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Abstract

The presence of outlying observations in panel data can affect the classical esti-

mates in a dramatic way. Nevertheless the common practice seems to disregard the

problem. The aim of this work is to study robust regression techniques in the fixed

effects linear panel data framework. Robustness of the procedures is investigated by

means of breakdown point computations and simulation experiments. A distinction

between outlying blocks and cells in a panel is made. To show the potential of ro-
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1 Introduction

Panel data estimators can be strongly biased in the presence of outlying observations. Al-

though most researchers are aware of this problem, little literature is existing on robust

estimation of the parameters in a panel data model. In this paper, robust versions of the

classical Within Group estimator are considered. The robustness of these estimators with

respect to outliers will be investigated.

The presence of outliers can lead to erroneous estimates in regression models. Indeed, the

classical Least Squares (LS) approach is known to be very sensitive to outliers. Moreover,

outliers are not always detectable by looking at residuals from a Least Squares fit, since

the latter suffers from the masking effect. Masking means here that outliers affect the LS

estimator in such a way that outlier diagnostics based on LS are not capable of detecting

them anymore. Note that also diagnostic measures like the Cook Distance suffer from the

masking effect, as soon as multiple outliers are present. More robust alternatives to LS are the

Least Absolute Deviation estimator and M-estimators. Unfortunately, these estimators are

not robust with respect to leverage points, i.e. outliers in the space of the covariates. Thus,

regression estimators having a high breakdown point, as Least Trimmed Squares (Rousseeuw,

1984) and S -estimators (Rousseeuw and Yohai, 1984) are needed. The breakdown point of an

estimator is the highest fraction of outliers that an estimator can withstand, and it is one of

the most popular measures of robustness. A classical textbook for robust regression analysis

is Rousseeuw and Leroy (1987). Therein, many examples are given where masking occurs and

where the LS estimator breaks down completely. For estimating regression models in presence

of noisy datasets it is hence crucial to estimate the model parameters using robust estimators.

Afterwards, outlying observations can be detected using robust diagnostic measures, as in

Rousseeuw and van Zomeren (1990).

By the word robust estimator we mean that an estimator is not altered too much by

removing or modifying a small percentage of the dataset. Formal measures of robustness,

including the breakdown point, are given in Hampel et al (1986). An outlier can be seen
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as an observation being highly unlikely to be generated by the model being used. It is

behaving differently from the vast majority of the data cloud. As pointed out in Zaman,

Rousseeuw and Orhan (2001), still few literature is available on robust techniques applied to

econometrics. These authors believe that the reluctance to apply robust regression techniques

to real economic data sets is due to different factors, such as the belief that outliers can be

identified simply by eye and the unfamiliarity with and unawareness of such techniques.

While the usefulness of robust estimators in the linear regression model is well established,

not much effort has been given to the development of robust procedures for panel data models

in econometrics. We believe that the problem of outliers is even more pertinent in the panel

data context. Large panels of families, firms, countries, ... are likely to contain atypical

observations or gross errors (as typing, recording or computation errors). Moreover visual

inspection of panel data is less obvious than for cross-sectional data, certainly in the case

of multiple regressors. Regarding to robustness with respect to outliers, some literature is

available for SURE models (Peracchi, 1991), whereas for panel data models there is very few

literature. Among the studies on estimators for panel data there are some which concern

robustness with respect to heteroscedasticity and autocorrelation, as in Alvarez and Arellano

(2004).

In this paper we stick to the simple fixed effects panel data model, and focus on robust

alternatives to the Within Groups estimator. As measure of robustness we consider the

breakdown point of the estimators. Since our main purpose is to build highly robust proce-

dures, high breakdown point estimators for the fixed effects panel data model are developed.

We will assume that no endogeneity problem is present, and will therefore not deal with

robust instrumental variable estimation of the linear panel data model as in Wagenvoort

and Waldmann (2002). One of the estimators studied in this paper is however similar as the

Wagenvoort and Waldmann (2002) estimators. It will be compared with a version of the MS

estimator of Maronna and Yohai (2000) well suited for application in the panel data setting.

Another way to robust estimation of panel data models would have been to apply the
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Robust Generalized Method of Moments of Ronchetti and Trojani (2001). This general

approach has not been applied to the panel data context yet, but it will not have a high

breakdown point. Note that the robust estimators proposed for variance components (or

random effects) models as in Rocke (1991), Fellner (1986) or Richardson and Welsh (1997)

neither are robust in terms of a high breakdown point.

In Section 2 the definition of breakdown point of a regression estimator for the panel data

model is given. In Section 3 robust estimators with high breakdown point are outlined for the

fixed effects model parameters, hereby extending some known robust regression estimators.

Expressions for breakdown points are given as well. Section 4 is devoted to a simulation

study, while in Section 5 we apply the robust estimator to real macrodata. In particular,

we replicate in a robust way the Giavazzi, Jappelli and Pagano (GJP, 2000) study on the

response of the private sector behavior to fiscal policy. Section 6 concludes the work.

2 Outlier classification and definition of the breakdown

point of panel data estimators

2.1 Classifying outliers

As first step we try to figure out how outliers arise in panel data model. In robust statistics

the standard assumption is that the majority of data follows a certain specified distribution

F , while a certain small percentage of the data takes values unlikely to come from this

distribution F . The latter ones are then called outliers.

