top value of the

stack is true and pop it from the stack
br k unconditional branch to the instruction at index k

call mref call the method mref using the arguments on the stack (and
remove them from the stack) and put the return value on the
stack (if return type not void)

ret return from a method (and use the top value of the stack as
return value if return type not void)

throw throw the top value of the stack as an exception
newobj mref create a new object using the constructor mref and put a

reference to the new object on the stack
Table 1. Instructions

Operational semantics
In a given state, instr denotes the current instruction that will be considered

by the execution system. It is shorthand for code(mref)[pc] with mref the
method that is currently being executed (the top frame of the activation records),
and pc the current program counter within this method.

An execution state is in normal execution mode if the active exception of the
exception record is null. Table 1 informally explains the instructions that are
relevant for our algorithm, and Appendix A defines the operational semantics
for the instructions formally.

An execution state is in exception handling mode if it is not in normal exe-
cution mode. Appendix A also defines the operational semantics for exception
handling. Exception handling mode is entered with the throw instruction, and
it starts by looking for suitable exception handlers in the current method. An
exception handler is suitable if the current program counter is inside the scope
of the try block, and if the type of the exception is a subtype of the type of the
exception handler. If a suitable handler is found, the evaluation stack is cleared
and the active exception is pushed onto the stack. Execution continues in normal
mode with the first instruction of the catch block of the exception handler.

If all exception handlers of the current method have been considered, the
exception is propagated to the caller of the current method, and the execution
mechanism continues searching at the first handler of the caller.

3.2 The inlining algorithm

Recall from Figure 1(b) that an inlining algorithm takes an untrusted assembly
App as input, and it outputs a new assembly App′ that notifies the PDP of all
security-relevant events. The security-relevant events are the entering into and
exiting (both normally or exceptionally) from security-relevant methods. The

security-relevant methods are a subset (designated by the policy writer) of the
methods defined in the trusted assembly. Notification of the PDP is done by
calling so-called policy methods in the PDP.

Definition 1 (Policy methods). The functions before, after and excep map
a security-relevant method mref onto the corresponding policy methods
before(mref), after(mref) and excep(mref) that are called respectively before
entering mref , after successful return, and after exceptional return.
before(mref) has the same argument types as mref , after(mref) has an ad-
ditional parameter for the return value, and excep(mref) has an additional pa-
rameter for the exception.

In our simplified model, we require policy methods to be part of the trusted as-
sembly. They throw a SecurityException when the policy is violated, and return
void otherwise. Policy methods are not allowed to call back into the untrusted
assembly. The untrusted application (before inlining) should not contain any
calls to policy methods.

Our inlining algorithm is defined in Figure 2. The algorithm goes through
the instruction list of all methods in the untrusted assembly, looking for call
instructions to a security-relevant method. Each such call instruction is replaced
by a block of code generated using the generateCode function, defined below. We
say that such call instruction has been processed by the inliner. For simplification
purposes, we do not intercept constructor calls, but their treatment is identical
to a call to a static method with the new object as return value.

Body = (List(Instr), List(Type), List(ExceptionHandler))

inlinebody : Map(Body, Body)
inlinebody((body, localvars, excha)) = inlinebodyhelp([], body, 0, localvars, excha)

inlinebodyhelp(left, [], , localvars, excha) =
return (left, localvars, excha)

inlinebodyhelp(left, right, i, localvars, excha) =
right == instr, right′

if (instr == call mref and mref is a SRM) {
(newCode, localvars′, newExcha) = generateCode(instr, localvars, excha, i)
n = #newCode
left′ = patchBranchTargets(left, n, i)
right′′ = patchBranchTargets(right′, n, i)
left′′ = left′, newCode
excha′ = newExcha, patchExchaPcs(excha, n, i)
return inlinebodyhelp(left′′, right′′, i + n, localvars′, excha′)

} else {
left′ = left, instr
return inlinebodyhelp(left′, right′, i + 1, localvars, excha)

}

Fig. 2. Program rewriter algorithm

Definition 2 (generateCode). Given an instruction instr of the form call
mref , a list of types localvars, a list of exception handlers excha and the index of
the instruction i, the function generateCode(instr, localvars, excha, i) returns
a block of code defined by the template in Figure 3, a modified list of types for
local variables and a modified list of exception handlers.

