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bstract

The present experiment addressed whether increases in corticospinal excitability following sensory stimulation with muscle tendon vibration are
ccompanied by reorganization of the forearm musculature representation within the primary motor cortex. Using transcranial magnetic stimulation,
e mapped the corticomotor projection to the dominant flexor carpi radialis (FCR) and extensor carpi radialis brevis (ECR) muscle before and

fter interventional sensory stimulation obtained via muscle tendon vibration (80 Hz, 60 min) to the dominant distal wrist flexor tendons. Following
ibration, MEP amplitude at the optimal stimulation position, motor output area, as well as map volume, increased significantly for the ECR. None

f these effects reached significance for the FCR. These results suggest that the antagonistic vibratory response (AVR), which is considered to be of
ortical origin, induces a delayed facilitation of musculature that is antagonistic to the site of the directly activated Ia afferent pathways. This example
emonstrates that peripheral sensory stimulation can induce lasting increases in corticospinal excitability in the absence of actual movements.

2008 Elsevier B.V. All rights reserved.
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. Introduction

The adult human sensory and motor cortices have the
otential to reorganize rapidly in response to changing envi-
onmental conditions (for a review, see references [3,14]).
he term ‘neuroplasticity’, defined as ‘any enduring changes

n cortical properties like strength of internal connections,
epresentational patterns, or neuronal properties, either morpho-
ogical or functional’, refers to this ability [14]. Experimental
nterventions and pathological conditions that have shown to
nduce reorganization changes in motor cortical representa-
ions are: immobilization [25], ischemic nerve block [1,2,69],
otor learning and practice of relatively unskilled movements
11,19,20,21,34,35], amputation [9,12,16], spinal cord injury
24,59] and stroke [10,27,60].

∗ Corresponding author at: Instituto de Automática Industrial (IAI-CSIC), Ctra
e Campo Real km. 0200, 28500 Arganda del Rey, Madrid, Spain.
el.: +34 91 871 19 00; fax: +34 91 871 70 50.
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The potential role of somatosensory stimulation as a means
o dynamically modulate the organization of the motor cortex
as been postulated during the past years [1,2,48,52]. Hamdy et
l. [18] were the first to demonstrate that even a relatively short
eriod (10 min) of electrical pharyngeal stimulation is sufficient
o trigger changes in the pharynx’ M1 representation in neuro-
ogically intact individuals. Ridding et al. [41,42] reported sim-
lar findings following interventional electrical peripheral nerve
timulation over longer periods of time. Further exploration has
trengthened the understanding that electrical peripheral nerve
timulation is a powerful tool to induce sustained excitability
ncreases as well as rapidly evolving neuroplastic changes of
he human motor cortex [8,28,29]. Peripheral electrical nerve
timulation has also been shown to drive recovery of motor func-
ions following upper motor lesions, e.g., improving swallowing
unctions in individuals with stroke [15].

Passive movement is also commonly applied as a proprio-

eptive stimulation technique in neurorehabilitation. This form
f somatosensory stimulation has been found to generate brain
ctivity not only in sensory, but also in motor cortical areas in
umans [7,39,64] and/or induce persistent neuroplastic changes

mailto:aforner@iai.csic.es
dx.doi.org/10.1016/j.bbr.2008.02.019
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Single-pulse transcranial magnetic stimuli were delivered by means of a
Dantec MagLite r-25 stimulator (Medtronic, Skovlunde, Denmark) (maximal
stimulator output: 1.5 T) with a figure-of-eight coil (MC-B70 magnetic coil
transducer, outer radius diameter: 50 mm). The magnetic stimulus had a bipha-
2 A. Forner-Cordero et al. / Behavio

f the sensorimotor representation when administered repeat-
dly [7].