The main possible sources of bias of the estimates come from contamination in the error

term (vertical outliers) and in the explanatory variables (leverage points). This results then

in a couple (xit, yit) entering as an outlying observation in the stacked regression equation

(3.2). In this work we also pay attention to the case of concentrated outliers as the situation in

which most of outlying observations are likely to be concentrated in few time-series. Indeed,
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such a case is very frequent in economic data: as an example we could consider a macro

panel in which for few countries many outliers are present (due to measurement errors, badly

scaled data...), while other countries are not contaminated at all.

To have an idea of how these three kinds of outliers look like (vertical, leverage, block

concentrated outliers), we have simulated a panel of N = 3 time-series, each of T = 15

observations in the case of one single covariate xit. A scatterplot of the data cloud (xit, yit)

is then presented with fitted regression lines y = αi + βx added for every cross-section

i = 1, 2, 3.

In Figure 1(a) some of the observations are outlying in the y direction, generating vertical

outliers. In Figure 1(b) one sees that the vertical outliers are concentrated in one single time-

series. We speak of block concentrated outliers. In Figure 1(c) one sees that leverage points

are present in every time-series, while in Figure 1(d) one has block concentrated leverage

points, which means that leverage points are concentrated within a time-series.

2.2 Breakdown point definition

In this subsection we are going to define the breakdown point of a regression estimator in the

panel data context. Such a definition will be useful for the computation of the breakdown

point of the estimators proposed in the next section. Generally spoken, the breakdown point

of an estimator is defined as the smallest fraction of outlying observations that can cause

a ‘breakdown’ of the estimator. The first to introduce this notion were Donoho and Huber

(1983) as a measure of the sensitivity of an estimator to aberrant observations. Breakdown

points of robust regression estimators have been computed, e.g. in Rousseeuw and Leroy

(1987). Let Z =
{

(x
(1)
11 , ..., x

(K)
11 , y11), ..., (x

(1)
1T , ..., x

(K)
1T , y1T ), ..., (x

(1)
NT , ..., x

(K)
NT , yNT )

}
be the

set of the NT data points (x
(1)
it , ..., x

(K)
it , yit). Let

Z̃M =
{

(x̃
(1)
it , ..., x̃

(K)
it , ỹit) ∈ ℜK+1 | #

{
(i, t); (x̃

(1)
it , ..., x̃

(K)
it , ỹit) 6= (x

(1)
it , ..., x

(K)
it , yit)

}
≤ M

}

be a contaminated set of NT data points, obtained by replacing at most M data points

by arbitrary values. The symbol # is the usual cardinality sign. Let R be an estimator,
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Figure 1: Scatterplot of yit versus xit for 1 ≤ t ≤ 15 and 1 ≤ i ≤ 3. Different time-series

are indicated with different symbols. Four cases are considered: (a) only vertical outliers,

(b) block concentrated vertical outliers, (c) leverage points, (d) block concentrated leverage

points.
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and R(Z) its value at the sample Z. Typically, R could be an estimator for the regression

parameter in a panel data model. The cell breakdown point of the estimator R at the

sample Z is the smallest proportion of observations replaced by outliers which can cause the

estimator R to take on values arbitrarily far from R(Z). Formally,

ε∗NT (R, Z) =
1

NT
min

{
M ; sup

Z̃M

∥∥∥R(Z) − R(Z̃M)
∥∥∥ = ∞

}
(2.1)

The above definition is nothing else but the definition of breakdown point of a regression

estimator following the general concept of breakdown point introduced by Donoho and Huber

(1983), but now applied to panel data in stacked form. In this definition we do not take into

account the presence of different groups or blocks in the data, and therefore one could say

that it treats the outliers as outlying cells in the data matrix.

In what follows, we define a block outlier as a time-series in which there is at least one

outlying observation. Of course, a block outlier may contain both horizontal and vertical

outliers. Let

Z̃B =
{

(x̃
(1)
it , ..., x̃

(K)
it , ỹit) ∈ ℜK+1 | #

{
i; (x̃

(1)
i. , ..., x̃

(K)
i. , ỹi.) 6= (x

(1)
i. , ..., x

(K)
i. , yi.)

}
≤ B

}

be the set of all the NT data points which are contaminated by replacing at most B blocks

by arbitrary blocks of the same size (x̃
(1)
i. , ..., x̃

(K)
i. , ỹi.), where ỹi. and x̃

(k)
i. are T × 1 vectors.

The block breakdown point associated to the outlying blocks is the smallest proportion of

contaminated time-series which can cause the breakdown of the estimator. Thus, considering

the regression estimator R, the block breakdown point of the estimator R at the sample Z

writes

εB
N(R, Z) =

1

N
min

{
B; sup

Z̃B

∥∥∥R(Z) − R(Z̃B)
∥∥∥ = ∞

}
. (2.2)

A similar notion of breakdown point was proposed by Müller and Uhlig (2001) but in the

context of variance components estimation. Note that one could also think of a block outlier

as a cross-section with at least one outlying observation. Treatment of outliers in the time

domain is possible (see Franses et al (1999) and chapter 8 of Maronna, Martin and Yohai,
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2006), but is beyond the scope of this paper, and less applicable for panels with a short time

series dimension.