stloc m + n
. . . 1. Store arguments
stloc m

ldloc m
. . . 2. Reload arguments
ldloc m + n

call before(mref) 3. Call before method
try{

ldloc m
. . . 4. Reload arguments
ldloc m + n

call mref 5. Call original method
stloc m + n + 1 6. Store return value

ldloc m
. . . 7. Reload arguments and return value
ldloc m + n + 1

call after(mref) 8. Call after method
ldloc m + n + 1 9. Reload return value
br end 10. goto end

} catch (SecurityException) {
throw 11. Rethrow exception

} catch (Exception) {
stloc m + n + 2 12. Store exception

ldloc m
. . . 13. Reload arguments and exception
ldloc m + n
ldloc m + n + 2

call exception(mref) 14. Call exception method
ldloc m + n + 2 15. Reload exception
throw 16. Rethrow exception

end: }

Fig. 3. Generated code fragment where n is the number of arguments of the target
method, and m is the number of pre-existing local variables in the method that is
being rewritten.

The insertion of the code fragments generated by generateCode changes the
locations of the original instructions in the method being rewritten. Since these
locations are used in branch instructions and in exception handlers, we need
to patch these. So the inlining algorithm patches branch targets and exception

handlers using the function patchLocation(n, i) = λloc.if (loc > i) then loc +
n − 1 else loc, where i is the location of the call being processed, and n is the
size of the generated code block being inserted.

We discuss in more detail the block of code generated by generateCode
(Figure 3). First, we generate stloc instructions to store the arguments that are
on the evaluation stack into new local variables. Because these variables are new,
and this is the only place in the generated code where values are stored into these
variables, their value does not change after this point. This ensures that each
time the variables are loaded on the stack, the relevant values on the top of the
stack are the same values as the values initially on the stack.

Next, we use ldloc instructions to load the arguments on the stack again, and
a call instruction to invoke the before method of the policy.

The remaining part of the code is a try catch structure. In the try scope, we
first generate instructions to load the arguments on the stack and call the original
security-relevant method. Then we store the return value in a local variable (if
the return type is not void). For the after method of the policy, we generate
instructions to load the arguments and the saved return value on the stack and
to call the after method. Finally, we load the return value on the stack again,
and we branch out of the try block.

The type of the first exception handler is SecurityException. Because we
assume that security-relevant methods do not throw security exceptions, this
exception comes from the after method. We generate code to simply rethrow the
original exception.

The second exception handler catches any type of exceptions. Because we
assume that the policy methods are total, this exception is raised inside the
security-relevant method and the exceptional method of the policy must be ex-
ecuted. We generate instructions to store the exception into a local variable,
reload the arguments, reload the exception, call the exceptional method of the
policy and finally reload and rethrow the exception.

3.3 Properties of the inlining algorithm

The first property we consider is complete mediation [5]: every security-relevant
event is seen by the monitor.

We say that a method invocation, return or exceptional return is observable
when it crosses the boundary between the untrusted assembly and the trusted
assembly. The function observable(mref, mref ′) returns true if one of its ar-
guments is defined in the trusted assembly, and the other one in the untrusted
assembly.

An abstract trace of a program is a (possibly infinite) list of observable
method invocations, returns and exceptional returns.

Definition 3 (Abstract trace). The abstract trace of a program is the list of
observable method invocations, returns and exceptional returns that occur when
executing the main method of the program.

Figure 4 shows how to compute the abstract trace, based on the operational
semantics.

(H, S, E) → (H ′, S′, E′)
#S′ = #S + 1 S′ = , (pc, , argAdr, , mref) S = , (, , , , oldmref)

code(oldmref)[pc] 6= newobj observable(mref, oldmref)

argTypes(mref) ==
−→
A 1..n

−→v = heapLookup(H ′, argAdr)

trace(H, S, E) = Enter(mref,−→v), trace(H ′, S′, E′)

(H, S, E) → (H ′, S′, E′) #S′ = #S − 1 S = , (pc, , , evalStack, mref)
S′ = , (, , , , oldmref) observable(mref, oldmref) E = (null,)

code(mref)[pc] = ret retType(mref)! = void evalStack = evalStack′, v

trace(H, S, E) = Return(v), trace(H ′, S′, E′)

(H, S, E) → (H ′, S′, E′) #S′ = #S − 1
S = , (pc, , , , mref) S′ = , (, , , , oldmref) observable(mref, oldmref)

E = (null,) code(mref)[pc] = ret retType(mref) == void

trace(H, S, E) = Return, trace(H ′, S′, E′)

(H, S, E) → (H ′, S′, E′) #S′ = #S − 1 S = , (, , , , mref)
S′ = , (, , , , oldmref) observable(mref, oldmref) E = (v,) v! = null

trace(H, S, E) = Exception(v), trace(H ′, S′, E′)

(H, S, E) → (H ′, S′, E′) #S′ = #S

trace(H, S, E) = trace(H ′, S′, E′)

Fig. 4. Computation of the trace of a program

For simplification purposes, we assume that security-relevant methods do not
call back into untrusted applications and they terminate. Furthermore, we as-
sume that security-relevant methods always return a value to keep the properties
simple.