Muscle tendon vibration has also shown to elicit motor cortex
ctivation [31,32]. Recent studies with TMS have demonstrated
ts direct modulating effect on M1 excitability with a vibration
ntervention below the sensory illusion threshold [45,46]. Yet
comparative analysis of brain activity with positron emission

omography showed that both the loci and levels of activation
uring tendon vibration did not match to those obtained during
assive movement [39], albeit both techniques predominantly
ctivated the proprioceptive Ia-afferents pathways [43,44]. How-
ver, when the tendon vibration was accompanied by sensory
llusion, cortical activation levels surpassed those measured
ith tendon vibration alone [39]. Given the dynamic nature
f motor cortex reorganization [11,51] and its critical depen-
ence on afferent stimulation parameters [37,51,68], the quest
or rationally founded treatment procedures that produce the
ost beneficial therapeutically relevant plasticity, is open.
In humans, representational cortical plasticity can be assessed

t a regional level by means of transcranial magnetic stimulation
TMS) mapping of corticomotor representations [50,56,61,66].
he TMS mapping technique has been used extensively to
ddress dynamic changes in corticomotor representations fol-
owing various experimental and pathological conditions, like
rain or spinal cord injury [2,13,15,35,59]. To evaluate the maps,
ingle TMS pulses are delivered via a focal figure-of-eight coil
o scalp positions arranged in a coordinate system overlying the
rimary motor cortex (M1). By measuring the motor evoked
otential (MEP) amplitude in the targeted muscle(s), ‘maps’
ased upon spatial changes in MEP amplitude among multiple
timulation positions can be composed. In this way, a functional
opographic map of the M1 projection to hand and forearm mus-
les can be obtained. Motor output maps can be quantified by a
umber of variables, such as the optimal stimulation position, the
ap area and volume, and the center of gravity (CoG) [61,66].
In a previous study, we reported that a 30 min period of mus-

le tendon vibration to the wrist flexors, is sufficient to induce a
asting (up to 30–60 min after the end of vibration) corticospinal
xcitability increase in the antagonistic wrist extensor muscles
53]. When tendon vibration provokes a sensory illusion, it is
ccompanied by an antagonistic vibratory response (AVR) that
s reflected in increased EMG activity of the antagonist muscle,
imilar to voluntary motion [5]. Previous evidence has suggested
hat the AVR may result from a perceptual-to-motor transfor-

ation of proprioceptive information, rather than from spinal
eflex mechanisms [5]. This intervention is possibly relevant in
he search for protocols that promote functional recovery after
entral nervous system injury [13].

To gain further insight into the impact of interventional mus-
le tendon vibration on corticomotor excitability [22,45,54],
e investigated by means of TMS mapping whether these

xcitability changes are accompanied by a reorganization in
1. Previous studies have demonstrated that the TMS map-
ing technique is sensitive to detect changes in the motor
epresentation, following somatosensory stimulation paradigms
28,29,41]. Consequently, we wondered whether a recently
ntroduced type of interventional somatosensory stimulation,
rain Research 190 (2008) 41–49

.e., muscle tendon vibration, has the potential to drive changes
n human motor cortex organization.

. Materials and methods

.1. Subjects

Eleven neurologically healthy right-handed [33] volunteers participated
n the present study (six males, five females, mean age ± S.D.: 23 ± 6.14
ears). The participants were naive about the purpose of the experiment, were
creened for potential risk of adverse events during TMS [63], and provided
ritten informed consent prior to participation. The experimental procedures
ere approved by the local Ethics Committee for Biomedical Research at the
atholieke Universiteit Leuven, according to the Declaration of Helsinki.

.2. Experimental set-up

Subjects were seated comfortably in front of a manipulandum that stabilized
heir right forearm in a horizontal semi-prone position. A cushioned support
xated the subject’s forearm, and the hand was inserted in a hand-piece with the
rist secured in a neutral posture. An electromagnetic mechanical stimulator

Tiravib 50020, Tira GmBH, Schalkau, Germany) was mounted on the manipu-
andum, with the vibrator probe pressing perpendicularly to the distal tendons of
he wrist flexor muscles under an average load of 15.64 N (Kulite ECD-500N)
Fig. 1).