3 Robust Estimators for the FE panel data model

Consider the general formulation of the fixed effects linear panel data model.

yit = αi + x′
itβ+εit i = 1, ..., N t = 1, ..., T (3.1)

where the i subscript denotes the cross-section dimension, whereas t denotes the time-

series dimension. The K × 1 column vector of explanatory variables is denoted by xit, the

regression parameter β is a K × 1 vector, and the αi are the unobservable time-invariant

individual effects (which we consider to be fixed). Finally, the εit denote the disturbance

terms, uncorrelated through time (i being fixed) and uncorrelated through cross-sections (t

being fixed). In matrix notation, also called the stacked form representation, expression (3.1)

becomes:

y = eT ⊗ α + xβ+ε, (3.2)

with y = (y11, y12, ..., yNT )′ an NT ×1 vector and x = (x11, x12, ..., xNT )′ an NT ×K matrix.

Furthermore, α = (α1, ..., αN)′ is the N × 1 vector of individual effects coefficients, eT is a

T × 1 vector of ones, and ⊗ the Kronecker product.

The presence of outlying observations affects the classical Within Groups estimator. Our

aim is to build up an estimation procedure which is less sensitive to the presence of aber-

rant observations. This study considers two approaches: the first one is based on a high

breakdown Generalized M-estimator, similar to Hinloopen and Wagenvoort (1997). They

propose a version of the Generalized M-estimator originally introduced by Simpson, Rup-

pert and Carroll (1992) with high breakdown point level. A difference in our approach

is that we use the LTS estimator (Rousseeuw, 1984) as initial regression estimator and a

multivariate S-estimator to downweigh leverage points. These estimators are more efficient

and faster to compute than the ones used by Hinloopen and Wagenvoort (1997). Indeed,
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Rousseeuw and Van Driessen (2002) provide a fast algorithms for the LTS estimator (FAST-

LTS) showing that it runs faster than all programs for least median of squares (LMS), which

is the preliminary estimator in Hinloopen and Wagenvoort (1997). As for the multivariate

S-estimator for location and scale, which we use instead of the Minimum Volume Ellipsoid

(MVE) estimator applied in Hinloopen and Wagenvoort (1997). Croux and Haesbroeck

(1999) present efficiencies for multivariate S-estimators and show that they are fairly high.

Moreover, Davies (1992) shows that the convergence rate of the MVE estimator is slower

than the asymptotically normal S-estimators. Given the smoothness of the objective function

for the S-estimators, fast algorithms can be constructed as in Ruppert (1992), whereas the

computation of the MVE estimator is much more demanding. Unfortunately, this estimator

has the drawback of being not regression equivariant. Therefore, in the second approach we

consider the MS estimator of Maronna and Yohai (2000) applied to the particular setting

of the linear panel data model. Although the second estimator has nice statistical proper-

ties, among which the regession equivariance, it is difficult to distinguish between the two

estimators on efficiency grounds based on theoretical results. Therefore, both estimators are

considered in the simulation experiments of Section 4.

The classical Within Groups estimator is defined as follows. The data are centered within

every time-series. So

ỹit = yit −
1

T

T∑

t=1

yit (3.3)

and

x̃it = xit −
1

T

T∑

t=1

xit. (3.4)

Then it follows from (3.1) that

ỹit = β ′x̃it + errorit (3.5)

and it is observed that the fixed effects αi have been eliminated by the centering operation.

Regressing ỹit on x̃it by OLS results then in the Within Group estimator β̂WG. Econometri-

cians are mainly interested in estimating β, but the fixed effects parameters can be estimated
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as well. We refer to Baltagi (2001) for a detailed treatment of the classical Within Groups

estimator.

Before defining the robust versions of the within estimator, we introduce some equivari-

ance properties that a panel data regression estimator should verify (following Rousseeuw

and Leroy, 1987). Denote R for an estimator of the regression parameter β in (3.1). One

has that a panel regression estimator R is scale equivariant if

R ({(xit, cyit), i = 1, ..., N ; t = 1, ..., T}) = cR ({(xit, yit), i = 1, ..., N ; t = 1, ..., T}) ,

for any scalar c. It is regression equivariant if

R ({(xit, yit + x′
itγ), i = 1, ..., N ; t = 1, ..., T}) = R ({(xit, yit), i = 1, ..., N ; t = 1, ..., T}) + γ,

where γ is a K × 1 vector of constants and it is affine equivariant if

R ({(Axit, yit), i = 1, ..., N ; t = 1, ..., T}) = (A′)−1R ({(xit, yit), i = 1, ..., N ; t = 1, ..., T}) ,

where A is any K × K nonsingular matrix. The classical Within Groups estimator satisfies

all 3 equivariance properties.