Definition 4 (Complete mediation). An abstract execution trace of an un-
trusted assembly program satisfies complete mediation if and only if for each
index i in trace such that trace[i] = Enter(mref, vals) and mref is security-
relevant:

– trace[i-2]=Enter(before(mref),vals) and trace[i-1]=Return
– trace[i+1]=Return(val) implies trace[i+2]=Enter(after(mref),vals . val)
– trace[i+1]=Exception(val) implies trace[i+2]=Enter(excep(mref),vals . val)

We prove that our inliner always produces programs with completely medi-
ated traces. First we need some technical lemmas.

Lemma 1 (No jumps into inlined code). For every untrusted assembly P ,
let P ′ = inline(P). For all possible runs of P ′, control flow can enter a code
block inserted during inlining only through the first instruction of the block.

Proof. The patching of the branch targets makes sure that there are no jumps
into the generated code, thus control flow must enter through the first instruc-
tion.

Lemma 2 (Complete replacement). Any call instruction that invokes a se-
curity-relevant method at run time, has been processed by the inliner.

The proof of this lemma is trivial in this execution system. However, this is
the key lemma that breaks when adding delegates or virtual method dispatch.
Later sections discuss how to maintain this lemma in the presence of delegates
and virtual calls, and this will require improvements to the inliner.

Lemma 3 (Abstract trace of generated code). The code blocks output by
generateCode can only generate the following traces:

1. Enter(before(mref), vals), Exception(exc),. . . with exc a SecurityException.
2. Enter(before(mref), vals), Return, Enter(mref, vals), Exception(exc),

Enter(excep(mref), vals . exc), Exception(exc2), . . . with exc not a SecurityExcep-
tion and exc2 a SecurityException.

3. Enter(before(mref), vals), Return, Enter(mref, vals), Exception(exc),
Enter(excep(mref), vals . exc), Return, . . . with exc not a SecurityException.

4. Enter(before(mref), vals), Return, Enter(mref, vals), Return(val),
Enter(after(mref), vals . val), Exception(exc), . . . with exc a SecurityException.

5. Enter(before(mref), vals), Return, Enter(mref, vals), Return(val),
Enter(after(mref), vals . val), Return, . . .

Proof. Taking into account the restrictions that (1) policy methods do not call
back into the untrusted assembly, and (2) policy methods can only throw Secu-
rityExceptions or return void, the proof is straightforward.

Theorem 1 (Complete mediation of the algorithm). For every untrusted
assembly P , let P ′ = inline(P). The abstract trace trace′ of P ′ satisfies complete
mediation.

Proof. For each Enter(mref, vals) in trace′ where mref is security-relevant :

1. Using the computation rules for traces (Figure 4), the Enter can only be
caused by a call instruction.

2. By Lemma 2, each call instruction that can potentially result in invoking a
security-relevant method has been replaced by a block of generated code.

3. Using Lemma 1, the only way to start the execution of the generated block
of code is by starting at the first instruction.

4. According to Lemma 3, the generated code can only lead to five possible
traces. Because we have an Enter(mref, vals) in the trace, trace 1 is not
possible. In all other cases complete mediation holds by Definition 4.

The second property we consider is sound mediation.

Definition 5 (Sound mediation). An abstract execution trace of an untrus-
ted assembly program satisfies sound mediation if and only if for each index i
in trace:

– trace[i]=Enter(before(mref),vals) and trace[i+1]=Return implies
trace[i+2]=Enter(mref, vals)

– trace[i]=Enter(after(mref),vals . val) implies
trace[i-2]=Enter(mref, vals) and trace[i-1]=Return(val)

– trace[i]=Enter(excep(mref),vals . val) implies
trace[i-2]=Enter(mref, vals) and trace[i-1]=Exception(val)

Theorem 2 (Sound mediation of the algorithm). For every untrusted as-
sembly P , let P ′ = inline(P). The execution trace′ of P ′ satisfies sound media-
tion.