.3. Electromyographic recordings

Surface electromyographic (EMG) activity was recorded from the right
.flexor carpi radialis (FCR) and m.extensor carpi radialis brevis (ECR) by
eans of disposable disc electrodes. Electrodes were placed 2 cm apart over the
iddle portion of the muscle belly, and aligned longitudinally with the muscle

Fig. 1). The pre-amplified signal was amplified (×1000) and bandpass-filtered
15–1000 Hz) (Noraxon Myosystem 2000), prior to sampling at 5 kHz using
CED Power 1401 analogue-digital converter (Cambridge Electronic Design,
ambridge, UK). Data were stored on a personal computer for off-line analysis

Signal software; Cambridge Electronic Design).

.4. Transcranial magnetic stimulation
Fig. 1. View of the experimental set-up.
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Fig. 2. Illustration of the TMS mapping procedure.

ic pulse configuration with a pulse width of 280 �s. The coil was positioned
angentially to the scalp over the subjects’ left hemisphere with the coil handle
ointing backward and rotated 45◦ away from the midsagittal line [65]. The
ptimal stimulation position for eliciting MEPs in the right FCR was marked
ith a soft-tip pen. In all cases, a response of the ECR was also evoked in this
osition. Stimulation intensity for mapping of the FCR- and ECR M1 represen-
ation was initially set at 120% of the FCR rest motor threshold (rMT). rMT was
etermined at the optimal stimulation position as the lowest intensity needed
o evoke MEPs in the relaxed FCR of at least 50 �V amplitude in 5 out of 10
onsecutive trials [47]. If needed, stimulation intensity was additionally adjusted
o obtain test MEP amplitudes between 200 and 400 �V for the FCR at rest at
he optimal stimulation position.

.5. Corticomotor mapping

The FCR- and ECR representation areas were mapped with a protocol mod-
fied from [66]. Subjects wore a tight-fitting cap with a 1-cm × 1-cm orthogonal
oordinate system referenced to the vertex (Cz). The cap was positioned using
ranial landmarks (nasion-inion) and the pre-auricular creases as references.
ingle TMS pulses (interstimulus interval: 6 s) were applied in 1 cm-steps in
clockwise spiral course beginning at the optimal stimulation position for the
CR [28] (Fig. 2). Data collection was initiated 50 ms prior to the delivery of
MS and lasted 150 ms. Each stimulation position was stimulated two times

one time in one subject) before moving to the adjacent grid point, until the bor-
er of the motor maps of both target muscles had been defined. This procedure
as repeated three times (six times in one subject) both before and immediately

ollowing interventional vibration, resulting in a total of six stimuli per stimu-
ation site for both conditions. It was previously demonstrated that three stimuli
er condition is sufficient to produce reliable and reproducible maps [30]. Each
apping procedure had a duration of 30–60 min.
.6. Interventional muscle tendon vibration

An interventional protocol was employed, consisting of wrist flexor tendon
ibration for a total of 60 min (80 Hz, cycle duration 30 s: 25 s on–5 s off). Vibra-
ion amplitude was adjusted prior to the start of the intervention to induce optimal

u

e
s
c

rain Research 190 (2008) 41–49 43

inaesthetic illusions at 80 Hz [17], and was kept constant throughout the exper-
ment. The vibrator was driven by a digital output signal generated by means
f a Power 1401 system (Cambridge Electronic Design). A similar vibration
rotocol, applied for 30 min, resulted in a lasting facilitation for the antagonistic
CR [53]. The motor output area of the FCR and ECR was mapped prior to
nd immediately following the vibration session. During vibration, vision was
revented by a blindfold and subjects were instructed to relax their forearm
uscles as much as possible, to focus their attention to the vibrated wrist, and

ot to suppress the occurrence of any kinaesthetic illusion. FCR and ECR EMG
ctivity were monitored and recorded throughout vibration.