The philosophy underlying the two approaches we will consider is almost the same: in

order to get a robust version of the within groups estimator we estimate robustly the center

of each time-series in both the dependent and the explanatory variables, and subtract it from

each observation in the block. Then a robust regression method to the centered data can be

applied in order to obtain the robust estimate of the coefficients in (3.5). It seems natural to

start with centering the variables (both dependent and independent) by the median instead

of the mean, since the median is known to min-max robust (Huber 1981). So

ỹit = yit − median
t

yit (3.6)

and

x̃
(j)
it = x

(j)
it − median

t
x

(j)
it , (3.7)
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for 1 ≤ i ≤ N , 1 ≤ t ≤ T and 1 ≤ k ≤ K, where x
(j)
it is the j-th explanatory variable

measured at time t in the i-th time-series. Centering has a crucial advantage: it reduces

the number of parameters enormously since it eliminates the fixed effects parameters. As a

result, computation time for robust regression algorithms remains feasible. Although many

progress has been made in developing fast algorithms for computing highly robust estimators,

their computation is still cumbersome for very large numbers of explicative variables. As

a consequence, we will disregard the approach proposed by Rousseeuw and Wagner (1994)

being computationally infeasible in presence of many time-series.

After centering, the natural approach is to regress ỹit on x̃it but now using a robust

regression estimator. A well known robust regression estimator is the least trimmed squares

(LTS) estimator (Rousseeuw, 1984). Applied on centered data, it is defined as

β̂LTS = arg min
β

h∑

k=1

[
(ỹk − x̃′

kβ)2
]
k:NT

, (3.8)

where
[
(ỹ· − x̃·β)2

]
1:NT

≤
[
(ỹ· − x̃·β)2

]
2:NT

≤ ... ≤
[
(ỹ· − x̃·β)2

]
NT :NT

are the ordered squared regression residuals. So the LTS minimizes the sum of the smallest

h squared residuals. The value 1 ≤ h ≤ NT is a truncation value. A default choice

is h = [3NT/4], making it possible to cope with up to 25% of outliers. Although the

LTS estimator is proved to be regression, scale and affine equivariant in a pure regression

setting (Rousseeuw and Leroy, 1987), in our setup β̂LTS is only scale equivariant, while

regression and affine equivariance do not hold. This is due to the nonlinearity of the

centering transformation by the median.

In case one is interested in having estimates for the fixed effects, they can easily be

obtained as follows. Once that β is estimated, one gets:

α̂i(β) = median
t

(yit − x′
itβ) for i = 1, ..., N. (3.9)
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3.1 A high breakdown Generalized M-approach

This approach is basically an improvement of the Within Groups LTS estimator β̂LTS in order

to increase statistical efficiency, while maintaining enough robustness. Once LTS regression

is performed on the centered data in stacked form, consider the residuals rit = ỹit − β̂ ′
LTSx̃it

and the robust scale estimate of the residuals σ̂LTS. The latter estimator is defined as

σ̂2
LTS = cLTS

1

h

h∑

k=1

(ỹk − x̃′
kβ̂LTS)2

k:NT ,

with cLTS chosen to make σ̂2
LTS a consistent estimator for σ2 = E[ε2

it] at normal error

distributions. Again the truncation value is set to h = ⌊0.75NT ⌋, as a good compromise

between robustness and efficiency. Then we set up a NT × NT diagonal matrix Wr to

downweigh observations having large residuals with respect to the robust initial LTS fit

(and thus not suffering from the masking effect). Its diagonal elements are of the form

ρ′(rit/σ̂LTS)/ (rit/σ̂LTS) where the loss function ρ is taken to be the Tukey’s biweight function

(Beaton and Tukey, 1974):

ρ(x) =






x2

2
− x4

2c2
+ x6

6c4
if |x| ≤ c

c2

6
if |x| > c

. (3.10)

With this choice the diagonal elements of Wr turn out to be

(Wr)it =





0 if

∣∣∣ rit

σ̂LTS

∣∣∣ ≥ c
(
1 − ( rit

cσ̂LTS
)2

)2

if
∣∣∣ rit

σ̂LTS

∣∣∣ < c
, (3.11)

where c is selected to obtain a good trade-off between the efficiency and robustness level.

We selected c = 4.685 as in Wagenvoort and Waldmann (2002).

To have further protection against bad leverage points, outliers in the covariate space will

be downweighed as well. Therefore we build a diagonal matrix Wx with weights decreasing

to zero as the observations are getting further and further from the center of the data cloud.

A robust version of the Mahalanobis distance, called a robust distance RDit, is computed

for every x̃it:

RDit =

√
(x̃it − µ̂)V̂ −1(x̃it − µ̂)′, (3.12)
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for t = 1, ..., T and i = 1, ..., N . In the above equation, µ̂ and V̂ are robust location

and covariance estimates of the centered explicative variables computed by applying the

S-multivariate location and scale estimator, respectively (see Rousseeuw and Leroy 1987,

pp. 263-264, Davies 1987). The S-estimator of multivariate location and scale has a high

efficiency and is fast to compute (see Ruppert 1992 for computational aspects). The diagonal

elements of the NT × NT weighing matrix Wx are then defined as

(Wx)it = min



1,

√
χ2

K,0.975

RDit



 , (3.13)

where χ2
K,0.975 is the upper 97.5% quantile of a chi-squared distribution with K degrees of

freedom.

