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1 Introduction

There exist several notions of symmetry for multivariate data. In this paper we will only be

concerned with the concepts of spherical and elliptical symmetry. A random vector1 Y ∈ IRp is
said to be spherically (elliptically) symmetric around ¯ provided Y − ¯ and L(Y − ¯) have the
same distribution for all orthogonal (bijective) linear operators on IRp. Other more general notions

of symmetry include central and angular symmetry. We refer to Small (1990) and Chaudhuri and

Sengupta (1992) for more details. It is well known that signed rank statistics can be used for

testing symmetry (¯ = 0) of a univariate distribution, or alternatively, for estimating the center

of symmetry (cf. e.g. Hettmansperger, 1984). In this paper we generalize signed rank statistics to

the multivariate case. Let an(1), . . . , an(n) be a sequence of non-negative scores. For any vector

v = (v1, . . . , vn) in IR
n, define the distance

Dn(v1, . . . , vn) =
nX
i=1

an(R(|vi|))|vi|, (1.1)

where R(|vi|) is the rank of |vi| among |v1|, . . . , |vn|. Suppose that we have an i.i.d. sample X =

(X1, . . . ,Xn), with each Xi having a spherically symmetric density around ¯. Define

ˆ̄n(X) = argmin
¯
Dn(kX1 − ¯k, . . . , kXn − ¯k), (1.2)

as an estimate of ¯, with k · k denoting the Euclidean norm in IRp. It is easy to see that ˆ̄n is both

location and orthogonally equivariant, that is for any b ∈ IRp and orthogonal matrix L,

ˆ̄n(LX+ b) = Lˆ̄n(X) + b, (1.3)

with LX + b = (LX1 + b, . . . ,LXn + b). On the other hand, (1.3) need not hold if L is not

orthogonal. We will also show that ˆ̄n is asymptoically normally distributed, and calculate its

breakdown point. The breakdown point depends on the scores only, not on p. Quite surprisingly,

the asymptotic efficiency when using Wilcoxon scores tends to 3/4 as p increases for multivariate

gaussian data. On the other hand, it is possible to choose the scores so that the efficiency is 1 and

the breakdown point tends to 0.5 as p increases.

The corresponding test for testing H0 : ¯ = 0 against H1 : ¯ 6= 0 is

φ1(X) =

(
1 if kTn(X)k2 > t
0 if kTn(X)k2 < t,

(1.4)

where φ1 = 1 means ”reject H0”,

Tn(X) = −[ d
d¯
Dn((kX1 − ¯k, . . . , kXn − ¯k)]¯=0 =

nX
i=1

an(R(kXik)U(Xi) (1.5)

and

U(x) =

(
0, if x = 0

x/kxkif x 6= 0
1All vectors in IRp are tacitly assumed to be column vectors.

1



is the projection of x onto Sp−1, the unit sphere in IRp. An important fact is that Tn(X) is
distribution free under H0, which makes it possible to calculate exact critical regions. The reason

is that Tn(X) =
Pn
i=1 an(i)U(X(i)), where R(kX(i)k) = i and {U(X(i))} are i.i.d. and uniformly

distributed on Sp−1 (since the data has a spherically symmetric distribution).2

Note that kTn(LX)k = kTn(X)k for any orthogonal transformation. Hence, φ1 is orthogonally
invariant. Asymptotically, kTn(X)k2/n converges to a χ2-distribution with p degrees of freedom,
and to a non-central χ2-distribution under contiguous alternatives. This makes it possible to

construct approximate level α tests.

A drawback of φ1 is that it is only invariant w.r.t. orthogonal transformations of the data, not

all linear bijective transformations. Suppose X is a sample from an elliptical distribution, and that

Σ̂n is an estimate of the scatter matrix of the data, that is equivariant in the sense that

Σ̂n(LX) = LΣ̂n(X)L
T (1.6)

for any non-singular matrix L. We will show that the test

φ2(X) =

(
1, if kVn(X)k2 > t
0, if kVn(X)k2 < t,

(1.7)

with

Vn(X) = Tn(Σ̂
−1/2
n (X)X), (1.8)

is invariant w.r.t. all linear bijective transformations of the data. Also, it has the same asymptotic

behaviour as φ1, if Σ̂n is a
√
n-consistent estimator of the scatter matrix.