In order to evaluate the elicited kinesthetic illusions, subjects were instructed
o match the direction and amplitude of the vibration-induced illusory movement
n the right wrist by means of moving their left wrist mirror-wise (e.g., Calvin-
iguiere et al. [5,6]). A wrist-hand orthosis was mounted on the left forearm
nd hand. This orthosis was used to restrict the wrist motion to flexo-extension
nd to measure the wrist angle (Fig. 1). The frictionless axis of the orthosis was
ligned with the anatomical axis of the wrist joint. Angular displacements were
egistered by means of a high-precision shaft encoder fixed to the movement axis
f the orthosis (HP, 8192 pulses/rev), digitized (100 Hz) and saved on a PC for
ff-line analysis. This procedure was repeated four times, every 15 min from the
eginning of the vibration intervention, to control for the effectiveness and sta-
ility of Ia-afferent stimulation throughout the intervention. Each measurement
eriod consisted of five cycles wrist flexor vibration (1 cycle: 25 s on–5 s off).

.7. Data analysis

The size of the FCR and ECR MEPs was measured offline by calculating
he peak-to-peak amplitude of each waveform within a time window from 10
o 40 ms following the delivery of each magnetic pulse. The motor representa-
ion area of the FCR and ECR was defined as the number of stimulus positions
hose stimulation evoked a mean MEP in the target muscle with a peak-to-peak

mplitude of at least 100 �V (=‘active’ stimulation positions). The peak-to-
eak amplitudes of the FCR and ECR MEPs obtained at the same stimulation
ite were averaged. Mean peak-to-peak amplitudes of MEPs obtained at each
calp site were plotted against anteroposterior and mediolateral distance. 3D-
lots of mean motor output areas for both target muscles were composed by
inear interpolation of the mean MEP-amplitudes between adjacent stimulation
ositions (Matlab 6, MathWorks, Inc.). Map volume referred to the sum of the
ean amplitudes at all active stimulation positions for FCR and ECR separately.
he center of gravity (CoG) was computed separately for the FCR and ECR as
measure of the amplitude-weighted centre of the motor representational map

26,61]. It is expressed as a bivariate measurement with a medio-lateral (x) and
ostro-caudal coordinate (y), using the following formula: CoG = [

∑
aixi/

∑
ai,

aiyi/
∑

ai], for stimulation position coordinates xi, yi and amplitudes ai.
he magnitude of the CoG displacement vector, this is the Euclidean distance
etween the CoG before and after interventional muscle tendon vibration, was
alculated [42].

Mean rectified EMG of the FCR and ECR was measured in a time window
rom 40 to 10 ms prior to the delivery of each magnetic stimulus to control for
MG silence at the moment of TMS. Additionally, mean rectified FCR and
CR EMG was calculated during the interventional protocol in order to check

or changes in background EMG during vibration.

.8. Statistics

Mapping variables before and after vibration were statistically compared
y means of advanced linear models applications (STATISTICA 6.0, StatSoft
nc.). It was first tested whether the two wrist muscles responded similarly to the
timulation by using a one-way ANOVA with muscle (two levels) as factor. To
nvestigate a possible temporal evolution of the mapping variables following the
nd of vibration, the first two (POST1,2) and the last two (POST2,3) spirals were
rouped and separately compared to the PRE-values for each muscle separately

sing a one-way ANOVA with Time (three levels) as factor.

The spirals were combined in order to obtain averages of at least six MEPs at
ach stimulation site. Therefore, POST1,2 represents the average of the two first
pirals, corresponding to the first 30 min after the intervention, while POST2,3

onsists of the average of the last two spirals, i.e., 15–45 min post-intervention.
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Additionally, in order to obtain a measure of CoG stability, the first three and
ast three MEPs sampled at each stimulation position during the PRE-mapping,
ere averaged into two separate maps (PREA and PREB, respectively) and statis-

ically compared between each other and with the post-vibration measurements.
Mean amplitude of illusory movement was analyzed by means of a one-

ay (Time) repeated measures ANOVA. Time referred to the four periods of

mplitude matching throughout the vibration intervention: at the start of vibra-
ion (Time 1), after 15 min (Time 2), 30 min (Time 3) and 45 min (Time 4) of
ibration.