At this point we are ready to perform a weighed least squares estimation in order to

obtain an estimate of β as

β̂WGM = (X̃ ′WxWrX̃)−1X̃ ′WxWrỸ (3.14)

Expression (3.14) is a version of the high breakdown point generalized M -estimator con-

structed by Hinloopen and Wagenvoort (1997) in the regression context. We will simply call

it the Within GM estimator. Matlab programs to compute β̂LTS and β̂WGM are available

from the authors. Note that the choices for the LTS as an initial estimator, the use of the

Tukey biweight function, and the use of leverage weights as in (3.13) are fairly standard in

the practice of robust statistics.

3.2 Within MS (WMS) estimator

This is basically a special case of the MS regression estimator proposed by Maronna and

Yohai (2000) for a robust regression with both continuous and categorical explanatory vari-

ables. In contrast to the Within GM estimator considered before, it is also affine and re-

gression equivariant. The idea underlying this procedure is to use alternately M-estimators

for the categorical variables and S-estimators of regression for the continuous ones. The
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M-estimator is very fast to compute, but is not robust with respect to leverage points. Since

categorical variables (and certainly dummy variables) do not contain major leverage points,

we can fast and safely compute M-estimators of regression on them. The M-estimator serves

to remove the effect of categorical variables from the continuous ones. The S-estimator of

regression is highly robust, also with respect to leverage points, and will then be applied to

the continuous variables.

Suppose for a moment that the fixed effects αi’s are known. Following the definition of

Rousseeuw and Yohai (1984), an S-estimate of regression is defined as the minimization of

an M-estimator of scale computed from the regression residuals rit(α, β) = yit − x′
itβ − αi.

An M-estimator of scale S is defined as the solution of the following equation in s:

1

NT

N∑

i=1

T∑

t=1

ρS(
rit(α, β)

s
) = b (3.15)

where ρS(·) is an even, symmetric and continuously differentiable loss function with ρS(0) =

0. The constant b is put equal to EΦ[ρS(ε)], for Φ the standard normal distribution, to get

consistent estimates of the regression scale parameter. The S-estimator of regression is then

defined as

β̂S(α) = arg min
β

S(r1(α, β), ..., rNT (α, β)). (3.16)

S-estimators of regression have a high breakdown point and are much more efficient than

the LTS estimator. As loss function we took the Tukey Biweight loss function, having a

derivative defined in (3.11), with the constant c (which represents a tuning constant to

achieve the desired value of the breakdown point, see Rousseeuw and Leroy, 1987) selected

to have an overall 25% breakdown point for the regression estimator. If the minimization

in (3.16) is over a low dimensional parameter β, then its computation is fast using for

example the algorithm of Ruppert (1992). This is the reason why we do not minimize

simultaneously over α and β. Indeed, α can easily contain hundreds of parameters, making

it computationally impossible to compute the S-estimator.

On the other hand, suppose that one knew β. Then α̂ = (α̂1, . . . , α̂N)′ is obtained as an
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M-estimator of regression:

α̂(β) = arg min
α

N∑

i=1

T∑

t=1

ρM(rit(α, β)), (3.17)

from which it follows directly that

α̂i(β) = arg min
αi

T∑

t=1

ρM(yit − x′
itβ − αi), for i = 1, ..., N. (3.18)

Since typically there are many fixed effects, it is important to have a fast way to estimate

them. Our proposal is to take ρM (·) = |·| the absolute value loss-function, yielding an explicit

formula for (3.18):

α̂i(β) = median
t

(yit − x′
itβ) i = 1, ..., N. (3.19)

The WMS estimator β̂WMS for a linear panel data model is then defined as

β̂WMS = arg min
β

S(r1(α̂(β), β), ..., rNT (α̂(β), β)), (3.20)

with

rit(α̂(β), β) = yit − x′
itβ − median

t
(yit − x′

itβ).

The MS estimator was proposed for regression with both continuous and categorical vari-

ables. As we saw, it can be applied elegantly to a panel data context. In contrast to β̂WGM ,

the estimator is also regression and affine equivariant. The reason for this maintenance of

equivariance properties is that the WMS estimator is defined by minimizing jointly over α

and β. In this sense, the WMS estimator is the robust counterpart of the Least Squares

Dummy variables representation of the Within Group estimator.

It is important to note that α̂(β) can be computed directly from (3.19), which will

simplify the algorithm as proposed by Maronna and Yohai (2000). This algorithm can then

be summarized as follows:

• Take a subsample I of size K of the set {(xit − mediant xit, yit − mediant yit)|1 ≤

i ≤ N, 1 ≤ t ≤ T}. Then there exists a β̂I fitting perfectly the observations of this
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subsample. The quality of the fit of β̂I to the whole data set is measured by

sI = S(r1(α̂(β̂I), β̂I), ..., rNT (α̂(β̂I), β̂I)).

We will generate randomly Nsamp = 500 subsamples I, and select the one having the

minimal value for sI . The number of generated subsamples Nsamp is set according

to a given probability that at least one of the subsamples is outlier-free. Given the

percentage of outliers ε in the data, as the number of observations increases the prob-

ability of having at least one ‘clean’ K-subsample among the Nsamp subsamples tends

to 1 − (1 − (1 − ε)K)Nsamp > 0.

Denote β̂0 the fit corresponding to this optimal value. It is believed to be already close

to the global solution β̂WMS.

