
 1

Abstracted Navigational Actions for
Improved Hypermedia Navigation

and Maintenance

Wilfried Lemahieu

Department of Applied Economic Sciences

Katholieke Universiteit Leuven

Naamsestraat 69 B-3000 Leuven

Belgium

tel: + 32 16 32 68 86

fax: + 32 16 32 67 32

e-mail: wilfried.lemahieu@econ.kuleuven.ac.be

Abstract

This paper discusses the MESH framework, which proposes a fully object-oriented approach to

hypermedia. Object-oriented abstractions are not only applied to the conceptual data model, but also to

the navigation paradigm. This results in the concept of context-based navigation, which reduces the

end user’s disorientation problem by means of dynamically generated, context-sensitive guided tours.

Moreover, maintainability is greatly improved, as both nodes and links are defined as instances of

abstract classes. In this way, single links and entire guided tours are anchored on type level as abstract

navigational actions, which are independent of the actual link instances.

1 Introduction

The hypermedia paradigm looks upon data as a network of nodes, interconnected by links. Whereas

each node symbolizes a concept, a link not only stands for a relation between two items, but also

explicitly assumes the semantics of a navigation path, hence the quintessential property of navigational

data access. Their inherent flexibility and freedom of navigation raises hypermedia systems as utterly

suitable to support user-driven exploration and learning. Therefore, hypermedia data retrieval embraces

a notion of location. Data accessibility depends on a user’s position in the network, denoted as the

current node. Manipulation of this position gradually reveals links to related information [14].

Unfortunately, due to inadequacy of the underlying abstractions, most hypermedia technologies suffer

from severely limited maintainability. Moreover, the explorative, non-linear nature of hypermedia

navigation imposes a heavy processing load upon the end user, referred to as cognitive overhead. The

stringent problem of cognitive overhead effecting into user disorientation and losing one’s chain of

thought is known as the ‘lost in hyperspace’ phenomenon [7].

The benefits of data modeling abstractions to both orientation and maintainability were already

acknowledged in [6]. They yield richer domain knowledge specifications and more expressive

querying. Typed nodes and links offer increased consistency in both node layout and link structure [9].
Higher-order information units and perceivable equivalencies (both on a conceptual and a layout level)

greatly improve orientation [17]. Semantic constraints and consistency can be enforced [1]; [5], tool-

based development is facilitated and reuse is encouraged [15]. The first conceptual hypermedia

modeling approaches such as HDM [4] and RMM [8] were based on the entity-relationship paradigm.

Object-oriented techniques were mainly applied in hypermedia engines, to model functional behavior

of an application’s components, e.g. Hyperstorm [2], Microcosm [3] and Hyperform [19]. Along with

EORM [10] and OOHDM [16], MESH is the first approach where modeling of the application domain

is fully accomplished through the object-oriented paradigm.

The MESH hypermedia framework as deployed in [11] proposes a structured approach to both data

modeling and navigation, so as to overcome said maintainability and user disorientation problems.

MESH is an acronym for Maintainable, End user friendly, Structured Hypermedia. MESH’s data

model is based on concepts and experiences in the related field of database modeling, taking into

 2

account the particularities inherent to the hypermedia approach to data storage and retrieval.

Established object-oriented modeling abstractions are coupled to proprietary concepts to provide for a

formal hypermedia data model. While uniform layout and link typing specifications are attributed and

inherited in a static node typing hierarchy, both nodes and links can be submitted dynamically to

multiple complementary classifications. The data model provides for a firm hyperbase structure and an

abundance of meta-information that facilitates implementation of the context-based navigation

paradigm. Here, conventional navigation along static links is complemented by run-time generated

guided tours, which are derived dynamically from the context of a user’s information requirements.

This paper briefly overviews the data model and navigation paradigm
1
. Subsequently, the concept of

abstract navigational actions is explained in detail. As a conclusion, the approach is evaluated with

respect to both orientation and maintenance.

2 The MESH hypermedia framework

2.1 The basic concepts: node types, layout templates and link types

On a conceptual level, a node is considered a black box, which communicates with the outside world

by means of its links. External references are always made to the node as a whole. True to the object-

oriented information-hiding concept, no direct calls can be made to its multimedia content. However,

internally, a node may encode the intelligence to adapt its visualization to the navigation context, as

discussed in section 4.1. Nodes are assorted in an inheritance hierarchy of node types. Each child node

type should be compliant with its parent’s definition, but may fine-tune inherited features and add new

ones. These features comprise both node layout and node interrelations, abstracted in layout templates

and link types respectively.

A layout template is associated with each level in the node typing hierarchy, every template being a

refinement of its predecessor. Its exact specifications depend on the implementation environment, e.g.

as to the Web it may be HTML or XML based. Node typing as a basis for layout design allows for

uniform behavior, onscreen appearance and link anchors for nodes representing similar real world

objects.

A link represents a one-to-one association between two nodes, with both a semantic and a navigational

connotation. A directed link offers an access path from its source to its destination node. Links

representing similar semantic relationships are assembled into types. Link types are attributed to node

types and can be inherited and refined throughout the hierarchy.

Link type properties such as domain, cardinalities and destination/inverse allow for enforcing

constraints on their instances. The domain is the node type (or aspect type, see the next section) to

which the link type is attributed. The cardinalities determine the minimum and maximum number of

link instances allowed for a given source node. The inverse link type is the most specific link type that

encompasses all of the original link type’s tuples, with reversed source node and destination node. As

explained in detail in [11], a link type’s destination is a derived property, defined as the inverse link

type’s domain. These properties can be overridden to provide for stronger restrictions upon inheritance.

E.g. whereas an artist node can be linked to any artwork through a has-made link type, an instance of

the child node type painter can only be linked to a painting, by means of the more specific child link

type has-painted.

2.2 Aspect descriptors and aspect types

The above model is based on a node typing strategy where node classification is total, disjoint and

constant. The aspect construct allows for defining additional classification criteria, which are not

necessarily subject to these restrictions. Apart from a single "most specific node type", they allow a

node to take part in other secondary classifications that are allowed to change over time
2
.

An aspect descriptor is defined as an attribute whose (discrete) values classify nodes of a given type

into respective additional subclasses. In contrast to a node’s “main” subtyping criterion, such aspect

descriptor should not necessarily be single-valued or constant over time. Aspect descriptor properties

1 For a more thorough discussion of the navigation paradigm and the data model, we refer to [12] and [13] respectively.
2 We deliberately opted for a single inheritance structure. However, aspects can provide an elegant solution in many situations

that would otherwise call for multiple inheritance. See [11] for further details.

 3

denote whether the classification is optional/mandatory, overlapping/disjoint and temporary/

permanent. Each aspect type is associated with a single value of an aspect descriptor. An aspect type

defines the properties that are attributed to the class of nodes that carry the corresponding aspect

descriptor value. An aspect type’s instances, aspects, implement these type-level specifications. Each

aspect is inextricably associated with a single node, adding characteristics that describe a specific

“aspect” of that node.

As opposed to node types, aspects are allowed to be volatile. Hence, dynamic classification can be

accomplished by manipulating aspect descriptor values, thus adding or removing aspects at run-time.

Aspect types attribute the same properties as nodes: link types and layout. However, their instances

differ from nodes in that they are not directly referable. An aspect represents the same real-world

object as its associated node and can only be visualized as a subordinate of the latter. E.g. to model an

artist that can be skilled in multiple disciplines, a non-disjoint aspect descriptor discipline defines the

painter and sculptor aspect types. Discipline-specific node properties are modeled in these aspect

types, such that the Michelangelo node features the combined properties of its

Michelangelo.asPainter and Michelangelo.asSculptor aspects.

2.3 Link typing and subtyping

In common data modeling literature, subtyping is invariably applied to objects, never to object

interrelations. If additional classification of a relationship type is called for, it is instantiated to become

an object type, which can of course be the subject of specialization. However, as for a hypermedia

environment, node types and link types are two separate components of the data model with very

different purposes. It would not be useful to instantiate a link type into a node type, since such nodes

would have no content to go along with them and thus each instance would become an ‘empty’ stop

during navigation. Therefore, in MESH, specialization semantics can be enforced not only upon node

types, but also upon the link types.

A link instance can be seen as a source node - destination node tuple (ns, nd). Tuples for which this

association represents a similar semantic meaning are grouped into link types. A sub link type will

model a type whose set of instances constitutes a subset of its parent’s, and which models a relation

that is more specific than the one modeled by the parent. A link type’s domain, cardinalities and

inverse can be overridden upon specialization. MESH presents a formal overriding mechanism,

wherein particular care is taken so as not to violate the parent’s constraints, particularly in case of a

non-disjoint classification. For further details we refer to [11]. Link types are deemed extremely

important, as they not only enforce semantic constraints but also interface between nodes, such that

these can be coded and updated independently of one another. Moreover, they provide the basis for

context-sensitive node visualization, as discussed in section 4.1.

2.4 Guided tours derived from the current context

In conventional hypermedia applications, the current node is the only variable that determines which

information is accessible at a given moment; navigation is only possible to nodes that are linked to this

current node. Its value changes with each navigation step as it represents the immediate focus of the

user’s attention. MESH introduces the current context as a second, longer-term variable that ‘glues’ the

various visited nodes together and provides a background about which common theme is being

explored. The current context is defined as the combination of a context node and a context link type.

The context node represents the subject around which the user’s broader information requirements

‘circle’. The nature of the relationship involved is depicted by the context link type.

MESH builds upon its data model and the context notion to reconcile navigational freedom with the

ease of linear navigation, by offering guided tours to a disoriented end user, chaining together all nodes

pertaining to a common subject with forward/backward links. In contrast to the traditional guided tour

notion [18], such guided tour is not static, but is adapted dynamically to the navigation context. In

addition, a node is able to tune its visualization to the context in which it is accessed, hence providing

the user with the most relevant subset of its embedded multimedia objects. E.g. the typical hypermedia

links (represented as arrows) between Van Gogh and each of his paintings can be complemented by a

guided tour (represented as dotted lines) along these paintings (see figure 1).

 4

Van Gogh

Sunflowers

Wheatfield

Starry night

Potato eaters

Irises

Current context: Van Gogh.has-painted

Figure 1: a guided tour, as derived from the current context

A guided tour derives from the current context. Therefore, MESH discriminates between direct and

indirect links. A direct link represents a lasting relation between two nodes. Direct links are typed and

reflect the underlying conceptual data model. Because they are permanent and context-independent,

they are stored explicitly into the hyperbase and are always valid. E.g. the node Sunflowers is directly

linked to the Van Gogh node. An indirect link between two nodes indicates that they share relevancy

to a common third node. The latter denotes the context within which the indirect link is valid. As

indirect links not only reflect the data model, but also depend on a run-time variable, the current

context, they cannot be stored within the hyperbase. They are to be created dynamically at run-time, as

inferred from a particular context. E.g. an indirect link between Sunflowers and Wheatfield is only

relevant when exploring information related to Van Gogh.

A guided tour is defined as a path of indirect links along all nodes relevant to the current context.

These nodes are directly linked to the context node (through instances of the context link type) and

indirectly to their predecessor and successor in the tour. As they are chained into a linear structure, a

logical order should be devised in which the subsequent tour nodes can be presented to the user. The

most obvious criterion is in alphabetical order of a node descriptor field. More powerful alternatives

are discussed in [Lemahieu, 1999]. E.g. the context Van Gogh.has-painted yields a guided tour among

the nodes {Irises, Potato eaters, Starry night, Sunflowers, Wheatfield, …} with Van Gogh as the

context node and has-painted as the context link type.

2.5 A general implementation architecture

in MESH, the information content and navigation structure of the nodes are separated and stored

independently. The resulting system consists of three types of components: the nodes, the

linkbase/repository and the hyperbase engine. In [11], a platform-independent implementation

framework was provided, but all subsequent prototyping is explicitly targeted at a Web environment.

A node can be defined as a static page or a dynamic object, using e.g. HTML or XML. Its internal

content is shielded from the outside world by the indirection of link types playing the role of a node’s

interface. Optionally, it can be endowed with the intelligence to tune its reaction to the context in which

it is accessed, by integrating the node type’s set of attributed link types as a parameter in its layout

template’s presentation routines (see also section 4.1).

Since a node is not specified as a necessarily searchable object, linkage information cannot be

embedded in a node’s body. Links, as well as meta data about node types, link types, aspect descriptors

and aspects are captured within a searchable linkbase/repository to provide the necessary information

pertaining to the underlying hypermedia model, both at design time and at run-time. This repository is

implemented in a relational database environment. Only here, references to physical node addresses are

stored, these are never to be embedded in a node’s body. All external references are to be made through

location independent node ID’s.

The hyperbase engine is conceived as a server-side application that accepts navigational commands

from the current node, retrieves the correct destination node, keeps track of the current context and

provides facilities for generating maps and overviews. Since all relevant linkage and meta information

is stored in the relational DBMS, the hyperbase engine can access this information by means of simple,

pre-defined and parameterized database queries, i.e. without the need for searching through node

content.

 5

3 Abstract navigational actions

3.1 Introduction

Navigational actions in MESH can be classified according to two dimensions. First, there is moving

forward and backward within the current tour, along indirect links. Second, and orthogonal to this,

there is the option of moving up or down along direct links, closer to or further away from the session’s

starting point. Additionally, one can distinguish between actions that change the current context and

actions that only influence the current node. However, any of these movements can be specified as an

abstract navigational action, i.e. independently of the actual link instance(s) involved. This feature will

prove to be very advantageous to both navigation and maintenance.

3.2 Moving forward/backward within the current tour

Moving forward or backward in a guided tour along indirect links, results in the node

following/preceding the current node being accessed to become the new current node. The current

context remains unaffected (see figure 2). Such action can be specified (and anchored) as a simple

“next” or “previous” command. The hyperbase engine calculates the correct destination node, based on

the current node and the current context. Hence, the action can be specified unambiguously without

referring to the actual link instance.

Van Gogh

Sunflowers

Wheatfield

Starry night

Potato eaters

Irises

Current context: Van Gogh.has-painted

Current node: Starry night ⇒ Sunflowers

Figure 2: moving forward within the current tour

3.3 Moving up/down

Moving down implies an action of ‘digging deeper’ into the subject matter, moving away from the

starting point. This is accomplished through selection of a direct link type from the current node. In the

case of a unique destination node, the result is the latter node being accessed. In the case of a set of

destination nodes, the outcome is a new “nested” tour being started.

In traditional hypermedia navigation, selection of a link instance l from a given source node ns results

in its unique destination node nd being accessed: ns.l := {ndl = (ns, nd)}. E.g. selection of the link

(Sunflowers, National Gallery) from the current node Sunflowers, induces an access to the node

National Gallery. This can be symbolized as Sunflowers.(Sunflowers, National Gallery) := {National

Gallery}.

However, MESH aggregating single link instances into link types, yields the opportunity of anchoring

and consequently selecting a complete link type from a given source node. Selection of a link type L

from a source node ns yields a set of all destination nodes nd of tuples representing link instances of L

with ns as the source node, i.e. all nodes that are linked to the current node by the selected link type:

ns.L := {nd(ns, nd) ∈ L}. Depending on maximum cardinality of the link type, the resulting set may be

a singleton or may contain multiple destination nodes.

E.g. selection of the unique link type exhibited-in from the current node Sunflowers, induces an access

to the node National Gallery. The latter can be symbolized as Sunflowers.exhibited-in := {National

Gallery}. The result is the same as with traditional hypermedia, only now, the action is specified by the

link type instead of the actual link instance.

Selection of the non-unique link type reviews from the same current node Sunflowers generates a

collection of nodes to-be-accessed: Sunflowers.reviews := {review#1, review#2, review#3, …}. The

 6

result of such action is a context change: a new context emanates, resulting in new indirect links. A

new guided tour is generated, nested within the former, according to this new context (figure 3). The

new tour is completely specified by its context, i.e. the combination of the source node and a link type.

Again, such action can be identified unambiguously without referring to the actual link instances.

Van Gogh

Wheatfield

Starry night

Potato eaters

Irises

Current context: Van Gogh.has-painted ⇒⇒⇒⇒ Sunflowers.reviews

Current node: Sunflowers ⇒ Review#1

Sunflowers Review #1

Review #2

Review #3

Figure 3: moving down, resulting in a context change

Hence contexts, and consequently guided tours, can exist in layers. As such, it is possible to ‘delve’

into a subject and have multiple open tours, nested within one another, where the context node of one

tour is the current node of the tour it is nested in. Navigation along indirect links is invariably carried

out within the “deepest”, i.e. most recently started tour. Continuing a tour on a higher level is only

possible if all tours on a lower level have been either completed or disbanded. The latter is

accomplished by moving up, which reverses the latest move down action. If the latter involved a

context change, the move up action results in the reestablishment of the previous context and the

cancellation of the tour generated through this most recent link type selection. The previous context’s

context node and indirect links are restored. The most recent context node (Sunflowers in the example)

again becomes the current node. Obviously, this action doesn’t require the specification of a link

instance either and can be identified by a simple command.

3.4 Abstract navigational actions applied to a complete tour

The way in which navigational actions are specified in MESH, allows for casting abstract navigational

actions to a whole class of nodes, regardless of the actual instance they are applied to. In this way,

selections of link types that exist at a sufficiently high level of abstraction can be imposed upon every

single node belonging to a tour. E.g. in the context of Van Gogh.has-painted, a reviews link type

selection can be issued once on tour level, with additional (nested) tours Irises.reviews,

Potato_eaters.reviews, Starry_night.reviews etc. being generated automatically for each node

participating in the Van Gogh.has-painted tour. If these tours in their turn include navigational actions

on type level, a complex navigation pattern results, which can be several levels deep. Again, forward

and backward links always apply to the current tour, i.e. to the open tour at the ‘deepest’ level. In

addition, the abstract navigational actions and tour definitions sustain the generation of very compact

tree-shaped overviews and maps of complete navigation sessions. In this respect, the move up and move

down actions indeed correspond to moving up or down in the graph. The represented information can

also be bookmarked, i.e. bookmarks not just refer to a single node but to a complete navigational

situation, which can be resumed at a later time
3
.

4 Conclusions

4.1 Improved maintainability

MESH’s object-oriented data modeling abstractions allow for hypermedia maintenance capabilities

equaling their database counterpart; with unique object identifiers, monitoring of integrity, consistency

and completeness checking, efficient querying and a clean separation between authoring content and

physical hyperbase maintenance. MESH formulates specific rules for inheriting and overriding layout

and link type properties, taking into account the added complexity of plural (possibly overlapping

and/or temporal) node classifications. Links are treated as first-class objects, with link types being able

to be subject to multiple specializations themselves, not necessarily in parallel with node subtyping.

3 See [11] for further details.

 7

MESH greatly improves node independence and maintainability by anchoring link types instead of link

instances. Abstract navigational actions, both within the current tour and orthogonal to the current tour,

can be unambiguously specified by the combination of the source node and a link type. The latter

defines the context within which the action takes place, or the new context induced by the action. An

anchor is defined as the association between a user interface event (e.g. clicking an underlined word, a

button, a hot spot in a map etc.) and such action. Upon stimulation, it causes the current node to close

and pass the corresponding link type as a return value to the hyperbase engine. The latter calculates the

correct destination node. A unique link type is mapped to a unique destination node. A non-unique link

type is mapped to a guided tour, of which the first participating node is accessed. Hence, anchors

remain independent of actual link instances and can be defined once at the level of node type (or aspect

type) layout templates, instead of for each individual node or aspect instance.

Maintenance of the individual link instances does not affect the node’s internal properties. Links can be

added or removed without affecting the anchor and, consequently, the node’s content. Guided tours do

not require any maintenance nor design effort, as the author is not even engaged in their realization:

they are calculated at runtime by means of linkbase queries by the hyperbase engine, according to the

user’s actions. This approach does not only facilitate development to a great extent, but also improves

the user’s grasp upon the underlying hypermedia structure by providing similar anchors to similar

links. As such, cognitive overhead and the risk of disorientation are reduced. Moreover, by

acknowledging a node type’s set of attributed link types as a factor in its visualization, a node can

provide an appropriate reaction to each context in which it may be accessed. Consequently, the user

can be directed to the most relevant section(s) of the node’s information content in this particular

context. Sub link types, modeling a more specific relationship between two nodes than their parent,

potentially provoke a more specific reaction by their instances’ destination nodes. More details on this

context-sensitive visualization principle can be found in [11].

A last advantage of MESH’s emphasis on abstraction is the fact that the majority of the nodes’

properties can be defined on an aggregate level. Authoring is greatly facilitated because layout as well

as attributed link types and anchors can be laid down at node type (or aspect type) level. By means of

inheritance and overriding, abstract specifications can be refined on more concrete levels of the typing

hierarchy. In this respect, delegation to aspect types allows for specialization according to different

criteria, such that a cohesive set of properties can be encapsulated into a single entity. Needless to say

that specification of properties on an abstract level will also improve hyperbase consistency, which in

its turn reduces cognitive overhead and, consequently, end user disorientation.

4.2 Facilitated orientation

Indeed, apart from the obvious benefit of a well-maintained hyperbase, the abstractions should permit a

user to better understand the information presented in the hypermedia system. The use of higher-order

information units, i.e. node and link types, allows for consistent layout and user interface features.

Reflecting similarities between nodes and the representation of collections of nodes as (source node,

link type) combinations, induces a stronger sense of structure and is to reduce cognitive overhead.

Obviously, navigation is facilitated by the context-sensitive navigation paradigm providing run-time

generated guided tours and adapting node visualization to the context in which a node is accessed.

Moreover, through the specification of navigational actions on tour level, complex navigation patterns

can be applied to all nodes in a tour without additional effort. The abundance of meta-information as

node, aspect and link types allows for enriching maps and overviews with concepts of varying

granularity. A final benefit is the ability to bookmark a complete navigational situation in an utterly

compact manner, with the possibility of it being resumed later on, from the exact point where it was

left.

References

[1] Ashman H., Garrido A. and Oinas-Kukkonen H., Hand-made and Computed Links, Precomputed

and Dynamic Links, Proceedings of Hypertext - Information Retrieval - Multimedia (HIM '97),

Dortmund (Sep. 1997)

 8

[2] Bapat A., Wäsch J., Aberer K. and Haake J., An Extensible Object-Oriented Hypermedia Engine,

Proceedings of the seventh ACM Conference on Hypertext (Hypertext '96), Washington D.C. (Mar.

1996)

[3] Davis H., Hall W., Heath I., Hill G. and Wilkins R., MICROCOSM: An Open Hypermedia

Environment for Information Integration, Computer Science Technical Report CSTR 92-15 (1992)

[4] Garzotto F., Paolini P., and Schwabe D., HDM - A Model-Based Approach to Hypertext

Application Design, ACM Trans. Inf. Syst. Vol. 11, No. 1 (Jan. 1993)

[5] Garzotto F., Mainetti L. and Paolini P., Hypermedia Design, Analysis, and Evaluation Issues,

Commun. ACM Vol. 38, No. 8 (Aug. 1995)

[6] Halasz F., Reflections on NoteCards: Seven Issues for Next Generation Hypermedia Systems,

Commun. ACM Vol. 31, No. 7 (Jul. 1988)

[7] Hammond N., Learning with Hypertext: Problems, principles and Prospects, HYPERTEXT a

psychological perspective, C. McKnight, A. Dillon and J. Richardson Eds., Ellis Horwood, New York

(1993)

[8] Isakowitz T., Kamis A. and Koufaris M., The Extended RMM Methodology for Web Publishing,

Working Paper IS-98-18, Center for Research on Information Systems, 1998 (Currently under review

at ACM Trans. Inf. Syst.)

[9] Knopik T. and Bapat A., The Role of Node and Link Types in Open Hypermedia Systems,

Proceedings of the sixth ACM European Conference on Hypermedia Technology (ECHT ‘94),

Edinburgh (Sep. 1994)

[10] Lange D., An Object-Oriented design method for hypermedia information systems, Proceedings of

the twenty-seventh Hawaii International Conference on System Sciences (HICSS-27), Hawaii (Jan.

1994)

[11] Lemahieu W., Improved Navigation and Maintenance through an Object-Oriented Approach to

Hypermedia Modelling, Doctoral dissertation (unpublished), Leuven (Jul. 1999)

[12] Lemahieu W., A Context-Based Navigation Paradigm for Accessing Web Data, Proceedings of

the ACM Symposium on Applied Computing (SAC 2000), Como, Italy (Mar. 2000)

[13] Lemahieu W., MESH: A Model-Based Approach to Hypermedia Design, in: Chen, Q. (ed.)

Human Computer Interaction: Issues and Challenges, Idea Group Publishing, Hershey, PA (Jan. 2001)

[14] Lucarella D., A Model For Hypertext-Based Information Retrieval, Proceedings of the European

Conference on Hypertext, Versailles (Nov. 1990)

[15] Nanard J. and Nanard M., Hypertext Design Environments and the Hypertext Design Process,

Commun. ACM Vol. 38, No. 8 (Aug. 1995)

[16] Schwabe D. and Rossi G., Developing Hypermedia Applications using OOHDM, Proceedings of

the ninth ACM Conference on Hypertext (Hypertext '98), Pittsburgh (Jun. 1998)

[17] Thüring M., Hannemann J. and Haake J.: Hypermedia and Cognition: Designing for

comprehension, Commun. ACM Vol. 38, No. 8 (Aug. 1995)

[18] Trigg R., Guided Tours and Tabletops: Tools for Communicating in a Hypertext Environment,

ACM Trans. Office Inf. Syst. Vol. 6, No. 4 (Oct. 1988)

[19] Wiil U. and Leggett J., Hyperform: a hypermedia system development environment, ACM Trans.

Inf. Syst. Vol. 15, No. 1 (Jan. 1997)