Proof. Assuming that P did not contain any calls to the policy before rewriting,
all calls to the policy in P ′ come from inside the generated code block. Using
the generated traces (Lemma 3), completing the proof is trivial.

The third property we consider is transparency: a policy enforcement system
is transparent if it has no observable effect on programs that satisfy the policy.
We formalize this by considering the effect when inlining calls to policy methods
that do nothing, they return immediately. We call such methods passive.

Definition 6 (Equality modulo policy calls). Two abstract execution traces
trace and trace′ are equal modulo policy calls if and only if they are equal after
removing all calls to and returns from policy methods.

Definition 7 (Transparency). Let I be an inlining algorithm. Let P be a
program, and let P ′ be the inlining of P with I using only passive policy methods.
I is transparent if, for all such P , the trace of P ′ is equal modulo policy calls to
the trace of P .

Clearly, if policy methods are non-passive, a program may behave differently
after inlining. In general, the desirable situation is that policy methods are in-
distinguishable from passive policy methods until the untrusted program violates
the policy.

Theorem 3 (Transparency of the algorithms). The inlining algorithm in
Figure 2 is transparent.

The proof of this theorem, an induction over evaluation steps of the original
program, can be found in an extended version of this paper, published as a
technical report [12]. The key observation is that the code blocks inserted by
the inliner (Figure 3) have no observable effect on the traces of the program
if the policy methods are passive. First, there is a strong relationship between
the static structure – instructions, exception handlers, and variables of method

bodies – of P and P ′. Over this structural relationship, we define the notion of
structural equivalence of an execution state of P and P ′. We prove that for each
execution state reachable in k steps in P , there exists an execution state that is
reachable in l ≥ k steps in P ′ that is structurally equivalent and the traces to
reach these states are equal modulo calls to the policy.

4 Virtual Methods

To support virtual method calls in our model of the .NET CLR, the following
extensions are needed. The VM keeps track of a map of object references to their
actual type (the function actualTypeOf). The new instruction callvirt performs
a virtual call: it looks up the method to be invoked dynamically based on the
run-time type of the receiver, and then behaves like a regular call. Figure 11 in
the appendix gives the evaluation rule for the callvirt instruction.

If our inliner would treat callvirt in the same ways as call, complete mediation
would break. There are three issues to be dealt with.

First, lemma 2 would break. Suppose a security-relevant method B :: m
overrides a non-security-relevant method A :: m in a superclass A (Figure 5). A
virtual call with static target A :: m would not be processed by the inliner, yet
it could lead to an invocation of B :: m at run time.

A

public virtual void m()

B

public override void m()

Trusted Libraries

Fig. 5. Violating complete replacement

We deal with this first issue by requiring that the set of security-relevant
methods is upward closed.

Definition 8 (Upwards closure of a set of methods). A set of methods is
upwards closed if and only if no method in the set overrides a method that is not
in the set.

In practice, this is not a real restriction, as methods can always be added to the
set of security-relevant methods, even if the policy does impose constraints on
them.

The second issue arises when inheriting security-relevant methods. Suppose
A :: m is a security-relevant method, and the untrusted assembly creates a
subclass C of A that does not redefine m (Figure 6). Then a call that statically

looks like C :: m is actually a call to A :: m. Clearly, we can not require C :: m to
be in the set of security-relevant methods, as it is in the untrusted application,
and the policy writer typically does not even know it exists.

A

public virtual void m()

C

Trusted Libraries

Fig. 6. Inheriting security-relevant methods

We address this issue by forbidding inheritance of security-relevant methods
in the untrusted assembly. Again, this is no restriction, as overriding is allowed,
and the untrusted application could override the security-relevant method and
then simply do a base call if the same behavior as the original method is desired.
In fact, such a transformation could even be done automatically when no redef-
inition is found. The base call in the transformed program will be recognized by
the inliner as a statically bound call to a security-relevant method.