Finally, mean rectified EMG values of the FCR and ECR were analyzed by
eans of a one-way (condition) repeated measures ANOVA. The factor condi-

w
u
o

ig. 3. Three-dimensional plot of the motor cortical representation of the FCR (left
lots depict the mean MEP amplitude (vertical axis) elicited by TMS at each stimul
bottom) – the intervention. The horizontal axes show the rostrocaudal and mediolater
ote the different scaling of the vertical axes for the FCR and ECR.
rain Research 190 (2008) 41–49

ion consisted of three levels: pre-vibration, vibration and post-vibration. When
ignificant effects were found, post hoc Tukey testing was conducted to identify
he loci of these effects. The level of significance was set at p < 0.05.

. Results
The rest motor threshold rMT (mean ± S.D.) of the FCR
as 33.7 ± 6.5% of maximal stimulator output. Actual stim-
lation intensity was set at 39.7 ± 8.4% of maximal stimulator
utput.

column) and the ECR (right column) muscle for a representative subject. The
ation position before – Pre (top) – and after – Post1,2 (middle) – and – Post2,3

al coordinates of the stimulated scalp sites referenced to the vertex (0,0) in cm.
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Fig. 4. (a) Mean relative percentage differences between PRE and POST group
mean MEP amplitude (at optimal stimulation position), map area and map vol-
ume in the right FCR and ECR. (b–d) Time courses of change in MEP amplitude
and map area and volume in the same muscles with respect to their baseline
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.1. EMG activity

Analysis revealed a significant condition effect for FCR EMG
ctivity [F(2,20) = 20.152; p < 0.05]. Post hoc testing showed
hat wrist flexor vibration increased tonic FCR activity sig-
ificantly, as compared to the pre- and post-vibration levels
f EMG activity (pre-vibration: 1.58 �V, vibration: 2.99 �V,
ost-vibration: 1.41 �V) (p < 0.05). With respect to the ECR,

similar condition effect was observed [F(2,20) = 11.888;
< 0.05]. Mean EMG activity during vibration was significantly
igher than the pre- and post-vibration values (pre-vibration:
.98 �V, vibration: 8.09 �V, post-vibration: 1.78 �V) (p < 0.05).
o significant differences between pre- and post-vibration lev-

ls of EMG activity were observed, for both the FCR and ECR
p > 0.05).

.2. Kinesthetic illusion

Data of one subject were discarded from the analyses since
llusion was reported to exceed the physiological joint range of

otion for extension (mean > 90◦). For the remaining 10 sub-
ects, analysis revealed no significant main effect of Time for
he experienced angular displacement of the illusionary response
F(3,27) = 1.57, p > 0.2]. Group means were: 26.8◦ ± 13.0 (Time
), 22.5◦ ± 7.2 (Time 2), 22.0◦ ± 6.9 (Time 3) and 20.9◦ ± 7.8
Time 4).

.3. Cortico-motor excitability

Fig. 3 shows three-dimensional plots of the motor cortical
epresentation of the FCR and ECR muscles before (PRE) and
fter (POST1,2 and POST2,3) the intervention. It can be seen
hat only the corticomotor representation of the ECR muscle
hanged as a result of the intervention whereas no changes in
he map volume and/or area between pre and the two post-
ntervention conditions were noticed for the FCR. Comparing
he two muscles (Fig. 4a) by calculating the average of POST1,2

nd POST2,3 subtracted from their corresponding PRE scores
hows a substantial increase in the motor cortical representa-
ion of ECR (+11.7% for MEP amplitude at optimal stimulation
osition, +11.9% for map area and +26.9% for map volume).
he FCR mapping variables before and after vibration remained
nchanged (+1.6% for MEP amplitude, −10.8% for map area
nd – 3.8% for map volume). A one-way ANOVA with mus-
le as factor revealed either a significant effect of muscle on
ap area [F(1,10) = 9.24, p = 0.012] and volume [F(1,10) = 4.94,
= 0.050] but not on MEP amplitude [F(1,10) < 1]. These results
nabled us to analyze the mapping variables of the ECR sepa-
ately from those of the FCR and the summary of the values
btained are presented in Table 1.