• Given the initial estimate β̂0, an iterative algorithm is started to get closer to the

minimum of (3.20). At the (k + 1)th iteration step we set

β̂(k+1) = arg min
β

S(r1(α̂(β̂(k)), β), ..., rNT (α̂(β̂(k)), β)). (3.21)

The first order condition associated to (3.21) is

N∑

i=1

T∑

t=1

wit xit(yit − βxit − α̂i(β̂
(k))) = 0 (3.22)

where wit = W
(
rit(α(β̂(k)), β)

)
are weights, for the weighing function W (r) = ρ′

S(r)/r.

Since the β needed to compute the weights is unknown, we approximate wit by W (rit(α(β̂(k)), β̂(k)).

Then equation (3.22) is linear and can be solved directly yielding β̂(k+1). Afterwards

α̂(β̂(k+1)) is computed as in (3.19), the weights are updated, and a next step in the

iteration procedure can be taken. Maronna and Yohai (2000) suggest to iterate a fixed

number of times (M = 20) and to choose the β̂(k) which produces the minimum value

of the objective function in (3.20).

The above algorithm has been implemented and runs quite fast. It is available from the

authors.
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3.3 Breakdown point of WGM and WMS estimates

In this section we will derive the breakdown point of the robust estimators for the fixed

effects linear panel data model considered before. We will show that the cell breakdown

point of the WGM estimator is essentially determined by the breakdown point of the initial

Least Trimmed Squares regression estimator, while the cell breakdown point of the WMS

estimator depends on the S-estimator used. Recall that in both the WGM-estimator and in

the M-step of the WMS-estimator data are centered by the median. Besides computational

advantages, the median has also the property of having the highest possible value for the

breakdown point: at a univariate data set Z = {z1, . . . , zT} we have

ε∗T (median, Z) =
⌊(T + 1)/2⌋

T
≈ 0.5

where ⌊·⌋ stands for the integer part.

The worst case scenario is that for a number of time-series exactly ⌊(T+1)/2⌋ observations

are corrupted, implying that after centering by the median all observations belonging to

that block will be contaminated. In the proposition below the number k will stand for the

maximum number of time-series where exactly half of the observations are corrupted. (All

proofs can be found in the Appendix.)

Proposition 1 Let Z be a panel data set of N blocks over T time periods. If the breakdown

point of the auxiliary LTS or S estimator is given by m/(NT ), then

ε∗NT (β̂WMS, Z) = ε∗NT (β̂WGM , Z) =
k⌊(T + 1)/2⌋ + min(m − kT, ⌊(T + 1)/2⌋)

NT
(3.23)

with

k = ⌊
m

⌊T+1
2
⌋
⌋.

As an immediate corollary, if the breakdown point of the LTS or S-estimator tends to

α∗, then the cell breakdown point of the WGM or WMS estimator tends to α∗ [(T+1)/2]
T

for

N tending to infinity. In addition, if also T tends to infinity, then the cell breakdown point
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tends to α∗/2. Using a maximal breakdown point LTS or S-estimator, for which α∗ = 50%,

yields then a 25% cell breakdown point for the regression estimator of the panel data model

(for both N and T tending to infinity). Indeed, the Robust Within Groups estimators break

down when more than half of the transformed observations (i.e. in deviation of the medians)

are outliers. If half of the original observations in one time series are outliers, then the

median for that time series breaks down. Thus, one may corrupt N/2 medians with only

NT/4 observations. If N/2 medians are corrupted, then 50% of the transformed observations

are corrupted. Hence, the breakdown point of the Robust Within Groups estimator is 25%.

Note that in the above theorem the worst scenario does not correspond to a random

distribution of the outliers over the data set. If one requires random positioning of the

outliers, which we believe to be an unrealistic scenario, then the breakdown points would be

significantly higher.

Now, we move on to the block breakdown point computation for the estimators WGM

and WMS estimator of β. By definition of block breakdown point, we are going to look for

the minimal number of blocks a time series which, being contaminated, cause the breakdown

of the slope estimate β. We get:

Proposition 2 Let Z be a panel data set of N blocks over T time periods. If the breakdown

point of the auxiliary LTS or S-estimator is given by m/(NT ), then

εB
N(β̂WMS, Z) = εB

N(β̂WGM , Z) =
⌈m/T ⌉

N
, (3.24)

where ⌈·⌉ is the ceiling operator. As an immediate corollary we have that if m/NT tends to

α∗ (breakdown point of the LTS or S-estimator), then the breakdown point of the WGM or

WMS estimator will tend to α∗ as N goes to infinity. So the block breakdown point equals

the breakdown point of the auxiliary regression estimator.
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4 Simulation study

The asymptotic normality of the WMS estimator was discussed in Maronna and Yohai

(2000). Also for the WGM estimator we expect that the asypmptotic normality still holds,

following the lines of Wagenvoort and Waldmann (2002), tough we do not provide a for-

mal proof. The efficiency of both procedures will be compared by means of a simulation

experiment.

In order to study the performance of the methods previously described, we have run

a simulation study. The dependent variable is generated according to model (3.1), with

εit ∼ N(0, 1), αi ∼ U(0, 20), and the vector of the slope coefficients β set equal to a vector

of zeros. The explanatory variables are generated from a multivariate standard normal

distribution.