When an(i) ≡ 1, ˆ̄n becomes the L1-estimator, and φ1 becomes a multidimensional extension
of the univariate sign test. The asymptotic properties of the L1-median were studied by Brown

(1983), and its breakdown point by Lopuhaä and Rousseeuw (1991). Tests that are asymptoti-

cally equivalent to φ1 when an(i) ≡ 1 and equivariant w.r.t. linear bijective transformations have
been considered by Randles (1989), Brown and Hettmansperger (1989), Brown et al. (1992) and

Hettmansperger et al. (1994). For Wilcoxon scores, that is an(i) = i, Peters and Randles (1990)

have proposed a multivariate signed rank test that is similar to and asymptotically equivalent with

φ2, but based on the concept of interdirections (Randles, 1989) and the standard sample covariance

matrix. For the two-sample problem, Randles and Peters (1990) consider a multivariate rank test

with general score function, and compute its efficiency. Other multivariate generalizations of uni-

variate signed rank tests are considered by Brown and Hettmansperger (1987), Chaudhuri (1992),

Randles (1992), Jan and Randles (1994) and Hettmansperger et al. (1992).

The paper is organized as follows: In Section 2 we investigate the asymptotic properties of

ˆ̄n and φ1, and the breakdown point of ˆ̄n is considered in Section 3. In Section 4 we consider

the invariance and asymptotic properties of φ2. Asymptotic efficiencies and breakdown points

are computed in Section 5 for multivariate gaussian data and various choices of score functions.

2If ties occur among {kXik}, we may for instance choose the corresponding ranks randomly. Since we will assume
that Xi has an absolutely continuous distribution, the probability that a tie occurs i 0. In the sequel, we will tacitly

assume kX(1)k < . . . < kX(n)k.
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Computational issues, simulations and a real data example are discussed in Section 6. Finally, an

analogue of φ1, which has applications to communication theory, is considered in Section 7.

2 Asymptotics for orthogonally equivariant tests and estimators

We need the following regularity conditions.

(i) Let

Xi = ¯ + ei, i = 1, . . . , n, (2.1)

where e1, . . . , en are i.i.d. random vectors with a spherically symmetric density f(x) = k(kxk).
Let G(r) = P (ke1k ≤ r) be the distribution function of ke1k, so that

G0(r) = g(r) = pωp−1k(r)rp−1, r > 0, (2.2)

with ωp−1 the area of Sp−1. Given a vector x = (x1, . . . , xp) in IR
p, let 5f(x) = (∂f(x)/∂x1,

. . . , ∂f(x)/∂xp)
T .

(ii) The Fisher information matrix
R
IRp5f(x)5f(x)T f(x)−1dx = I1(G)Ip of f w.r.t. the location

parameter ¯ satisfies

0 < I1(G) =
1

p

Z ∞
0
(
k0(r)
k(r)

)2g(r)dr <∞, (2.3)

with Ip the p× p identity matrix.

(iii) The scores are generated from a function h : [0, 1]→ [0,∞) in one of the following three ways:
an(i) = h(i/(n+ 1)), an(i) =

R i/n
(i−1)/n h(u)du or an(i) = Eh(Ui:n), where Ui:n is the i:th order

statistic from a random sample of size n with a uniform distribution on (0, 1).

(iv) The function h(u) = h1(u)−h2(u), where h1 and h2 are non-decreasing and square integrable
on (0, 1).

We will consider the following sequence of contiguous alternatives to H0:

H1n : ¯ = ∆/
√
n, (2.4)

where ∆ ∈ IRp is arbitrary. Let also Np denote a p-dimensional normal distribution.

Theorem 2.1 Suppose (i)—(iv) hold. Then

1√
n
Tn(X)

d−→ Np(B(h,G)∆, A(h)Ip) as n→∞, (2.5)

under H1n in (2.4), where

B(h,G) =
1

p

∞Z
0

h(G(r))(−k
0(r)
k(r)

)g(r)dr (2.6)

and

A(h) =
1

p

Z 1

0
h2(u)du. (2.7)
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Corollary 2.2 Suppose the threshold in (1.4) is chosen as t = nχ2α(p)A(h), where χ
2
α(p) is the

(1− α)-quantile of a χ2-distribution with p degrees of freedom. Then the power function

βn(∆) = P (φ1(X) = 1|¯ = ∆√
n
)→ P (χ2(p,

B(h,G)2

A(h)
k∆k2) > χ2α(p)) as n→∞,

where χ2(p, δ) is a non-central χ2-distribution with p degrees of freedom and non-centrality para-

meter δ.

We need the following additional regularity condition for Theorem 2.3:

(v) The score generating function h is non-negative and non-decreasing and not identically equal

to 0.