.3.1. MEP amplitude at optimal stimulation position
Fig. 4b)
One-way ANOVA with Time as the only factor revealed
significant effect of Time on MEP amplitude in the ECR

F(2,20) = 3.69, p = 0.043]. Contrast analysis (Tukey HSD)
evealed a sizeable increase with respect to baseline (PRE)

a
l
(
n

evels at the POST12 and POST2,3 mapping intervals. Data plotted as group
ean ± standard error of the mean (S.E.M.).

mplitude at the POST2,3 interval (+23.8% ± 6.7 versus base-
ine, p = 0.034) but not at the POST1,2 interval or between
OST1,2 and POST2,3 intervals (both, p > 0.3). No such effects
ere observed in the FCR [Time main effect: F(2,20) < 1].

.3.2. Motor representation area (Fig. 4c)
No significant differences in the number of active stimulation

ositions were observed for the FCR muscle following vibra-
ion [Time main effect: F(2,20) = 2.15, p > 0.1]. With respect to
he ECR motor map, a marginally significant increase in map

rea [Time main effect: F(2,20) = 3.09, p = 0.068] emerged fol-
owing vibration, indicated by the POST2,3–PRE comparison
+12.2% ± 4.2 versus baseline, p = 0.089). Differences in the
umber of active stimulation positions with respect to baseline at
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Table 1
Summary of effects of wrist flexor tendon vibration on maximal MEP amplitude, map area and map volume of m.flexor carpi radialis (FCR) and m.extensor carpi
radialis brevis (ECR)

PRE POST POST1,2 POST2,3

MEP amplitude at optimal stimulation position (mV)
FCR 0.396 ± 0.234 0.377 ± 0.207 0.399 ± 0.199 0.425 ± 0.220
ECR 0.824 ± 0.238 0.898 ± 0.229 0.909 ± 0.326 0.992 ± 0.273*

Map area (number)
FCR 15.0 ± 8.3 13.2 ± 7.7 12.7 ± 7.6 13.9 ± 8.4
ECR 20.2 ± 6.8 22.2 ± 7.0† 20.4 ± 6.9 22.4 ± 6.8†

Map volume (mV)
FCR 3.81 ± 3.80 3.16 ± 2.45 2.93 ± 2.22 3.56 ± 2.84
ECR 7.33 ± 2.85 9.07 ± 3.97† 8.79 ± 3.99 9.09 ± 3.91†
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ata expressed as group mean ± standard deviation (S.D.).
* p < 0.05 (compared to the PRE-values).
† Marginally significant differences p < 0.1 (compared to the PRE-values).

he POST1,2 interval or between POST1,2 and POST2,3 intervals
ere not significant (both, p > 0.1).

.3.3. Map volume (Fig. 4c)
The FCR map volume did not undergo significant changes

ollowing the vibration intervention for any the comparisons
Time main effect: F(2,20) = 1.05, p > 0.3]. Similar to the ECR
ap area data, analysis revealed a significant increase in the
CR map volume following the intervention [Time main effect:
(2,20) = 3.54, p = 0.048]. A sizeable increase with respect to
aseline (PRE) map volume was observed at the POST1,2 inter-
al (+24.9% ± 12.6 versus baseline) and the POST2,3 interval
+27.8% ± 10.5 versus baseline). However, differences were
ither statistically marginal (POST2,3–PRE, p = 0.054) or did
ot reach significance (POST1,2–PRE and POST2,3–POST1,2:
oth, p > 0.1).