In the next step contamination is led on y’s only (vertical outliers) and afterwards on

both y and the explicative variables hereby introducing bad leverage points. Contamination

is generated in two different ways: (a) either completely randomly over all observations (ran-

dom contamination), hereby creating outlying cells (b) or concentrating the contamination

in a number of blocks such that half of the observations in affected time series are contam-

inated (concentrated contamination), hereby creating outlying blocks. Outliers generated

by random contamination are either vertical outliers or leverage points, whereas in the case

of concentrated contamination they are either block concentrated vertical outliers or block

concentrated leverage points. Vertical outliers are obtained by adding to the y’s originally

generated an additional term ∼ N(50, 1). Bad leverage points are obtained by replacing x-

values corresponding to the observations already contaminated in the y-direction, by points

coming from a K-variate normal distribution N(10 × 1, I), where 1 is a K × 1 vector of

ones. The percentages of contamination considered are 5% and 10%. We choose K = 1 and

N = 100, and two different values for T are taken to check the performance of the estimators

in the case of small time series dimension (T = 4), and in case of large panels (T = 20).

For each of the M = 1000 replications we estimate the coefficient β of the fixed effects
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model applying the classical within estimator β̂WG, the robust version β̂WGM using the high

breakdown-GM estimator, and β̂WMS. Then we compute the Mean Squared Error (MSE):

MSE =
1

M

M∑

j=1

||β̂(j) − β||2, (4.1)

where β̂(j) is the slope estimate in the j-th replication. Results are reported in Tables 1 and

2.

We observe that in the normal situation without errors the efficiency of the two robust

estimators is very close to that of the Within Group estimator. This classical estimator be-

comes very bad when there are vertical outliers and even worse in presence of bad leverage

points, as indicated by the huge MSE values. On the other hand, WGM and WMS esti-

mator yield good and stable results over all sampling schemes considered. Comparing the

performance of the robust estimators, we observe that WMS and WGM estimates yield sim-

ilar outcomes. In presence of bad leverage points, the WMS estimator gives slightly better

results, while the WGM can cope better with concentrated outliers. On the whole we cannot

clearly distinguish, on the basis of this simulation experiment, between the performance of

the WGM and the WMS estimator. It has become clear, however, that both methods yield

a large gain in MSE with respect to the classical procedure in presence of outliers, and also

only very small efficiency loss in absence of outliers.

5 Empirical Illustration

In this section we compare the Within Groups, Within GM and WMS fixed effects estimators

by means of a real macroeconomic application. The idea is to replicate, using a dataset from

the World Bank, the study led by Giavazzi, Jappelli and Pagano (2000) on the response of

the private sector to fiscal policy. The basic model they estimate is

Sit

Y ∗
it

= αi + β1
Sit−1

Y ∗
it−1

+ β2
Yit − Y ∗

it

Y ∗
it

+ β3DRit−1 + β4
Tit

Y ∗
it

+ β5
Git

Y ∗
it

+ εit (5.1)
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Table 1: MSE of the WG, WGM and WMS estimator under several sampling schemes for

N = 100, T = 4 and levels of contamination 5% and 10%.

WG WGM WMS WG WGM WMS

no outliers 0.004 0.003 0.004 0.004 0.003 0.004

Sampling Scheme 5% contamination 10% contamination

vertical outliers 0.395 0.004 0.004 0.936 0.004 0.004

leverage points 16.933 0.004 0.003 20.260 0.006 0.005

concentrated vertical outliers 0.273 0.004 0.010 0.640 0.004 0.009

concentrated leverage points 14.818 0.003 0.004 18.885 0.003 0.004

Table 2: MSE of the WG, WGM and WMS estimator under several sampling schemes for

N = 100, T = 20 and levels of contamination 5% and 10%.

WG WGM WMS WG WGM WMS

no outliers 0.0005 0.0005 0.0007 0.0005 0.0005 0.0007

Sampling Scheme 5% contamination 10% contamination

vertical outliers 0.0700 0.0004 0.0007 0.1094 0.0006 0.0008

leverage points 17.076 0.0007 0.0007 20.2340 0.0016 0.0009

concentrated vertical outliers 0.0366 0.0006 0.0011 0.0690 0.0005 0.0021

concentrated leverage points 13.175 0.0004 0.0008 17.6250 0.0005 0.0008
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with the national saving rate St as a fraction of potential output Y ∗
t as dependent variable

and the lagged national saving rate, the output gap (Yt−Y ∗
t )/Y ∗

t , the dependency ratio DRt

(proportion of the population less than 15 years old and older than 65), net taxes Tt and the

government consumption Gt (scaled on potential output) as regressors. Potential output is

computed by fitting on the log output a quadratic trend, as in GJP(2000).

The dataset they use is the World Saving Data Base which contains yearly national

income and fiscal variables for a group of 150 industrial and developing countries from 1960

to 1995. As GJP(2000) did, we dropped from the panel countries for which the most crucial

variables were missing (18 countries), but kept all other countries. Furthermore, OECD

countries are dropped, leaving us with 108 observations. Although this dataset is quite

accurate, the authors proceed to a preliminary cleaning of the data, selecting 101 developing

countries out of 108 and restricting the sample period considered to 1970-1994. As such, a

restricted dataset is obtained.