Theorem 2.3 Suppose (i)—(v) holds. The estimate ˆ̄n defined in (1.2) then satisfies

√
n(ˆ̄n − ¯) d−→ Np(0,

A(h)

B(h,G)2
Ip) as n→∞. (2.8)

3 Breakdown point of ˆ̄n

We will use a version of the breakdown point introduced by Donoho and Huber (1983). Let X0 be
a corrupted sample obtained by replacing at most m of the original points. The maximum bias

caused by the contamination is

bias(m; ˆ̄n,X) = sup
X0
kˆ̄n(X0)− ˆ̄n(X)k,

and the breakdown point

ε∗n(ˆ̄n;X) = min{
m

n
; bias(m; ˆ̄n,X) =∞}. (3.1)

Let us make the following assumption:

(vi) The scores an(1), . . . , an(n) are non-negative and non-decreasing and an(n) > 0.

Put

n∗ = min {j;
nX

i=n−j+1
an(i) ≥

n−jX
i=1

an(i)}. (3.2)

Theorem 3.1 Given (vi), the breakdown point for the estimator ˆ̄n defined in (1.2) is given by

ε∗n(ˆ̄n;X) = n
∗/n, (3.3)

with n∗ defined in (3.2).
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Corollary 3.2 Suppose (vi) holds and that {an(i)} are generated from a function h in any of the

three ways described in (iii). If h has at most a finite number of discontinuities, ε∗n(ˆ̄n;X) →
ε∗(h) as n→∞, where ε∗(h) is defined by

1−ε∗(h)Z
0

h(u)du =

1Z
1−ε∗(h)

h(u)du. (3.4)

Hence, we see that the breakdown point is the same for all p, in particular the same as for the

univariate case (cf. Hettmansperger, 1984, p. 90).

4 Properties of φ2

In this section we consider the test φ2 introduced in (1.7). We first have:

Proposition 4.1 Suppose the scatter matrix estimate Σ̂n satisfies (1.6). Then

kVn(LX)k = kVn(X)k

for any non-singular matrix L. In particular, the test φ2 defined in (1.7) is invariant w.r.t. such

transformations of the data.

We will need the following extra conditions for the asymptotic properties of Vn:

(vii) The data are given by Xi = L(¯ + ei), i = 1, . . . , n, where the errors ei are i.i.d. random

vectors with density f(x) = k(kxk), and ¯ and L are unknown parameters.

(viii) It holds that 0 < I1(G) < ∞, 0 < I2(G) =
R∞
0 (

k0(r)
k(r) )

2r2g(r)dr < ∞ and g(r) ≤ C1/r for
some constant C1 > 0.

(ix) The score function h defined in (iii) is bounded.

(x) The statistic Σ̂n is a
√
n-consistent estimator of Σ = LLT .

As an example of a
√
n-consistent and robust estimator Σ̂n we have the S-estimator (cf.

Rousseeuw and Leroy 1987). The asymptotic behaviour ofVn(X) is given by the following theorem:

Theorem 4.2 Suppose (iii)—(iv) and (vii)—(x) are satisfied. Then, if H1n (cf. (2.4)) holds for the

model in (vii),
1√
n
Vn(X)

d−→ Np(B(h,G)∆
0, A(h)Ip),

where ∆0 is a vector (depending on L) with k∆0k = k∆k, and B(h,G) and A(h) are defined as in
(2.6) and (2.7) respectively.

Corollary 4.3 The asymptotic power function of φ2 is the same as for φ1, see Corollary 2.2.
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5 Asymptotic efficiencies

From Corollary 2.2, Theorem 2.3 and Corollary 4.3 we see that the asymptotic prestanda of φ1, ˆ̄n

and φ2 all depend on making the quantity

B(h,G)2

A(h)
=
(
R∞
0 ψ(r)k

0(r)
k(r) g(r)dr)

2

p
R∞
0 ψ(r)2g(r)dr

(5.1)

as large as possible, where ψ = h ◦G. The ratio in (5.1) is maximized for

hG(u) = −k
0(G−1(u))
k(G−1(u))

, (5.2)

giving the maximal value I1(G) (cf. (2.3)). The asymptotic efficiency becomes

e(h,G) =
B(h,G)2

A(h)I1(G)
. (5.3)

In Table 1 we have computed the efficiency e(h,G) for multivariate gaussian data (k(r) =

exp(−r2/2)/((2πσ2)p/2) and two choices of h: sign scores (h(u) ≡ 1) and Wilcoxon scores (h(u) =
u). We see that the efficiency of the sign scores approach 1 as p increases whereas the efficiency for

the Wilcoxon scores decrease towards 3/4. The optimal score function h = hG defined in (5.2) has

efficiency 1. See also Brown (1983), Hettmansperger et al. (1994), Peters and Randles (1990) and

Randles and Peters (1990).

Table 1: Asymptotic efficiencies for gaussian data

p 1 2 3 4 5 6 7 8 9 10 ∞
sign 0.637 0.785 0.849 0.884 0.905 0.920 0.931 0.940 0.946 0.951 1.000

Wilcoxon 0.955 0.985 0.975 0.961 0.949 0.938 0.928 0.920 0.913 0.907 0.750

In Table 2 we have computed the asymptotic breakdown point for the optimal score function

(still assuming gaussian data). We see that ε∗(hG) → 0.5 as p → ∞. As a comparison, ε∗(h)
equals 0.5 for sign scores and 0.293 for Wilcoxon scores, regardless of the value of p. The reason

that ε∗(hG) depends on p is that G depends on p. When p = 1, hG reduces to the normal scores

function Φ−1((u+ 1)/2), with Φ the c.d.f. of the standard normal distribution.
We see that the sign scores and the optimal scores behave similarly when p is large. This may be

explained as follows: First note that hG(u) = G
−1(u) for gaussian data. Now G is the distribution

of
q
X2
11 + . . .+X

2
1p if X1 = (X11, . . . ,X1p). Hence, by the law of large numbers G(

√
p ·) is close

Table 2: Breakdown points for optimal scores, gaussian data

p 1 2 3 4 5 6 7 8 9 10 ∞
ε∗(hG) 0.239 0.306 0.340 0.360 0.375 0.386 0.394 0.400 0.406 0.411 0.500
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to a one point distribution at 1 when p is large, and so hG/
√
p is almost constant = 1. See also

Chaudhuri (1992) for a discussion of this phenomenon. In fact, the same argument applies as soon

as the marginals of X1 have finite variance. This includes the elliptically symmetric power family

of Randles (1989), but not the multivariate t-distributions treated in Hettmansperger et al. (1994).

In the latter case,
Pp
i=1X

2
1i/p has limiting χ

2-distribution.

6 Computation, simulation, and a real data example

In order to compute the estimate ˆ̄n in (1.2) we have to minimize the function Sn(¯) = Dn(kX1 −
¯k, . . . , kXn − ¯k). Note that this is a convex function since

Sn(¯) = sup
π∈Pn

nX
i=1

a(π(i))kXi − ¯k, (6.1)

where Pn is the group of n-permutations. If not all the points Xi lie on a line (in which case
we essentially have a one-dimensional problem), then ˆ̄n = argmin¯ Sn(¯) is unique and can be

characterized by the solution of the inequality

X
Xi=¯

an(R(kXi − ¯k)) ≥ k
X
Xi 6=¯

an(R(kXi − ¯k)) Xi − ¯kXi − ¯kk. (6.2)

This follows from the results of Kemperman (1987) combined with (6.1). When the right hand

side of (6.2) is not equal to zero, then we have a degenerate solution which equals one of the

observations.

Define now the weights wi(¯) by

wi(¯) =


an(R(kXi−¯k))

kXi−¯k Xi 6= ¯
0 Xi = ¯

(6.3)

and a vector

∆(¯) =

Pn
i=1wi(¯)(Xi − ¯)Pn

i=1wi(¯)
, (6.4)

which points in the opposite direction as the gradient. The solution of the minimization problem

satisfies ∆(¯) = 0, except when we have a degenerate solution.

In order to compute ˆ̄n we propose the following iterative algorithm, which is a steepest descent

algorithm combined with stephalving. From a provisional solution ˆ̄n,k we compute ∆(ˆ̄nk). We

first take a step ∆(ˆ̄n,k) from ˆ̄n,k. However, we only do this if the objective function Sn(¯)

gets smaller. If not, we only take a step 2−j∆(ˆ̄k), where j is the smallest integer i such that
S(ˆ̄n,k + 2

−i∆(ˆ̄n,k)) < S(ˆ̄n,k). Then we take ˆ̄n,k+1 = ˆ̄n,k + 2−j∆(ˆ̄n,k). In this way, the value
of the objective function decreases with every step. We propose to stop the iteration process when

the objective function does not decrease when we take a step smaller (in euclidean norm) than tol

in the direction of ∆(¯). A second control variable is maxstep, which gives a limit on the maximum

number of steps. An algorithm in pseudo-code looks like:
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• Initialize tol and maxstep to control the precision.
• k = 0 and ˆ̄n,0 is an initial estimator, for example the coordinatewise median
• do while k ≥ maxstep

— if k∆(ˆ̄n,k)k < tol then maxhalf =0
else maxhalf=(ln(k∆(ˆ̄n,k)k)− ln(tol))/ ln(2).

— ˆ̄n,k+1 = ˆ̄n,k +∆(ˆ̄n,k)

— j = 0

— do while S(ˆ̄n,k+1) > S(ˆ̄n,k) and j ≤ maxhalf
∗ j = j + 1
∗ ˆ̄n,k+1 = ˆ̄nk +∆(ˆ̄n,k)/2j

endo

— if j > maxhalf then return(ˆ̄n,k)

— k=k+1

endo

• If k > maxstep then ‘iteration failed’

Extensive experiments have shown that this algorithm is quite fast and that it always converges

, even in the case of degenerate solutions (we were however not able to prove this rigorously).

In the one-dimensional case an algorithm was already given by Hettmansperger and Utts (1977).

The generalization of their algorithm to higher dimensions is immediate, and given by

ˆ̄n,k+1 =

Pn
i=1wi(ˆ̄n,k)XiPn
i=1wi(ˆ̄n,k)

. (6.5)

This algorithm omits the stephalving and then convergence is no longer guaranteed, as was already

mentioned by Cheng and Hettmansperger (1983). The estimates ˆ̄n,k generated by (6.5) can be

considered as k-step estimators. However, if we start from the coordinatewise median the orthogonal

equivariance is not longer guaranteed, and if we start from the mean the robustness is not longer

guaranteed. Therefore full iteration is advised, hence convergence is important.

An alternative approach is a generalization of Gower (1974). Gower’s algorithm uses in each step

a bisection method to find the minimum of the objective function in the direction of the steepest

descent. This algorithm is much slower than ours. One could also use a Newton-step instead of

(6.4). This corresponds essentially to the approach of Bedall and Zimmermann (1978) who gave an

algorithm for the L1-median. Instead of (6.4) we now take a step ∆2(¯) where H(¯).∆2(¯) = ∆(¯)

and

H(¯) =

Pn
i=1wi(¯) (Ip −U(Xi − ¯)U(Xi − ¯)0)Pn

i=1wi(¯)
.

It gives a better algorithm for the sign scores, but with general scores this method has no advantages.

Extensive experiments with sign, Wilcoxon and optimal scores have shown that the proposed

algorithm yields better solutions (in the sense of a smaller value of the objective function than
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Table 3: Location Estimates for the Hawkins-Bradu-Kass data-set

Σ̂n = S-estimator Σ̂n = Covariance

µ1 µ2 µ3 µ1 µ2 µ3

Sign 1.690 2.156 2.137 2.280 3.341 5.557

Wilcoxon 1.742 2.226 2.417 3.672 6.592 8.819

Optimal 1.743 2.253 2.137 3.218 5.557 7.280

mean(1-75) 3.207 5.597 7.230 3.207 5.597 7.230

mean(15-75) 1.538 1.780 1.687 1.538 1.780 1.687

the other discussed methods in generally less time.) The algorithm is very fast. On a 486 PC it

takes less than a second to compute ˆ̄n with tol= 10−6 for a data set with 50 observations in 4
dimensions.

As an example, we computed the location estimate ˆ̄n for the exploratory variables of the

well-known data set of Hawkins, Bradu, and Kass (1984, Table 4). This data set consists of

75 observations in 3 dimensions, of which it is known that the first 14 observations are outliers.

In Table 3 we give the location estimates for the rank estimates based on sign scores, Wilcoxon

scores and optimal scores. We also give the mean of the whole data set and the mean of the last

61 observations. We used both a 50% breakdown S-estimator with biweight ρ-function and the

classical empirical covariance-matrix for the estimate of the scatter of the data used in (1.8). The

S-estimator was computed using the algorithm of Ruppert (1992). We see that the mean is the

most sensitive to the outliers, while the sign scores give the most robust estimates. Note that it is

really necessary to use a robust estimate of the scatter matrix when prescaling the data, otherwise

the location estimator breaks down as was illustrated in Rousseeuw and Leroy (1987, page 271-273).

We performed a simulation study to compare the performance of the tests at finite samples. We

compared the rank-based test φ1 with sign scores, Wilcoxon scores and optimal normal scores with

the Hotelling T 2 test. The Hotelling T 2 test is defined as H = nX
0
S−1X , where X is the average

and S is the classical covariance of the observations. We generated 10,000 samples and for each

sample we looked whether the H0 hypothesis ¯ = 0 was rejected or not at a level of α = 0.05. For

the rank tests the value of the treshhold was taken as in Corollary 2.2, and for the Hotelling test it

was chosen as F (p, n−p,α)p(n−1)n−p , where F (p, n−p,α) is the α-upper quantile of an F-distribution
with p and n− p degrees of freedom.

In the experiment each sample consists of n = 20 observations drawn from the distribution

(1 − ε)N(0, Ip) + εN(0, 10Ip) for various values of ε and p. In Table 4 we reported the observed

relative frequencies (with standard errors smaller than 0.005) Note that the values for the rank-

based method are more or less stable under contamination, which is not the case for the Hotelling

test. The Hotelling test is much too conservative under contamination: it is not capable of detecting

deviations from the model, which can be considered as a kind of masking effect. These conclusions

stay true in higher dimensions.

This can also be illustrated by a real data example. Consider the perspiration data (Johnson
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Table 4: Observed Relative Frequency of Rejecting H0 with α = 0.05

Contamination ε

0 0.1 0.2 0.3

p = 1 Sign 0.042 0.043 0.037 0.040

Wilcoxon 0.043 0.048 0.042 0.046

Optimal 0.032 0.036 0.030 0.034

Hotelling 0.049 0.017 0.024 0.035

p = 2 Sign 0.051 0.045 0.048 0.047

Wilcoxon 0.044 0.039 0.039 0.041

Optimal 0.037 0.031 0.034 0.035

Hotelling 0.051 0.015 0.006 0.011

p = 3 Sign 0.048 0.045 0.045 0.049

Wilcoxon 0.043 0.042 0.039 0.045

Optimal 0.039 0.037 0.035 0.043

Hotelling 0.051 0.023 0.007 0.006

p = 4 Sign 0.048 0.044 0.047 0.051

Wilcoxon 0.041 0.037 0.041 0.044

Optimal 0.041 0.036 0.039 0.041

Hotelling 0.050 0.032 0.011 0.004

and Wichern 1988, page 174; Peters and Randles 1990), which consists of 20 observations in 3

dimensions. Johnson andWichern showed that the assumption of a multivariate normal distribution

is reasonable. We test whether ¯ = (4, 50, 10) using the rank tests and the Hotelling test. We first

compute P-values for the clean data set (I) and then for the contaminated data set (II), where we

changed the value of the first and the second variable of the first observation. We compute φ2 where

Σ̂n in formula (1.8) is either a 50% breakdown S-estimator or the empirical covariance matrix. We

see in Table 5 that the P-value of the Hotelling test increases under contamination, although it is

clear that the contamination makes the H0 hypothesis less acceptable. This is a consequence of

the masking effect. We see that the P-values of the rank test change in the right direction. Again,

Table 5: P-values for the clean and contaminated Perspiration data

Σ̂n = S-estimator Σ̂n = Covariance

I II I II

Sign 0.1024 0.0163 0.0922 0.6811

Wilcoxon 0.0675 0.0147 0.0352 0.3407

Optimal 0.0756 0.0146 0.0455 0.4133

Hotelling 0.0649 0.3928 0.0649 0.3928
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we see that is really necessary to use a robust estimator of scatter for prescaling the data.

7 Time-varying signals

Consider the following model:

Xi = µsi + ei, i = 1, . . . , n, (7.1)

where s1, . . . , sn ∈ IRp are known, µ is an unknown scalar and {ei} are i.i.d. random vectors with

a spherically symmetric density. The statistic

Wn(X) =
nX
i=1

an(R(kXik))sTi U(Xi) (7.2)

may be used for testing H0 : µ = 0 versus H1 : µ 6= 0 as follows:

φ3(X) =

(
1 if |Wn(X)| > t
0 if |Wn(X)| < t.

Note that Wn is distribution free under H0. An important communication application of (7.1)

when p = 2 is the detection of bandpass signals in bandpass noise. The two components of Xi are

then the in-phase and quadrature components of the signal. For instance, in radar applications it is

common to assume spherically symmetric noise. (cf. Kassam and Poor, 1985). For the asymptotic

investigation, assume that

lim
n→∞

1

n

nX
i=1

sTi si = s
2 > 0 as n→∞. (7.3)

Consider a sequence of contiguous alternatives H1n : µ = ∆/
√
n, where ∆ is a scalar. Suppose the

threshold t =
p
nA(h)sλα/2 in (7.2), with λα/2 the (1− α/2)-quantile of the standard normal dis-

tribution. Then it is shown in Hössjer and Croux (1993) that the resulting test φ3 is asymptotically

level α with power function

βn(∆) = P (φ3(X) = 1|µ = ∆√
n
)→ 2− Φ(λα/2 −

B(h,G)s∆p
A(h)

)− Φ(λα/2 +
B(h,G)s∆p

A(h)
),

provided (i)-(iv) and (7.3) hold, and Φ is the c.d.f. of the standard normal distribution.

A Appendix

Proof of Theorem 2.1. Put Tn∆ =
Pn
i=1 an(R(kei + ∆/

√
nk)U(ei + ∆/

√
n). Then clearly,

Tn(X) = Tn∆ when ¯ = ∆/
√
n in (2.1). Introduce also Sn(X) =

Pn
i=1 h(G(kXik))U(Xi), and

define Sn∆ as the value of Sn(X) when ¯ = ∆/
√
n in (2.1). It follows from Hàjek and Šıdàk (1967,

Theorem VI.7) that

Ek 1√
n
(Tn0 − Sn0)k2 → 0. (A.1)
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Also, it may be shown as in Hàjek and Šıdàk (1967, Section VI.2.1) that the density qn(x) =Qn
1 f(xi −∆/

√
n) is contiguous w.r.t. pn(x) =

Qn
1 f(xi) in IR

pn for any ∆ ∈ IRp. This and (A.1)
imply that

1√
n
(Tn∆ − Sn∆)

p−→ 0, ∀∆ ∈ IRp . (A.2)

In view of (A.2), it suffices to show that

1√
n
Sn∆

d−→ Np(B(h,G)∆, A(h)Ip) ∀∆ ∈ IRp . (A.3)

When ∆ = 0, (A.3) follows immediately from the (multivariate) Central Limit Theorem. For

general∆, (A.3) then follows from LeCam’s third Lemma (cf. Hàjek and Šıdàk, 1967, Lemma V.I.4).

The proof makes use of the fact that (Sn0, log(qn(X)/pn(X)))
T/
√
n is asymptotically normal

Np+1

µ
(0,−1

2
I1(G)k∆k2)T ,

Ã
A(h)Ip B(h,G)∆

B(h,G)∆T I1(G)k∆k2
!¶
,

which is also a consequence of the CLT. 2

Proof of Theorem 2.3. Assume w.l.o.g. that ¯ = 0. Then
√
nˆ̄n = argmin

∆
Dn∆ := −∆̂n, where

Dn∆ = Dn(ke1+∆/
√
nk, . . . , ken+∆/

√
nk). Define Qn∆ = Dn0+Tn0 ·∆/

√
n+B(h,G)k∆k2/2

as a quadratic approximation to Dn∆. We will first prove that

5(Dn∆ −Qn∆) =
1√
n
(Tn∆ −Tn0)−B(h,G)∆

p−→ 0, ∀∆ ∈ IRp . (A.4)

In view of (A.2), (A.4) will follow if we show that

1√
n
(Sn∆ − Sn0)−B(h,G)∆

p−→ 0. (A.5)

Suppose first that h is bounded and let ψ = h ◦G. Then

tr

µ
Var(

1√
n
(Sn∆ − Sn0))

¶
≤ Ekψ(e1 + ∆√

n
)U(e1 +

∆√
n
)− ψ(e1)U(e1)k2. (A.6)

Since ψ is monotone and e1 has an absolutely continuous density f ,

ψ(e1 +
∆√
n
)U(e1 +

∆√
n
)
a.s.→ ψ(e1)U(e1). (A.7)

Hence, (A.6)—(A.7) and dominated convergence imply that

tr

µ
Var(

1√
n
(Sn∆ − Sn0))

¶
→ 0,

and together with (A.3) this proves (A.5). When ψ is unbounded, (A.4) may be established by

approximating Tn∆ with a statistic having scores generated from a truncated version of h, see the

proof of Theorem 3.1 in Jurečkovà (1969).
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Since the scores an(i) are non-negative and non-decreasing, it follows from Theorem 2.1 in

McKean and Schrader (1980) that Dn∆ is convex function of ∆. Since also Dn0 = Qn0, Lemma

3.1 in Heiler and Willers (1988) and (A.4) imply that

sup
∆∈K

|Dn∆ −Qn∆| p−→ 0 (A.8)

for any compact subset K of IRp. Let ∆̂nQ be the unique minimizer of Qn∆. Then (A.8) and the

convexity of Dn∆ imply that

∆̂n + ∆̂nQ = op(1). (A.9)

Since

∆̂nQ = − 1√
n
B(h,G)−1Tn0, (A.10)

the theorem follows from (A.9), (A.10) and Theorem 2.1, with ∆ = 0. 2

Proof of Theorem 3.1.

ε∗n ≤ n∗/n
Suppose n∗ points, say X1, . . . ,Xn∗ , are replaced to form a new sample X0 = (X01, . . . ,X0n).

For ease of notation, put D0n(¯) = Dn(kX01 − ¯k, . . . , kX0n − ¯k). Pick L so large that kXik < L,
i = n∗ + 1, . . . , n and put X0i = Me1, i = 1, . . . , n∗, with M > 3L. Given any ¯ 6= Me1, let

t(¯) =U(Me1 − ¯) ∈ Sp−1 be the direction from ¯ towards Me1. Since(
t(¯) ·U(X0i − ¯) = 1,
R(kX0i − ¯k) > n− n∗,

∀k¯k ≤ L, i ≤ n∗,

it follows from (3.2) that∙
dD0n(¯ + rt(¯)

dr

¸
r=0

= −t(¯) ·
nX
i=1

an(R(kX0i − ¯k))U(X0i − ¯) ≤

≤
n−n∗X
i=1

an(i)−
nX

i=n−n∗+1
an(i) ≤ 0, ∀k¯k ≤ L. (A.11)

Assume now that D0n(˜̄n) = inf
¯;k¯k≤L/2

D0n(¯). According to (A.11) we may then find an r > 0 such

that L/2 < k˜̄n + rt(˜̄n)k ≤ L and and D0n(˜̄n + rt(˜̄n)) ≤ D0n(˜̄n). Since L can be chosen as large
as we please, we have a breakdown.

ε∗n ≥ n∗/n
Suppose now that X1, . . . ,Xn∗−1 are replaced. Note that

n−n∗+1X
i=1

an(i)−
nX

i=n−n∗+2
an(i) = δ > 0, (A.12)

in view of (3.2). Choose L so large that kXik < L, i = 1, . . . , n. Then, for any t ∈ Sp−1,

[
dD0n(rt)
dr

]r=L = −t ·Tn(X0
1 − Lt, . . . ,X0n − Lt) =

= −t ·
nX
i=1

an(R(kX0i − Ltk))U(X0i − Lt). (A.13)
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It is clear that lim
L→∞

inf
t∈Sp−1
i≥n∗

−t ·U(X0i − Lt) = 1. Given ε > 0, choose L0 = L0(ε) so large that

−t ·U(X0i−Lt) ≥ 1−ε for all L ≥ L0, i ≥ n∗ and t ∈ Sp−1. It follows from (vi) and (A.12)—(A.13)

that

[
dD0n(rt)
dr

]r=L > (1− ε)
X
i≥n∗

an(R(kX0i − Ltk))−
X
i<n∗

an(R(kX0i − Ltk)) ≥

≥ (1− ε)
n−n∗+1X
i=1

an(i)−
nX

i=n−n∗+2
an(i) = δ − ε

n−n∗+1X
i=1

an(i) > 0,

for all L ≥ L0 and t ∈ Sp−1, provided ε is small enough. Therefore, ˆ̄n(X0) must be located inside
{x; kxk ≤ L}. 2

Proof of Proposition 4.1. See Hössjer and Croux (1993). 2

Proof of Theorem 4.2. According to (vii) and (x), Tn(Σ
−1/2X) = Tn(R¯+Re1, . . . ,R¯+Ren),

where R = Σ−1/2L is orthogonal (as is easily seen). Putting ∆0 = R∆, it follows from Theorem

2.1 that
1√
n
Tn(Σ

−1/2X) d−→ Np(B(h,G)∆
0, A(h)Ip). (A.14)

Put Σ̂n = Σ̂n(X). Because of (A.14), it suffices to show that

1√
n
(Tn(Σ̂

−1/2
n X)−Tn(Σ−1/2X)) p−→ 0. (A.15)

Because of contiguity, it suffices to establish (A.15) when ∆ = 0. Assumption (x) implies that

Γ̂n = Σ̂−1/2n Σ1/2 = Ip +Op(1/
√
n). (A.16)

W.l.o.g. we may assume R = Ip (this holds when L = Σ1/2). Formula (A.15) is then equivalent to

1√
n
(Tn(Γ̂ne)−Tn(e)) p−→ 0, (A.17)

with e = (e1, . . . , en). Given any number M > 0, introduce Cn(M) = {fl = (γij)
p
i,j=1; |γij | ≤

M/
√
n}, put Γn(fl) = Ip + fl/

√
n, and Zn(fl) = (Tn(Γn(fl)e) − Tn(e))/√n. It remains to show

that

sup
fl∈Cn(M)

kZn(fl)k = op(1), ∀M > 0. (A.18)

Formula (A.17) will then follow from (A.16) and (A.18). For a proof of (A.18) we refer to Hössjer

and Croux (1993). 2
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