.4. Centre of gravity

Mean (±S.D.) magnitudes of the CoG displacement
ectors between pre- and post-vibration for all comparisons
ere the following for the FCR (PRE–POST: 0.37 ± 0.25 cm,
RE–POST1,2: 0.36 ± 0.20 cm, PRE–POST2,3: 0.38 ± 0.25 cm)
nd ECR (PRE–POST: 0.28 ± 0.12 cm, PRE–POST1,2:
.31 ± 0.12 cm, PRE–POST2,3: 0.29 ± 0.13 cm). The mag-
itudes of the CoG shifts were 0.43 ± 0.33 cm (FCR) and
.28 ± 0.14 cm (ECR) for the PREA-PREB comparison.
tatistical comparison of the displacement vectors across all
onditions (the pre–post measures versus the measure obtained
ithin the pre-mapping), revealed no significant differences in

he magnitude of the CoG displacement vector (p > 0.05).

. Discussion

In the present study, we evaluated the potential capability

f artificial activation of the afferent pathways by means of
uscle tendon vibration to drive motor cortex reorganization in

eurologically intact individuals. For this purpose, we assessed
he delayed effects of repetitive sensory stimulation with low-

t
r

m

mplitude muscle tendon vibration at 80 Hz on the expansion of
orticomotor representation in the forearm musculature. Extend-
ng the observations from previous studies [18,45,46,53–55],
e used the activation of Ia muscle spindle afferents as the
ain source of somatosensory stimulation (even though other

ensory receptors may also have been involved). Specifically,
he application of 60 min of wrist flexor tendon vibration ele-
ated the excitability of corticomotor projections to the wrist
xtensor muscles (ECR) until significant levels of facilitation
ere obtained over the course of 30 min post-intervention. In

his respect, close similarities were observed between the time
ourse of the increase in corticospinal excitability following our
endon vibration intervention and that obtained after compara-
le periods of continuous peripheral sensory intervention with
lectrical stimulation [15,29,37,41,42].

The present intervention evoked a delayed facilitation only
n the antagonistic ECR muscle but not in the vibrated FCR

uscle. This finding differs from our previous observations in
hich a similar sensory training protocol through the applica-

ion of wrist flexor tendon vibration enhanced the excitability of
orticospinal pathways of both flexors and extensors, albeit with
eaker effects in the FCR than in the ECR [53]. Yet, the present

ntervention protocol with low vibration amplitude was specif-
cally set to evoke an antagonistic vibratory response (AVR)
hile at the same time minimizing the emergence of the tonic
ibration reflex (TVR) in the FCR. As such, it was expected that
he intervention did not induce balanced effects on agonist and
ntagonist motor circuits in the brain. The latter assumption is
onsistent with recent work showing that afferent stimulation
f specific musculature induces focal effects on corticospinal
xcitability in targeted muscle(s) without changing the level of
otor excitability in general [45,55]. It should be noticed though

hat selective effects of the intervention on corticomotor repre-
entation of the wrist muscles may also emerge as a result of
iscrepancies in the excitability of corticospinal pathways of
he flexors and extensors due to, i.e., differences in rest motor

hreshold and/or size of M1 populations. The latter hypothesis
emains to be explored further.

Repetitive stereotyped performance of relatively unskilled
ovements can evoke plastic changes in M1 movement rep-
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esentations [4,11,26,36]. For example, it has been reported
hat a 15–30 min training period consisting of voluntary repeti-
ive thumb movements, sufficed to establish a rapidly evolving
hange in the M1 movement representation [11]. Subsequent
tudies have pointed to long-term potentiation (LTP) as the
andidate mechanism underlying this type of ‘use-dependent
lasticity’ [4]. In our experiment, the antagonistic vibratory
esponse (AVR) became apparent in the wrist extensor mus-
les during vibration. The underlying mechanisms of the AVR
re not yet completely understood. However, the most recent
ndings point to the involvement of a perceptual-to-motor trans-
ormation of the vibratory-induced proprioceptive information,
ost likely occurring at the cortical level rather than being
purely spinal reflex mechanism [5,6]. This agrees with the

bservation that the EMG characteristics of the AVR are cor-
elated with parameters of the experienced kinesthetic illusion
uring vibration [5,6]. Kinesthetic illusions during muscle ten-
on vibration (i.e., the illusion of the vibrated muscle being
tretched) activate contralateral motor cortical areas (M1, SMA)
31,32,39], similar to a closely related experience, i.e., kines-
hetic movement imagery [38]. Interestingly, mental motor
ractice, defined as the conscious representation of perform-
ng a movement of a body part without overt action, appears
o trigger motor cortex reorganization as powerful as overt

otor practice [36]. In summary, besides primarily being a
ype of somatosensory stimulation, muscle tendon vibration
licits a kinesthetic illusion and its associated AVR. The repet-
tive experience of both phenomena contains large similarities
ith two procedures, which are known to induce cortical reor-
anization changes, i.e., repetitive overt practice of relatively
nskilled movements and repetitive mental practice. As such,
e hypothesized that sensory ‘illusion’ induced by muscle ten-
on vibration is an amplifying factor in driving corticomotor
xcitability changes.

The major finding of the present study was that a clear ten-
ency to increase the motor output area as well as the motor map
olume became apparent following interventional muscle ten-
on vibration. An important issue to address is to what extent
he functional M1 representation obtained by TMS mapping
orresponds with the anatomical M1 representation of the target
uscle. Evidently, the TMS map is only indirectly related to

he origin and distribution of the underlying corticomotor pro-
ection. Moreover, the spatial location and extent of the map is
ependent on factors, such as coil orientation [66,67], current
pread [49], coil distance [58] and the excitability of the under-
ying corticospinal projection [40]. Nevertheless, TMS maps
gree well with the location of the hand area within M1, as
videnced by other imaging modalities [62,23]. Moreover, the
echnique has demonstrated a remarkable capability to detect
hifts in map position with a high resolution [57]. A second
ssue is the identification of the required boundary conditions
o ascribe map changes to underlying neuroplastic alterations.
s such, changes in map area per se cannot be assumed to

e due solely due to a true reorganization, but might reflect a
hange in the level of excitability of a topographically fixed
rojection [40,50]. For this reason, changes in measures of map
ocation rather than area have been shown to provide a better
rain Research 190 (2008) 41–49 47

ndication of reorganization of the underlying cortical repre-
entation [50,58]. In the present study, there was no significant
isplacement of the CoGs following interventional muscle ten-
on vibration. It can be suggested that the observed increase in
he motor representations of the wrist musculature was mediated
y increasing pre-synaptic axonal excitability and/or by gener-
ting a lasting increase in excitatory synaptic activity [3,48,50].
s such, the intervention with tendon vibration in our study
ay have influenced the excitability of topographically fixed

rojections without changing the actual locus of the hand repre-
entation in M1. Alternatively, the current intervention may have
qually increased the excitability of the cortical motor neuron
opulations in such a way that there was no evident shift in the
oG’s of the cortical map.

The fact that the effects obtained in our study outlasted the
eriod of kinaesthetic stimulation by more than 30 min, opens
erspectives for therapeutic manipulation of brain plasticity [e.g.
3,15,41,42]. Consequently, an important future goal is to inves-
igate to what extent excitability and reorganization changes
ollowing somatosensory stimulation are related to functional
mprovements in movement control. Up to now, no significant
hanges in motor performance have been reported following
nterventional peripheral nerve stimulation or muscle tendon
ibration in healthy humans. However, other studies [13,15]
eported significant improvements in swallowing function and
inch strength, outlasting the period of pharyngeal and median
erve stimulation, respectively. Therefore, it might be that sub-
tantial deficits in motor performance after brain injury are
equired to measure behavioural gains following interventional
timulation paradigms. Moreover, the possibility to ‘tune’ M1
lastic changes by means of manipulating the parameters of
omatosensory stimulation [68], awaits the development of opti-
ized intervention techniques.
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