In our panel, we have some more countries with respect to the ones considered by GJP

(2000) (i.e. Angola, Burundi, Guinea-B, Sudan, Solomon Islands, Somalia and Sao Tome),

which we call the extended dataset in what follows. Moreover, for many countries we kept

the time range as large as possible, considering all the available data points1. This extended

dataset is not subject to preliminary, rather subjective data cleaning. Then we performed

the classical and the robust estimates which gave us the results reported in Table 3. Com-

putation of the associated standard errors is outlined in the Appendix and are reported as

well (between parenthesis) in the Table.

In the first column of Table 3 are given the results applying the classical fixed effects

estimator with the selection of countries as in GJP (2000). In the second column are given the

coefficient estimates obtained applying the classical within groups estimator to the extended

dataset. Then robust techniques are applied on the extended dataset: in column 3 are

1GJP (2000) selected shorter time intervals than those available for countries like United Arab Emirates,

Bahrain, Buhtan, Kuwait, Gambia, Lesotho, Mali, Mozambique, Uganda and Vanuatu.
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Table 3: Estimation results of model (5.1) using the classical WG and the robust estimators

WGM and WMS on the extended dataset, together with the classical estimator on the

restricted data set as reported by GJP(2000).

GJP(2000) WG WGM WMS

β1 0.459 −1.082 0.528 0.556

(0.019) (0.001) (0.000) (0.000)

β2 0.300 −1.932 0.140 0.139

(0.017) (0.002) (0.000) (0.000)

β3 −0.228 −2.850 −0.211 −0.355

(0.064) (1.690) (0.005) (0.008)

β4 0.257 0.062 0.153 0.1011

(0.029) (0.000) (0.000) (0.000)

β5 −0.493 17.907 −0.372 −0.419

(0.039) (0.101) (0.002) (0.005)
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given the WGM procedure estimates, while in the last column the WMS estimates are

given. Comparing the results, we observe that the classical estimates based on the extended

dataset take values which are clearly far from GJP (2000) evidence and from the economic

theory. Note that the huge differences between the estimates reported by GJP (2000) and

the classical, non robust, estimates of β1, β2 and β5. On the other hand, robust estimates

seem to confirm the results of the author, producing estimates very close to the ones obtained

using the “cleaned” dataset. Instead of a preliminary cleaning of the data, being subjective

and having the risk of not detecting all outliers, a robust analysis could thus be performed

directly on the complete data set.

As a byproduct of the robust analysis, it is instructive to look at the weights given by

the robust procedures to each cell (xit, yit). In Table 4 (Appendix) we report the average

weights over the time span 1970-1994 assigned to a country. A weight close to one means

that the data for that country follow the model closely over the time span and hence are not

downweighed. Smaller weights for a country imply that data for that country are believed

to be outlying, and hence being downweighed. For example Lesotho has been attributed a

low weight, both by WGM and WMS, while a country like India is almost not downweighed.

Many of the countries which were dropped by GJP (2000), like Angola, Somalia and Solomon

Islands, received a low weight by the robust estimators, as it is the case for many countries,

like Bhutan, United Arab Emirates, Gambia and Kuwait, for which the available time span

was not fully used by GJP (2000). A few countries, like Guyana and Nicaragua, are in the

restricted data set, but still get rather low weight.

Note that an initial data cleaning corresponds to give weights one or zero to a country,

where a zero weight means that the country is dropped from the study. A robust approach

allows for a more careful, data-driven weighing of the observations.
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6 Conclusions

In this paper we have studied the problem of outliers in panel data, focusing on fixed effects

models with the basic assumptions of homoscedasticity and no autocorrelation of the errors.

Similar to Wagenvoort and Waldmann (2002) we developed a Within GM estimator. Then,

we applied the MS estimator of Maronna and Yohai (2000) to the panel data context.

Simulations show the high robustness of both procedures. Breakdown point considerations

have also been made. An example of the potentialities of robust regression procedures in

panels is given in the empirical application. There we observed that robust techniques do not

require a preliminary subjective cleaning of the data and still produce reasonable parameter

estimates even when rough errors occur in the data.

We feel that it is important that applied econometricians are aware of the risk of outlying

observations and the usefulness of robust methods, since classical inference based on a data

set containing outliers can yield completely erroneous results. In this paper two robust

estimators are studied in more detail. The robustness of both procedures is similar, as

indicated by their equal breakdown point and the results of the simulation study. The

MS approach is computationally slightly more demanding, but offers the advantage of being

regression and scale equivariant. The WGM is not regression equivariant, but it can be useful

as an initial estimator for WMS, instead of using time-consuming subsampling algorithms.
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7 Appendix

Proof of Proposition 1. In the computation of the cell breakdown point of the slope coef-

ficient, we need to consider 2 possible reasons why data points are contaminated. They can

be outlying either because of the centering (median breaks down) or because the observation

is outlying itself before centering. The first case occurs when half of the observations in the

block is outlying which implies that after centering all the data belonging to that block are

corrupted. