
 1

Encapsulation and information hiding as
the keys to maintainable and reusable

hypermedia applications

Wilfried Lemahieu

Department of Applied Economic Sciences
Katholieke Universiteit Leuven
Naamsestraat 69 B-3000 Leuven

Belgium
tel: + 32 16 32 68 86
fax: + 32 16 32 67 32

e-mail: wilfried.lemahieu@econ.kuleuven.ac.be

1 Abstract

This paper presents a solution to the maintenance problem in hypermedia by applying
object-oriented techniques to both the hypermedia data model and the hypermedia
system’s actual implementation. First, the primary concepts of the “MESH”
(Maintainable, End user friendly, Structured Hypermedia) approach are discussed
briefly. These consist of a conceptual data model, a navigation paradigm and an
implementation framework. Thereafter, it is shown how the object-oriented concepts
of encapsulation and information hiding result in a hypermedia system consisting of
self-contained, independently coded nodes. Intra node maintenance is separated
entirely from inter node maintenance: the hyperbase’s link structure can be updated
without affecting node content, whereas an individual node’s multimedia content can
be reorganized without necessitating updates to links or link anchors.

2 Introduction: object orientation and hypermedia

2.1 Hypermedia design based on a conceptual data model

Although the World Wide Web contributed tremendously to the popularity of the
hypermedia paradigm, it also amply illustrated its two primary weaknesses: the
problem of user disorientation and the difficulty of maintaining the hyperbase. The
“lost in hyperspace” phenomenon is widely known in literature, e.g. [3]; [4]: whereas
non-linear navigation is a very powerful concept in allowing the end user to choose
his own strategy in discovering an information space, the resulting navigational
freedom may easily lead to cognitive overhead and disorientation.

 2

Equally stringent is the maintenance problem [23]. The latter was certainly less than a
sinecure in the pioneering hypermedia implementations. A heavy burden upon
hyperbase maintainability is the fact that, due to the absence of workable abstractions,
many hypermedia systems implement links as direct references to the target node’s
physical location (e.g. the URL in a WWW environment). To make things worse, these
references are embedded within the content of a link’s source node [6]. As a result,
moving a single node demands heavy maintenance to restore hyperbase integrity; all
nodes’ bodies have to be searched for a reference to the now-obsolete location and all
found references have to be updated. Hyperbase maintenance has become a synonym
for manually editing the nodes’ contents. Whereas manually created links already
reduce maintainability to a great extent, they also have a disastrous impact upon
consistency and completeness [1]. The inability to enforce integrity constraints and
submit the network structure to consistency and completeness checks, results in a
hyperbase with plenty of dangling links. Needless to say that the consequences of
inferior maintenance will also frustrate the end user and effect into additional
orientation problems.

More recently, it has been suggested that abstractions such as node and link types
offer increased consistency in both node layout and link structure with the added
bonus of a navigational structure more comprehensible to the end user. The benefits
of data modeling abstractions to both orientation and maintainability were already
acknowledged in [12]. They yield richer domain knowledge specifications and more
expressive querying. Typed nodes and links offer increased consistency in both node
layout and link structure [16]; [26]. Higher-order information units and perceivable
equivalencies (both on a conceptual and a layout level) greatly improve orientation
[11]; [27]. Semantic constraints and consistency can be enforced [1]; [10], tool-based
development is facilitated and reuse is encouraged [22].

Consequently, hypermedia design is to be based on a firm conceptual data model. The
pioneering conceptual hypermedia modeling approaches such as HDM [9] and RMM
[14] were based on the entity-relationship paradigm. Later on, object-oriented
techniques were applied, both at the conceptual and the implementation levels. In
some cases, object-orientation was primarily used in hypermedia engines, to model
functional behavior of an application's components, e.g. Microcosm [5], Hyperform
[29] and Hyperstorm [2]. Other approaches, such as the Tower model [7], EORM [17]
and OOHDM [24], modeled the application domain by means of the object-oriented
paradigm.

2.2 The MESH hypermedia framework

This paper introduces MESH (Maintainable, End user friendly, Structured
Hypermedia), which combines an object-oriented modeling approach with a fully
object-oriented implementation [18]. Based on the conceptual modeling abstractions,
it offers a context-based navigation paradigm to accommodate for user orientation.

MESH’s data model builds on concepts and experiences in the related field of
database modeling, taking into account the particularities inherent to the hypermedia

 3

approach to data storage and retrieval. Established object-oriented modeling
abstractions [15]; [25] are coupled to proprietary concepts to provide for a formal
hypermedia data model. While uniform layout and link typing specifications are
attributed and inherited in a static node typing hierarchy, both nodes and links can be
submitted dynamically to multiple complementary classifications. The data model
provides for a firm hyperbase structure and an abundance of meta-information that
facilitates implementation of the enhanced navigation paradigm.

An elaborate description of the data model and the navigation paradigm can be found
in [20] and [19] respectively. In both publications, the most important object-oriented
concept is abstraction. Abstractions used in the conceptual model and the navigation
paradigm facilitate both orientation and maintenance. By means of inheritance, node
properties can be defined on a high level of abstraction, and be inherited and refined
in more specific “node types”, greatly reducing design and maintenance efforts. The
same abstractions allow for the navigation paradigm to take account of the so-called
navigation context. Guided tours are generated automatically along nodes relevant
within this context, to “guide” the user and avoid disorientation.

However, object-orientation entails more than merely subtyping and inheritance.
Another object-oriented concept that is applied successfully in MESH is
encapsulation. This paper very briefly discusses the conceptual hypermedia data
model and navigation paradigm, but its main focus is upon how encapsulation further
facilitates design and maintenance. At the conceptual level, it allows for nodes to be
considered as independent entities, which can be developed in parallel by different
parties. Any node can be designed without the need for knowing the entire
hypermedia structure. At the implementation level, it allows for nodes to be
considered as objects with a very loose coupling. They interact by means of a well-
defined interface: their set of attributed link types, but can stay unaware of one
another’s actual implementation. As a consequence, each node can be updated without
affecting the rest of the hyperbase, which obviously reduces the maintenance problem
to a great extent. Each update, both in terms of link structure and of node content
becomes a local operation, instead of a global affair with escalating side effects.
Nevertheless, it will allow a very high degree of freedom regarding how a node’s
content is actually implemented, as long as the external view of a node corresponds to
the link type based interface.

3 An overview of the MESH framework

3.1 The basic concepts: node types, layout templates and link types

As with any hypermedia model (except for set-based paradigms), MESH’s basic
building blocks are nodes and links. However, in MESH, these concepts explicitly
take on the semantics of objects and relationships as in an object-oriented conceptual
data model. On a conceptual level, a node can be considered as a black box, which
communicates with the outside world by means of its links.

 4

MESH’s data model does not explicitly define the notion of anchors. A link always
refers to a node as a whole. True to the object-oriented information-hiding concept, no
direct calls can be made to a node’s properties, i.e. its multimedia content. However,
internally, a node may encode the intelligence to adapt its visualization to the
navigation context, as discussed in a later section.

Nodes are assorted in an inheritance hierarchy of node types. Each child node type
should be compliant with its parent’s definition, but may fine-tune inherited features
and add new ones. These features comprise two concepts: node layout and node
interrelations, abstracted in layout templates and link types respectively. Whereas link
types are well-defined at the conceptual level, a node’s layout template will depend
upon the actual implementation environment, e.g. as to the Web it may be HTML or
XML based. As MESH separates the inter-node data modeling aspect from intra-node
design, this section’s discussion regarding inheritance mainly concerns the inheritance
of link types. With regard to node layout, we will suffice by stating that with any level
in the node typing hierarchy, a template can be associated, where each template is a
refinement of its immediate ancestor. The multimedia objects of a node type’s
instances are to comply with the corresponding layout template. Node typing as a
basis for layout design allows for uniform behavior and onscreen appearance for
nodes representing similar real world objects.

A link represents a one-to-one association between two nodes, with both a semantic
and a navigational connotation. A link is always directed and offers an access path
from its source to its destination node. Directionality is important for two reasons:
first there is a semantic aspect, because the exact meaning of a relation might
otherwise be confusing, e.g. for the relation is-a-parent-of. Second, because of the
navigational aspect, where a source and a destination are inherent to each navigation
step.

Links representing similar semantic relationships are assembled into types. Link types
are attributed to node types and can be inherited and refined throughout the hierarchy.
In MESH, definition of a link (type) automatically effects into the definition of an
inverse link (type). Only the source node of a link is made explicit, the destination is
defined as the source of its inverse. So if a link is added to a node, the destination
node must belong to the domain of the inverse link type: a node of type N can be
linked by a link of type L to any node that belongs to the domain of L’s inverse. A
link type’s destination is a derived property, defined as the inverse link type’s domain.

N = Dom(L) Dest(L) = Dom(Inv(L))

L

Inv(L)

Link type properties such as domain, cardinalities and destination/inverse allow for
enforcing constraints on their instances. These properties can be overridden to provide
for stronger restrictions upon inheritance. E.g. whereas an artist node can be linked to

 5

any artwork through a has-made link type, an instance of the child node type painter
can only be linked to a painting, by means of the more specific child link type has-
painted.

3.2 The use of aspects to overcome limitations of a rigid node typing
structure

3.2.1 Definition of aspect descriptor and aspect type

As the above model will also be the basis for node layout design, we deliberately
opted for a single inheritance structure, where node classification is total, disjoint and
constant (see [18] for a more thorough discussion). However, aspects can provide an
elegant solution in many situations that would otherwise call for multiple inheritance.
The aspect construct allows for defining additional classification criteria, which are
not necessarily subject to the restrictions of being total, disjoint and constant. Apart
from a single “most specific node type”, they allow a node to take part in other
secondary classifications that are allowed to change over time.

An aspect descriptor is defined as an attribute whose (discrete) values classify nodes
of a given type into respective additional subclasses. In contrast to a node’s “main”
subtyping criterion, such aspect descriptor should not necessarily be single-valued nor
constant over time. Aspect descriptor properties denote whether the classification is
optional/mandatory, overlapping/disjoint and temporary/permanent.

Each aspect type is associated with a single value of an aspect descriptor. An aspect
type defines the properties that are attributed to the class of nodes that carry the
corresponding aspect descriptor value. An aspect type’s instances, aspects, implement
these type-level specifications. Each aspect is inextricably associated with a single
node, adding characteristics that describe a specific “aspect” of that node.

A node instance may carry multiple aspects and can be described by as many aspect
descriptors as there are additional classifications for its node type. If multiple
classifications exist, each aspect descriptor has as many values as there are subclasses
to the corresponding specialization. Its cardinalities determine whether the
classification is total and/or disjoint. As opposed to node types, aspects are allowed to
be volatile. Hence, dynamic classification can be accomplished by manipulating
aspect descriptor values, thus adding or removing aspects at run-time. Aspect types
attribute the same properties as nodes: link types and layout. However, their instances
differ from nodes in that they are not directly referable. An aspect represents the same
real-world object as its associated node and can only be visualized as a subordinate of
the latter.

E.g. to model an artist that can be skilled in multiple disciplines, a non-disjoint aspect
descriptor discipline defines the painter and sculptor aspect types. Discipline-
specific node properties are modeled in these aspect types, such that e.g. the
Michelangelo node features the combined properties of its Michelangelo.asPainter
and Michelangelo.asSculptor aspects.

 6

Aspect type

SculptorNode type

Artist

M.asPainter M.asSculptor

VG.asPainter

Michelangelo

Van Gogh …

…

… … …

R.asSculptorRodin …

Aspect type

Painter

Aspect descriptor

Discipline
(Painting, Sculpting)

3.2.2 Aspect types as node type building blocks

Node type properties (i.e. layout and link types) can be delegated to aspect
descriptors, such that they can be inherited and overridden in each aspect type that is
associated with one of the descriptor’s values. An aspect type’s layout template
refines layout properties that are delegated to the corresponding aspect descriptor.
Link types delegated to an aspect descriptor can be inherited and overridden as well.
In addition, each aspect type can define its own supplementary link types. The
inheritance/overriding mechanism is similar to the mechanism for
supertypes/subtypes, but because an aspect descriptor can be multi-valued, particular
care was taken so as to preclude any inconsistencies (see [18] for further details).

Aspect types themselves are node type properties that can be inherited and overridden
across the node type hierarchy. The aspect descriptor is used as a vehicle for the
inheritance of aspect types. This ability yields the opportunity to use aspects as real
building blocks for nodes. Link types and layout definitions pertaining to a single
“role” a node may have to play, can now be encapsulated into one aspect type. If the
corresponding aspect descriptor is attributed at a generic level in the node hierarchy,
the aspect type can be inherited where necessary by more specific node types. This
allows for the modeling of a similar ‘aspect’ in otherwise completely unrelated node
types. Node types can be ‘assembled’ by inheriting the proper aspect types,
complemented by their own particular features. In this way, different aspects
associated with the same node instance can have different editing privileges, such that
updating multimedia content can be delegated to different parties.

3.3 Link typing and subtyping

In common data modeling literature, subtyping is invariably applied to objects, never
to object interrelations. If additional classification of a relationship type is called for,
it is instantiated to become an object type, which can of course be the subject of
specialization. However, as for a hypermedia environment, node types and link types
are two separate components of the data model with very different purposes. It would
not be useful to instantiate a link type into a node type, since such nodes would have
no content to go along with them and thus each instance would become an ‘empty’
stop during navigation.

 7

This section demonstrates how specialization semantics can be enforced not only
upon node types, but also upon the link types. A sub link type will model a type
whose set of instances constitutes a subset of its parent’s, and which models a relation
that is more specific than the one modeled by the parent. Link types are deemed
extremely important, as they not only enforce semantic constraints but also interface
between nodes, such that these can be coded and updated independently of one
another. Moreover, they provide the basis for context-sensitive node visualization, as
discussed further on in this paper.

A link instance is defined as a source node - destination node tuple (ns, nd). Tuples for
which this association represents a similar semantic meaning are grouped into link
types. A link type defines instances that comply with the properties of the type and is
constrained by its domain, its cardinalities and its inverse link type. The domain of the
link type is the data type to which the link type is attributed. This can be either a node
type or an aspect type.

If Lc is a sub link type resulting from a specialization over Lp, the set of (ns, nd) tuples
defined by Lc is a subset of the one defined by Lp. Such specialization is called
vertical if it is the consequence of a parallel classification over the link types’ domain,
denoting that the sub link type is attributed at a ‘lower’, more specific level in the
node typing hierarchy than its parent. If Lc and Lp share the same domain, Lc can still
define a subtype of Lp in the case where Lc models a more restricted, more specific
kind of relationship than Lp, independently of any node specialization. Both parent
and child link type are attributed at the same level in the node type hierarchy, hence
the term horizontal specialization.

 E.g.

Apart from the domain, a link type’s cardinalities and inverse can be overridden as
well upon specialization. The cardinalities determine the minimum and maximum
number of link instances allowed for a given source node. MESH presents a formal
overriding mechanism, wherein particular care is taken so as not to violate the
parent’s constraints, particularly in case of a non-disjoint classification. For further
details we refer to [18].

3.4 MESH’s context-based navigation paradigm

The navigation paradigm as presented in MESH combines set-based navigation
principles with the advantages of typed links and a structured data model. The typed
links allow for a generalization of the guided tour construct. The latter is defined as a
linear structure that eases the burden placed on the reader, hence reducing
disorientation [28].

Is-member-of

Is-manager-ofManager

Employee
Is-member-of

Employee
Is-manager-of

Vertical link specialization Horizontal link specialization

 8

As opposed to conventional static guided tour implementations, MESH allows for
complex structures of nested tours among related nodes to be generated at run-time,
depending on the context of a user’s navigation. Such context is derived from abstract
navigational actions, defined as link type selections. Indeed, instead of selecting a
single link instance, similarly to the practice in conventional hypermedia, a
navigational action may also consist of selecting an entire link type. Selection of a
unique link type results in a single destination node being accessed, e.g.:
Sunflowers.exhibited-in := National Gallery.

Selection of a non-unique link type from a given source node results in a guided tour
along a set of nodes being generated. This tour includes all nodes that are linked to
the given node by the selected link type, e.g.: Van Gogh.has-painted := {Potato
eaters, Self portrait, Sunflowers,…}.

Navigation is defined in two orthogonal dimensions: on the one hand, navigation
within the current tour yields linear access to complex webs of nodes related to the
user’s current focus of interest. On the other hand, navigation orthogonal to a current
guided tour, changing the context of the user’s information requirements, offers the
navigational freedom that is the trademark of hypertext systems. In addition, the
abstract navigational actions and tour definitions sustain the generation of very
compact overviews and maps of complete navigation sessions. This information can
also be bookmarked, i.e. bookmarks not just refer to a single node but to a complete
navigational situation, which can be resumed at a later date.

Important to this paper, is that each navigational action can be described in terms of a
link type: navigation within the current tour is defined by the link type that defines the
tour’s context. Navigation orthogonal to the current tour can be described by the
newly selected (unique or non-unique) link type.

3.5 A platform-independent implementation framework

3.5.1 Separation of navigation structure from node layout

The navigational paradigm presented in the previous section requires a hyperbase that
is searchable for its link structure: to generate the necessary guided tour links at run-
time, the application needs to be able to query the hyperbase for nodes related to the
current context. As a consequence, there are two alternatives for hyperbase
implementation. The first one is to encapsulate all links within the body of the nodes,
like it is the case in many hypermedia environments, such as standard HTML pages in
the WWW. However, unlike many other environments, MESH should allow for all
nodes to be queried for their link information. This would call for an object-oriented
database system where each node is an object and where all links are represented as
symbolic pointers to other objects, which can be queried by means of an object-
oriented query language.

However, forcing all nodes with their (possibly very distinct data formats) into one
proprietary object-oriented database model would result in an unacceptable lack of

 9

openness and dependence upon one specific object-oriented DBMS. Therefore, a
second alternative was opted for, where the information content and navigation
structure of the nodes are separated and stored distinctly into storage devices that are
tailored to the specific needs of the type of information stored. A simple relational
database can be used to capture the link structure and meta-information of the
hypermedia system, along with references to the physical addresses of the
corresponding nodes. This option leaves much more freedom to implement the
content of a node.

3.5.2 MESH’s implementation architecture

The resulting system consists of three types of components: the nodes, the
linkbase/repository and the hyperbase engine. In [18], the implementation framework
was deliberately kept independent of any actual software platform. However, the
current prototype is Web-based.

The nodes side of the hypermedia system is considered as a potentially heterogeneous
collection of entities, ranging from flat files (e.g. HTML fragments) to objects in an
object-oriented database, each containing one or more embedded multimedia objects.
Nodes are very loosely specified. They only have to be associated with a filename or
any other unique identification and should be able to return a navigational action (see
below) upon closure. However, since link information is stored separately of the
nodes, a node does not have to be a searchable object. Its internal content is shielded
from the outside world by the indirection of link types playing the role of a node’s
interface.

Linkage information is not embedded in a node’s body. Instead, links as well as meta
data about node types, link types, aspect descriptors and aspects are captured within a
searchable linkbase/repository to provide the necessary information pertaining to the
underlying hypermedia model, both at design time and at run-time. This repository is
implemented in a relational database environment. Only here, references to physical
node addresses are stored, these are never to be embedded in a node’s body. All
external references are to be made through location independent node ID’s.

The hyperbase engine is conceived as a server-side application (the current prototype
is servlet-based) that listens for navigational actions issued from the current node,
retrieves the correct destination node, keeps track of session information and provides
facilities for generating maps and overviews. Since all relevant linkage and meta
information is stored in the relational DBMS, the hyperbase engine can access this
information by means of simple, pre-defined and parameterized database queries, i.e.
without the need for searching through node content.

 10

Heterogeneous node

implementations

Linkbase/repository implemented
in a relational database

environment

Hyperbase engine
(with session information)

Navigational action

Query for destination node

Physical addres of

destination node

Call to destination node

As described above, nodes do not refer directly to one another. Rather, node
interaction is based on their attributed link types and mediated by the hyperbase
engine. The interaction mechanism can be compared to object-oriented method calls
and return values, with the link types defining a node’s interface. The implementation
of these methods is embedded in a node’s body and shielded from the outside world,
according to the object-oriented encapsulation and information hiding principles. The
remainder of this paper discusses this interaction mechanism and indicates how it
greatly facilitates hyperbase development and maintenance.

4 An object-oriented approach to node interaction

4.1 The anchor notion

The traditional concept of an anchor, as defined e.g. in [13], is purposed at allowing a
link to be associated with an internal component of a node. In this respect, its
applicability is twofold: on the one hand it allows for an incoming link to refer
directly to one or more of a node’s embedded multimedia objects. On the other hand,
it allows for an outgoing link to be selected from the node component it is anchored
to, e.g. by clicking the anchor.

If the granularity of linking is to be more delicate than simply connecting entire
nodes, some sort of anchoring is indispensable. Several hypermedia approaches, such
as [7], [13] and [21], consider anchors as first-class objects, i.e. an anchor is a full-
fledged hypermedia component. Links are defined between two (or more) anchors,
rather than between nodes. Having anchors as separate constructs, independent of the
links, certainly has the advantage that the linking mechanism is not burdened by the
“internal node affair” of anchoring the link within the node content. This is especially
important if the node content may consist of heterogeneous media types, possibly
requiring completely different methods of anchoring (e.g. movie sequences versus
textual media).

From a pure data modeling point of view, it is not necessary to discriminate source
anchors from destination anchors [7]; [13]. Both have the same purpose: referring to
internal components of a node’s content. However, on a behavioral level, there
certainly is a difference [8]; [17]. A source anchor is to induce a navigational action

 11

upon stimulation, hence it should be able to receive some kind of user input. The most
well-known example is the traditional button or underlined word. A destination
anchor influences the visualization of a node and may work upon one or more
multimedia objects in a node’s content. It is narrowly coupled to a node’s
presentation methods. E.g. a source anchor to a link between a painting and its
painter should be able to provoke a navigational step from the painting to the
painter, whereas a destination anchor (to the same node) should determine how the
painting instance is to be visualized, given it is accessed through the corresponding
link.

4.2 Encapsulation versus anchoring

Both source and destination anchors have the property of “pointing” to one or more
specific multimedia objects within a given node. Consequently, if a node is seen as an
object, the anchor concept violates the encapsulation and information hiding
principles of object-orientation. These principles state that an object is to encapsulate
all functionality necessary to manipulate its own state. It should hide its properties and
method implementations from the outside world and is to offer only a limited
interface for external objects to call upon. Through this interface, the external objects
communicate with the object and use its services, ask for embedded information etc.
External objects should not have knowledge of an object’s internal properties. This
principle is very advantageous in terms of maintainability and reuse: the internal
features of the object can be changed drastically without affecting other objects, as
long as the interface to the outside world remains unchanged. An object can even be
replaced by a different object, as long as a similar interface is offered.

An anchor object, be it a source or destination anchor, violates the information hiding
concept by referring to a node object’s internal (multimedia) components. To benefit
from the information hiding principle, a source and destination anchor should be
known only to a link’s respective source and destination nodes. Therefore, MESH
does not define real anchor components that can be referenced externally, but leaves
anchoring to the internal node design instead. Links are directly defined between
nodes, not between anchors. Both a node’s “incoming” and “outgoing” links are dealt
with internally, by the node itself.

4.3 An object-oriented alternative to anchoring: link types as the interfaces
for node interaction

Indeed, instead of explicit anchoring, MESH uses a node’s attributed link types to
interface between the global hyperbase objects and the node’s internal components.

The node provides the user with a user interface (defined in the layout template) to
interact with the node and explore its embedded multimedia objects. The association
of a multimedia object with a navigational action can be seen as the equivalent of a
source anchor: if the multimedia object is suitably ‘stimulated’ by the user, the
corresponding user interface event causes a navigation step. As a consequence, the

 12

current node is closed, i.e. it is abandoned in favor of another node to be accessed and
to become the ‘new’ current node. Upon closure, the node passes a return value to the
hyperbase engine. This return value depends on the event that induced the navigation
step and provides the hyperbase engine with a means of calculating the appropriate
destination node as the next/previous node in a guided tour, the single destination
node of a unique link type or the first node in a newly started guided tour, defined by
a non-unique link type.

Because of MESH’s navigation mechanism, the value returned to the hyperbase
engine by the closing node will actually be a link type ID. The link type not only
determines which node will be accessed next, but also which visualization method will
be called upon this destination node. The destination anchor concept is generalized by
the so-called context sensitive visualization principle: a node’s visualization is made
sensitive to the context, defined by the link type, within which it is accessed. Each link
type corresponds to a presentation routine, which provokes a befitting visualization of
the node’s multimedia objects within a particular context. Hence the same node will
visualize itself differently, depending on the context in which it is accessed. The latter
is accomplished without a link referring to the actual multimedia objects: the
appropriate behavior is encapsulated and hidden within the node as a presentation
routine’s implementation.

Summarizing, node interaction is regarded as interaction between self contained
objects. Each node/object defines its own routines for visualization and interaction
with the user. When a user selects a navigational action in the current node, the latter
closes and passes a return value to the hyperbase engine. The engine calculates the
correct destination node from this return value and calls a presentation method upon
the latter. The node’s actual implementation is hidden; its presentation routines define
its public interface. By associating a presentation routine with each link type
attributed to a node type, the node type’s instances are equipped with an appropriate
visualization routine for each context in which they can be accessed. The two
subsequent sections further discuss MESH’s alternatives to source anchors and
destination anchors respectively.

4.4 Link type selections instead of source anchors

It was already discussed how navigational actions, both within the current tour and
orthogonal to the current tour, can always be described by a link type. The latter
defines the context within which the action takes place, or the new context induced by
the action. Exactly such link type will make out the return value a node passes to the
hyperbase engine.

Each node defines its own user interface, as specified in its type’s template.
Consequently, a user interacts with only a single node at a given time. It is this
current node’s duty to accept the user’s choice for the next navigational step and to
present the hyperbase engine with an indication about which node to access next.
How a user’s choice for a navigation step is to be made known to a node, is left to its
internal design. Like in any hypermedia environment, this can be accomplished

 13

through clicking underlined words, hot spots, buttons, clickable maps etc. However,
independently of the implementation, MESH defines a source anchor as the
association between a user interface event and a link type. It causes the current node
to close and pass the link type as a return value to the hyperbase engine. In contrast to
other approaches, the anchor is not to be known outside the node: it is considered an
internal node property and does not belong in the conceptual hypermedia model. Its
implementation can vary from node to node, depending on the node’s implementation
and the corresponding multimedia object that induces the event.

MESH greatly improves node independence and maintainability by anchoring link
types instead of link instances wherever possible. A link type anchor is independent of
the node instance and can be defined once at an aggregate level in a node type’s (or
aspect type’s) layout template. The “anchors” remain the same for each node (or
aspect) instance, independently of the corresponding link instance(s). Whenever a
new instance is defined, such anchor can be generated automatically. Upon
stimulation of the anchor, the corresponding link type ID is passed to the hyperbase
engine. Only here, it is mapped to one or more link instances. A unique link type is
mapped to a unique destination node. A non-unique link type is mapped to a guided
tour, of which the first participating node is accessed. Such guided tour is derived at
runtime and consists of all destination nodes of link instances of the selected type,
which have the current node as source node. They can be visited sequentially by the
user. E.g. a source “anchor” to the link type has-painted can be defined in the layout
template associated with the node type painter. At runtime, stimulating this anchor in
any painter instance will provoke a guided tour along all paintings painted by this
particular painter: Van Gogh.has-painted := {Potato eaters, Self portrait,
Sunflowers,…}.

Hence maintenance of the individual link instances does not affect the node’s internal
properties. As to non-unique link types, links can be added or removed without
affecting the anchor and, consequently, the node’s content. The correct guided tour is
calculated at runtime by the hyperbase engine. This does not only facilitate
development to a great extent, but also improves the user’s grasp upon the underlying
hypermedia structure by providing similar anchors to similar links. As such, cognitive
overhead and the risk of disorientation are reduced.

In addition, since all relevant linkage and meta information is stored in a relational
database, the hyperbase engine itself is always able to generate a separate navigation
panel upon user request. This panel can provide the user with a complete node
overview: a hierarchical index of all accessible destination nodes, based on the link
typing hierarchy. Moreover, it could provide information about possible guided tours,
local maps, fish-eye views etc. It is important to note that such information can be
provided through simple, pre-defined and parameterized database queries, i.e. without
the need for searching through node content. In addition, such navigation panel can
provide an interface for user interaction in the case where the node collection includes
“third-party” objects such as word processor or spreadsheet documents, which may
not encompass a means for anchoring links themselves.

 14

Finally, the navigation panel would also inform the user about what is called non-
advertised links in [1], i.e. links that are not explicitly anchored. Indeed, most nodes
will have many more links than the ones that are explicitly associated with one or
more user interface events. This is partially a consequence of inverse links being
automatically generated for each link added. E.g. whereas each painting may anchor
a link to its painter, it may not be desirable for a painter to anchor links to each
individual painting, although these links will be present in the linkbase. Rather will
the link type has-painted be anchored, to start a guided tour of all of a painter’s work.
It’s the designer’s responsibility to decide which links will be anchored, weighing off
the supply of additional information against the risk of cognitive overhead. However,
this decision never affects navigational freedom, as all non-anchored links can be
made visible by a system generated node overview.

4.5 Context sensitive visualization instead of destination anchors

4.5.1 A node type’s layout template

Because a destination anchor referring to a node’s internal multimedia objects violates
the encapsulation and information hiding paradigm, MESH provides an alternative
approach. Instead, a node can be endowed with the intelligence to tune its
visualization to the context in which it is accessed.

Node visualization in MESH builds upon two elements: layout templates and
presentation routines. The layout template associated with each node type and aspect
type describes its instances’ multimedia objects on an abstract level and enforces a
uniform user interface and consistent node layout. The presentation routine associated
with each link type, denotes how a node is to be visualized, when accessed through
this link type, i.e. in a particular context. This section deals with the more general
aspects of layout templates and node visualization. The section hereafter elaborates on
the context-sensitive node visualization mechanism.

Indeed, as discussed in detail in [18], each node type is to be associated with its own
layout template, such that all of its instances share a similar “look and feel”. The
template describes on an abstract level what multimedia objects should be available
and defines a complete presentation framework of all information content
encapsulated within a node instance. Designing a template for node presentation can
be seen as attributing a set of placeholders towards the output device(s) and
specifying how the respective placeholders should be filled up by a given node
instance. E.g. a template could be defined as an XML DTD, combined with a style
sheet. However, the notion of placeholders should be looked upon in a most general
meaning, again depending on the possible media types. If the application includes
audio, the audio track can also be seen as a placeholder. In the case where time
dependent media play a critical role, the two spatial co-ordinates can be extended with
an additional temporal co-ordinate. This framework is unique for a given node type
and is independent of the link types through which node instances will be accessed.

 15

Just like link types, layout templates can be inherited and overridden in both child
node types and aspect types. Purposefully, the description of the layout inheritance
and overriding mechanism is kept very general and abstract in [18]. The concrete
approach will again depend on implementation environment, multimedia data types
etc. No matter how, a consistent layout can be enforced across all node types, by
defining common layout properties in an abstract level’s template and inheriting and
refining them at more concrete levels in the node typing hierarchy.

Associating aspect types with a layout template too allows for similar layout
properties to be modeled orthogonally to the node type inheritance hierarchy. An
aspect instance presents its own embedded multimedia data, as determined by the
aspect type’s template. As described earlier, the aspect construct was introduced so as
to embody both links and multimedia objects that pertain to a particular “aspect” of a
node. Such aspects can be added or removed at run-time, allowing for node properties
to be acquired or lost dynamically. Upon visualization, a node instance will present
itself with its associated aspects, whereas each aspect provides the necessary
multimedia data to fill placeholders that are delegated to its aspect descriptor.

Aspects are utterly beneficial to data modeling, as properties described on an abstract
aspect type level can be enforced across multiple, for the remainder unrelated, node
types, independently of the node type inheritance hierarchy. Hence these properties
can be packaged and inherited as a whole, which enables a dynamic and non-disjoint
classification mechanism, relaxing the constraints of a rigid node typing hierarchy. At
the implementation level, this also introduces a measure of modularization, such that
different aspects to the same node can be coded independently. The main node cannot
reach directly to the aspect’s multimedia objects: it only offers a “forum” for the
aspect to present its encapsulated content.

4.5.2 Link types/presentation routines as a node’s interface

Whereas layout templates are designed without considering (relations to) other node
types, the link types glue the different nodes together into a single network. This
section denotes how a node’s visualization is made context-sensitive, such that it
reacts to a given link type by presenting the most relevant portion of its content.

Indeed, while the navigation paradigm deals with inter-node navigation, i.e. which
node is made current at a given moment, most hypermedia environments also support
the notion of intra-node navigation. The latter allows for a node not to visualize all of
its embedded multimedia objects at the same time. By interacting with the node, the
user is able to “navigate” between a node’s internal multimedia objects (without
moving to a different node altogether). A very simple example is scrolling within a
single HTML document, but more sophisticated environments allow for multiple
embedded multimedia objects to be visible at the same time, leaving the user the
option of choosing between e.g. a picture of a painting or a textual description. For
that purpose, we can introduce the term internal node currency. The latter denotes
which of the current node’s embedded multimedia objects is/are made current within
this node. Internal node currency can be manipulated by the user by navigating

 16

between the node’s embedded objects. However, upon node access through an
external link, the corresponding presentation routine is to determine how the node is
visualized and which objects are to be made current initially. For that purpose, a node
type can be equipped with as many presentation routines as it has link types. As a
result, a node’s link types determine its ‘sensitivity’ to different kinds of accesses,
according to different reasons why it could be linked to the node from where it was
accessed.

As described previously, a link’s source node passes a link type ID as return value to
the hyperbase engine upon closure. The hyperbase engine maps this link type
unambiguously to an inverse link type, attributed to the destination node (see [18] for
more details on the exact mapping mechanism). Thus, by acknowledging a node
type’s set of attributed link types as a factor in its visualization, it can provide an
appropriate reaction to each situation in which it may be accessed. The presentation
routine associated with the link type determines which subset of the node’s
multimedia objects, as assorted in its layout template, is to be made current upon node
access through an instance of this link type. This allows a node to be sensitive to why
it was accessed, such that the user can be directed to the most relevant section(s) of
the node’s information content. Of course, the concept of “being current”, in the
context of internal node information, depends on the implementation environment and
multimedia data types involved. For visual objects, the presentation routine may be
merely a matter of selecting a subsection of an HTML document. In richer
environments, it may include scenarios for starting audio tracks, video sequences etc.

E.g. selecting the link type painted-by from the node Sunflowers, results in the node
Van Gogh being accessed through a presentation routine associated with its own has-
painted link type.

Sunflowers.painted-by���� Painting.painted-by���� ����Painter.has-painted

Mapping the link type to the correct inverse

 by the hyperbase engine:
Link type selection

In source node:

Van Gogh.has-painted()

Method call to the

 destination node:

⇔

Again, this approach has the advantage that all required behavior is encapsulated
within the node objects. Moreover, it allows for visualization properties to be laid
down once on an abstract level: both layout template and attributed link types are
node type or aspect type properties. Consequently, similar nodes will present a similar
reaction to similar link type accesses. However, where necessary, general properties
can be inherited and overridden to provide for a more specific reaction by means of
link subtyping. A sub link type models a more specific relationship between two
nodes than its parent, potentially provoking a more specific reaction by the destination
node, by means of a more specific presentation routine associated with the link type.

Note that the complete layout of a node, i.e. what multimedia objects it should contain
and how they should be presented, is designed in its layout template, independently of
its link types. These only determine which part of this layout is to be made current
upon node visualization. The node’s layout definition is also to provide a user

 17

interface, so as to enable the user to browse through the rest of the node’s multimedia
content, i.e. the data not made current upon access through the link type involved.
Until the node is closed, all navigational control lies within the node’s code, the
hyperbase engine has nothing to do with this. Therefore, a node’s user interface and
“internal” navigation can be encapsulated, implemented and tested on their own,
independently of the rest of the hyperbase.

5 Evaluation and conclusions

5.1 Nodes as self contained, independently coded entities

As explained above, because a node encapsulates all behavior necessary for its own
visualization, it can be coded and tested independently, without prior knowledge of
the other nodes it will interact with. The designer of a node (type) doesn’t need to
worry about which node types might be related to the one he is editing, the only
criterion is the interface defined by attributed link types and their corresponding
presentation routines. The destinations are irrelevant for node design. As a
consequence, node design and maintenance can easily be delegated to different,
independent parties.

Multimedia objects are hidden in the node’s implementation and are never to be
referenced directly from the outside world. Only a node’s own presentation routines
are allowed to access the multimedia information encapsulated within the node.
Nevertheless, the context-sensitive visualization mechanism enables a node to present
itself differently depending upon why it was accessed. Again, it only needs to have
knowledge of and react to its attributed link types. If a link is selected to access a
node, its inverse type becomes the criterion for the called node to determine its
response. This allows the node to react not as much to by whom it is accessed, but
rather to the reason why it is activated.

The layout template on node type level is able to describe both multimedia objects
and properties for visualizing these objects when a node instance is accessed. At run-
time, node visualization as determined in the node type’s layout template is influenced
by two additional elements. The first one is the link type through which the node was
accessed. The second element is the node’s associated aspects, allowing a single node
to be attributed dynamically to multiple classes, whereas part of the visualization
properties is determined in aspect layout templates. Aspects allow for specific
multimedia information pertaining to a given node to be encapsulated in separate
entities, possibly with their proper layout specifications. The appropriate aspects can
be called and presented at run-time, again depending on the context in which the node
is accessed. The combination of the context-sensitive visualization and self-
containment principles results in each component (i.e. nodes as well as aspects)
autonomously responding to a node access to the best of its ability.

 18

5.2 Loosely coupled, heterogeneous nodes

The definition of nodes as self-contained entities and the separation of node content
from the hyperbase’s link structure, along with the introduction of a dedicated link
storage facility, allows for internal node maintenance to be decoupled from inter-
node maintenance. The former can, as discussed above, be executed independently of
the other nodes, based on the node type’s (and aspect type’s) attributed link types. The
latter consists of relational database queries on the linkbase/repository and does not
affect node content. Moreover, the meta information stored along with the link data
allows for automated completeness and consistency checking during authoring, or
even the suggestion of feasible destination nodes for a given (source node, link type)
combination. Obviously, easy accessibility of meta information at runtime is also a
prerequisite for the context-based navigation paradigm.

Nodes are treated as real objects by the hyperbase engine, referred to by unique object
identifiers, independent of their physical location. Where necessary, the hyperbase
engine can generate a navigation panel at runtime with a complete node overview.
The latter will also be useful for “third party” nodes that do not provide their own user
interface for selecting navigational actions. Therefore, the specification of the node
concept can remain very loose, and their actual implementations in a single hyperbase
are allowed to be very diverse. The attributed link types play an interfacing role and
allow for standardized interaction between the potentially heterogeneous node
implementations.

A node does not embed direct references to other nodes. Rather, it passes an abstract
link type ID representing the corresponding navigational action to the hyperbase
engine upon node closure. The latter calculates the correct destination node by means
of queries to the linkbase and retrieves its physical address. After that, the link type is
mapped to its inverse and the destination node is accessed by means of the
presentation routine that corresponds to this inverse link type. These link types are the
only node properties that are to be known outside the node, they play the role of a
node’s public interface.

5.3 Specification on type level

A last advantage to the proposed approach is the fact that the majority of the
properties can be defined on type level. Node layout as well as “source anchors” (i.e.
the association between user interface events and link types) and “destination
anchors” (i.e. the presentation routines) can be laid down in layout templates,
associated with a node type. By means of inheritance and overriding, abstract
specifications can be refined at more concrete levels of the typing hierarchy. In this
respect, delegation to aspect types allows for specialization according to different
criteria, such that a cohesive set of properties can be encapsulated into a single entity.

The fact that link “anchors” can be specified on type level again facilitates the
separation of intra node maintenance from inter node maintenance. Link instances can

 19

be updated without affecting their type level anchors. Only at runtime, such anchors
are mapped to actual link instances by means of linkbase queries by the hyperbase
engine. Needless to say that specification of properties on an abstract level will also
improve consistency of layout and anchors, which in its turn reduces cognitive
overhead and, consequently, end user disorientation.

5.4 Current prototype

MESH’s web-based prototype is still in an experimental stadium. It consists of a
runtime environment, based on a hyperbase servlet which processes navigational
actions and accesses the linkbase/repository. The hyperbase engine is called from a
“traditional” web browser. Nodes and aspects are conceived as static HTML or XML
fragments, combined with a generic client-side applet which provides the necessary
user interface functionality to handle the selection of navigational actions. These
actions consist of both within-tour navigation and the initiation of new guided tours,
as required by the navigation paradigm. The applet also transforms the appropriate
HTML fragments into a single node visualization, according to the context in which it
is accessed.

The HTML code only defines a node’s encapsulated multimedia content: the links are
removed from the node’s content and are stored in the linkbase/repository, along with
the meta information.

At present, the runtime environment provides a read only system: authoring is
executed by means of a separate, offline, application. In the future, however, the
runtime system is intended to enable user with the right privileges to reallocate links
and update node content during a navigation session.

6 References

1. Ashman H., Garrido A. and Oinas-Kukkonen H., Hand-made and Computed

Links, Precomputed and Dynamic Links, Proceedings of Hypertext - Information
Retrieval - Multimedia (HIM '97), Dortmund (Sep. 1997)

2. Bapat A., Wäsch J., Aberer K. and Haake J., An Extensible Object-Oriented
Hypermedia Engine, Proceedings of the seventh ACM Conference on Hypertext
(Hypertext '96), Washington D.C. (Mar. 1996)

3. Bernstein M., The Navigation Problem Reconsidered, Hypertext/Hypermedia
Handbook, E. Berk and J. Devlin Eds., McGraw-Hill, New York (1991)

4. Cockburn A. and Jones S., Which way now? Analyzing and easing inadequacies
in WWW navigation, International Journal of Human-Computer Studies No. 45
(1996)

5. Davis H., Hall W., Heath I., Hill G. and Wilkins R., MICROCOSM: An Open
Hypermedia Environment for Information Integration, Computer Science
Technical Report CSTR 92-15 (1992)

6. Davis H., To Embed or Not to Embed, Commun. ACM Vol. 38, No. 8 (Aug.
1995)

 20

7. De Bra P., Houben G. and Kornatzky Y., An Extensible Data Model for
Hyperdocuments, Proceedings of the fourth ACM European Conference on
Hypermedia Technology (ECHT ‘92), Milan (Dec. 1992)

8. Furuta R. and Stotts P., The Trellis Hypertext Reference Model, Proceedings of
the Workshop on Hypertext Standardisation, Special Publication SP500-178,
National Institute of Standards and Technology, Gaithersburg (Jan. 1990)

9. Garzotto F., Paolini P. and Schwabe D., HDM - A Model-Based Approach to
Hypertext Application Design, ACM Trans. Inf. Syst. Vol. 11, No. 1 (Jan. 1993)

10. Garzotto F., Mainetti L. and Paolini P., Hypermedia Design, Analysis, and
Evaluation Issues, Commun. ACM Vol. 38, No. 8 (Aug. 1995)

11. Ginige A., Lowe D. and Robertson J., Hypermedia Authoring, IEEE Multimedia
Vol. 2, No. 4 (Winter 1995)

12. Halasz F., Reflections on NoteCards: Seven Issues for Next Generation
Hypermedia Systems, Commun. ACM Vol. 31, No. 7 (Jul. 1988)

13. Halasz F. and Schwartz M., The Dexter hypertext reference model, Commun.
ACM Vol. 37, No. 2 (Feb. 1994)

14. Isakowitz T., Kamis A. and Koufaris M., The Extended RMM Methodology for
Web Publishing, Working Paper IS-98-18, Center for Research on Information
Systems, 1998 (Currently under review at ACM Trans. Inf. Syst.)

15. Jacobson I., Christerson M., Jonsson P. and Övergaard G., Object-Oriented
Software Engineering, Addison-Wesley, New York (1992)

16. Knopik T. and Bapat A., The Role of Node and Link Types in Open Hypermedia
Systems, Proceedings of the sixth ACM European Conference on Hypermedia
Technology (ECHT ‘94), Edinburgh (Sep. 1994)

17. Lange D., An Object-Oriented design method for hypermedia information
systems, Proceedings of the twenty-seventh Hawaii International Conference on
System Sciences (HICSS-27), Hawaii (Jan. 1994)

18. Lemahieu W., Improved Navigation and Maintenance through an Object-
Oriented Approach to Hypermedia Modeling, Doctoral dissertation

(unpublished), Leuven (Jul. 1999)
19 Lemahieu W., A Context-Based Navigation Paradigm for Accessing Web Data,

Proceedings of the ACM Symposium on Applied Computing (SAC 2000), Como,
Italy (Mar. 2000)

20. Lemahieu W., MESH: A Model-Based Approach to Hypermedia Design, in:
Chen, Q. (ed.) Human Computer Interaction: Issues and Challenges, Idea Group
Publishing, Hershey, PA (Jan. 2001)

21. Meyrowitz N., Intermedia: The Architecture and Construction of an Object-
Oriented Hypermedia System and Applications Framework, Proceedings of the
Conference on Object-oriented Programming Systems, Languages and

Applications (OOPSLA '86), Portland (Sep. 1986)
22. Nanard J. and Nanard M., Hypertext Design Environments and the Hypertext

Design Process, Commun. ACM Vol. 38, No. 8 (Aug. 1995)
23. Ramaiah C., An Overview of Hypertext and Hypermedia, International

Information, Communication & Education Vol. 11, No. 1 (Jan. 1992)
24. Schwabe D. and Rossi G., Developing Hypermedia Applications using OOHDM,

Proceedings of the ninth ACM Conference on Hypertext (Hypertext '98),
Pittsburgh (Jun. 1998)

 21

25. Snoeck M., Dedene G., Verhelst M. and Depuydt A., Object-Oriented Enterprise
modeling with MERODE, Universitaire Pers Leuven, Leuven (1999)

26. Thüring M., Haake J., and Hannemann J., What's ELIZA doing in the Chinese
Room - Incoherent Hyperdocuments and how to Avoid them, Proceedings of the
third ACM Conference on Hypertext (Hypertext ’91), San Antonio (Nov. 1991)

27. Thüring M., Hannemann J. and Haake J., Hypermedia and Cognition: Designing
for comprehension, Commun. ACM Vol. 38, No. 8 (Aug. 1995)

28. Trigg R., Guided Tours and Tabletops: Tools for Communicating in a Hypertext
Environment, ACM Trans. Office Inf. Syst. Vol. 6, No. 4 (Oct. 1988)

29. Wiil U. and Leggett J., Hyperform: a hypermedia system development
environment, ACM Trans. Inf. Syst. Vol. 15, No. 1 (Jan. 1997)