The third and last issue to address is how to deal with dynamic dispatch to
policy methods. Since the method called is determined dynamically, the determi-
nation of the appropriate policy methods now also needs to be done dynamically.
We handle this by creating a dispatching method for each virtual method that
is security-relevant (See Figure 7). The dispatching method uses runtime tests
on the actual type of the target to determine the actual method that will be
invoked. If this target method is security-relevant, then the dispatching method
calls the corresponding policy method. Otherwise, it returns from the dispatch-
ing method. The program rewriter now inserts calls to these dispatching methods
instead of the actual policy methods.

public void BeforeMDispatcher(A target) {

if(target is B) {

if(target is D) { BeforeDM (target); }

else { BeforeBM (target); }

}

else if(target is C) { BeforeCM (target); }

else { BeforeAM (target); }

}

A

m()

B

m()

Trusted Libraries

C

m()

D

m()

Fig. 7. Dispatching methods

With these three extensions, the resulting inliner is completely and soundly
mediating and transparent in the presence of virtual calls.

5 Delegates

Delegates are essentially type safe function pointers. A delegate encapsulates
a set of method references of the same signature as the delegate. Calling the
delegate invokes all the methods in the set. A delegate can be passed on to other
code where it is possible to call the delegate without statically knowing its target
methods. Therefore delegates are challenging for a caller-side inliner.

To maintain the complete mediation property of our inliner, we enforce the
property that the untrusted application never holds a reference to a delegate
that contains a pointer to a security-relevant method. By consequence, a call to
a delegate is never a call to a security-relevant method.

First, we extend the program rewriter to deal with the case where the un-
trusted assembly creates delegates. To create a delegate containing a method
pointer, an application must first load the method pointer on the stack (using
the ldftn or ldvirtftn instruction), and then it must call a Delegate subclass
constructor. When the program rewriter parses an attempt to load a security-
relevant method pointer on the stack, it creates a new wrapper method inside
the application that does a normal call to the security-relevant method, and a
pointer to this wrapper method is pushed on the stack. Hence the delegate will
not point to the security-relevant method, but to the wrapper method. The pro-
gram rewriter transforms the body of the wrapper method to insert calls to the
policy, thus preserving complete mediation.

Second we need to impose a constraint on the trusted libraries: no method in
the trusted API should create delegates that contain security-relevant methods
and pass them to the untrusted assembly in any way. For the security-relevant
methods we have considered so far, the trusted libraries never create delegates
that contain security-relevant methods.

With these extensions, our program rewriter is soundly and completely me-
diating and transparent, even in the presence of delegates.

6 Implementation

The research reported on in this paper is done in the context of the project
Security of Software and Services for Mobile Systems (S3MS) [9]. The inlining
algorithm described in this paper has been implemented for the full .NET Frame-
work, and for the .NET Compact Framework running on mobile devices such as
smartphones. We used the Mono.Cecil [13] libraries to parse and generate MSIL.

The execution system we describe in this paper hides a part of the complex-
ity of the real .NET CLR. While implementing our approach, we encountered
some challenging issues (in addition to the ones we already discussed). For ex-
ample, the real CLR forbids entering a protected region (a try block) with a
non-empty evaluation stack and it resets the evaluation stack when leaving a
protected region. Our approach inserts new try-catch handlers, thus we store
the entire evaluation stack before entering the try block, instead of just saving
the arguments for the security-relevant method. To do so, we implemented a

simple one-pass data flow analysis to compute the types on the stack. We store
the values on the stack in local variables, and reload them after the catch-blocks.

Furthermore, the real CLR forbids entering a protected region when the
current object is not fully initialized in constructors. Initialization statements
for fields are executed before an object is fully initialized. If these statements
use security-relevant methods, the program rewriter inserts try-catch handlers
and the current object is not fully initialized upon entering the try block. We
solved this issue in our implementation by generating wrapper methods for these
security-relevant methods (like we did with delegates).

Our experience with the implementation is promising. The performance over-
head of the inlining is very small (this confirms performance measurements done
for other IRM’s [2]), and the inliner can handle real-world applications that are
used as case studies in the S3MS project.

7 Related Work

Both the current Java Virtual Machine [14] and Microsofts Common Language
Runtime [10] use stack inspection to enforce security policies on untrusted code.
The security policies that can be enforced in our approach are more flexible, since
the entire history of events can be used. Resource constraints are an example of
the kind of policies that are not enforceable using stack inspection.

SASI [7] and PoET/PSLang [6] are two policy enforcement tools based on
security automata [1]. Both techniques are based on inline reference monitors.
Sasi’s event system is very powerfull, as arbitrary machine instructions can be
monitored, but it has a higher performance impact. PoET/PSLang targets Java
applications and Erlingsson and Schneider have shown that it can be used to
enforce stack inspection based policies, and that the performance is competi-
tive [2]. In contrast with our approach, they make no claims about complete
mediation or transparency.

Naccio [4] also monitors security-sensitive operations, but instead of inserting
instructions inside the application or the system libraries, a new wrapper library
is created that enforces the security policy and delegates control back to the
original libraries.

Polymer [3] is a policy enforcement system based on edit automata [15]. To
master the complexity of policies, Polymer supports composition of complex
security policies using smaller building blocks. In contrast with our approach,
polymer uses callee-side rewriting to enforce security policies.

The work in this paper can been seen as a particular instantiation of Aspect
Oriented Programming [16] targeting security policy enforcement on untrusted
code. Because our rewriting algorithm is much simpler than the weaving mech-
anisms in full AOP, it is easier to prove correctness.

The abstract traces in our system are similar to the fully abstract trace
semantics of JavaJr [17].

8 Conclusions

In this paper, we propose a caller-side rewriting algorithm for MSIL – the byte-
code of the .NET virtual machine – where security checks are inserted around
calls to security-relevant methods.

The algorithm has been implemented and can deal with real-world .NET
applications. Moreover, the algorithm has been proven correct for a simplified
model of MSIL and the .NET virtual machine. To the best of our knowledge,
this is the first provably correct inlining algorithm for an intermediate language
that supports both virtual methods and delegates.

References

1. Schneider, F.B.: Enforceable security policies. ACM Trans. on Information and
System Security 3(1) (2000) 30–50

2. Erlingsson, U., Schneider, F.B.: IRM enforcement of Java stack inspection. In:
IEEE Symposium on Security and Privacy. (2000) 246–255

3. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. In:
PLDI ’05, New York, NY, USA, ACM Press (2005) 305–314

4. Evans, D., Twyman, A.: Flexible policy-directed code safety. In: IEEE Symposium
on Security and Privacy. (1999) 32–45

5. Saltzer, J., Schroeder, M.: The protection of information in computer systems.
IEEE, Vol. 9(63) (1975)

6. Erlingsson, U.: The inlined reference monitor approach to security policy enforce-
ment. PhD thesis, Cornell University (2004) Adviser-Fred B. Schneider.

7. Erlingsson, Schneider: SASI enforcement of security policies: A retrospective. In:
WNSP: New Security Paradigms Workshop, ACM Press (2000)

8. Provos, N.: Improving host security with system call policies. In: SSYM’03: Pro-
ceedings of the 12th conference on USENIX Security Symposium, Berkeley, CA,
USA, USENIX Association (2003) 18–18

9. S3MS: Security of software and services for mobile systems. http://www.s3ms.org/
(2007)

10. European Computer Machinery Association: Standard ECMA-335: Common Lan-
guage Infrastructure. 4th edition edn. (June 2006)

11. Fruja, N.G.: Type Safety of C# and .NET CLR. PhD thesis, ETH Zurich (2006)
12. Vanoverberghe, D., Piessens, F.: A caller-side inline reference monitor for object-

oriented intermediate language: Extended version.
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW512.abs.html (2008)

13. Evain, J.: Cecil. http://www.mono-project.com/Cecil
14. Lindholm, T., Yellin, F.: The Java(TM) Virtual Machine Specification (2nd Edi-

tion). Prentice Hall PTR (April 1999)
15. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for

run-time security policies. International Journal of Information Security 4(1–2)
(February 2005) 2–16

16. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In Akşit, M., Matsuoka, S., eds.: Pro-
ceedings ECOOP. Volume 1241. Springer-Verlag, Berlin, Heidelberg, and New
York (1997) 220–242

17. Jeffrey, A.S.A., Rathke, J.: Java jr.: Fully abstract trace semantics for a core Java
language. In: Proc. ESOP. Volume 3444 of LNCS., Springer-Verlag (2005) 423–438

Appendix

A Operational Semantics

S = S
′
, (pc, locAdr, argAdr, evalStack, mref) instr = ldc.x v

evalStack
′
= evalStack, v S

′′
= S

′
, (pc + 1, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H, S
′′

, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = ldloc i adr = locAdr[i] v = heapLookup(H, adr)
evalStack

′
= evalStack, v S

′′
= S

′
, (pc + 1, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H, S
′′

, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = stloc i evalStack = evalStack
′
, v adr = locAdr[i]

H
′
= heapUpdate(H, adr, v) S

′′
= S

′
, (pc + 1, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H
′
, S
′′

, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = ldarg i adr = argAdr[i] v = heapLookup(H, adr)
evalStack

′
= evalStack, v S

′′
= S

′
, (pc + 1, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H, S
′′

, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = starg i evalStack = evalStack
′
, v adr = argAdr[i]

H
′
= heapUpdate(H, adr, v) S

′′
= S

′
, (pc + 1, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H
′
, S
′′

, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = br target S
′′

= S
′
, (target, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H, S
′′

, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref) instr = brtrue target

evalStack = evalStack
′
, v v == 0 S

′′
= S

′
, (pc + 1, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H, S
′′

, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref) instr = brtrue target

evalStack = evalStack
′
, v v! = 0 S

′′
= S

′
, (target, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H, S
′′

, E)

Fig. 8. Evaluation rules for normal execution (Part 1)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = call T :: M argTypes(T :: M) =
−→
A1..n

evalStack = evalStack
′
,−→v 1..n argAdr

′
= −→a 1..n (with ai fresh)

H
′
= heapUpdate(H,−→a 1..n,−→v 1..n) locTypes(T :: M) =

−→
L 1..m

locAdr
′
=
−→
l 1..m (with li fresh) H

′′
= heapUpdate(H

′
,
−→
l 1..m, defV al(

−→
L 1..m))

S
′′

= S
′
, (pc, locAdr, argAdr, evalStack

′
, mref), (0, locAdr

′
, argAdr

′
, [], T :: M)

(H, S, E) → (H
′′

, S
′′

, E)

S = S
′
, (pc2, locAdr2, argAdr2, evalStack2, mref2), (pc, locAdr, argAdr, evalStack, mref)

instr = ret
retType(mref) = void S

′′
= S

′
, (pc2 + 1, locAdr2, argAdr2, evalStack2, mref2)

(H, S, E) → (H, S
′′

, E)

S = S
′
, (pc2, locAdr2, argAdr2, evalStack2, mref2), (pc, locAdr, argAdr, evalStack, mref)

instr = ret retType(mref) 6= void evalStack = evalStack
′
, v

evalStack2
′
= evalStack2, v S

′′
= S

′
, (pc2 + 1, locAdr2, argAdr2, evalStack2

′
, mref2)

(H, S, E) → (H, S
′′

, E)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = throw evalStack = evalStack
′
, val

E
′
= (val, 0) cal 6= null S

′′
= S

′
, (pc, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H, S
′′

, E
′
)

Fig. 9. Evaluation rules for normal execution (Part 2)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

E = (val, n) n = #excHa(mref) E
′
= (val, 0)

(H, S, E) → (H, S
′
, E

′
)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

E = (val, n) n < #excHa(mref) excHa(mref)[n] = (from, to, type, cfrom, cto)
from > pc ∨ pc ≥ to ∨ actualTypeOf(val) 6< type E

′
= (val, n + 1)

(H, S, E) → (H, S, E
′
)

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

E = (val, n) n < #excHa(mref) excHa(mref)[n] = (from, to, type, cfrom, cto)
from ≤ pc < to actualTypeOf(val) < type

E
′
= (null, 0) evalStack

′
= val S

′′
= S

′
, (cfrom, locAdr, argAdr, evalStack

′
, mref)

(H, S, E) → (H, S
′′

, E
′
)

Fig. 10. Evaluation rules for exception handling

S = S
′
, (pc, locAdr, argAdr, evalStack, mref)

instr = callvirt T :: M isV irtual(T :: M) = true

argTypes(T :: M) = T,
−→
A1..n evalStack = evalStack

′
, t,−→v 1..n

−−→args = t,−→v 1..n

T
′
:: M = lookupMethod(actualTypeOf(t), T :: M) argAdr

′
= −→a 0..n (with ai fresh)

H
′
= heapUpdate(H,−→a 1..n,−−→args) locTypes(T

′
:: M) =

−→
L 1..m

locAdr
′
=
−→
l 1..m (with li fresh) H

′′
= heapUpdate(H

′
,
−→
l 1..m, defV al(

−→
L 1..m))

S
′′

= S
′
, (pc, locAdr, argAdr, evalStack

′
, mref), (0, locAdr

′
, argAdr

′
, [], T

′
:: M)

(H, S, E) → (H
′′

, S
′′

, E)

Fig. 11. Evaluation rule for virtual calls

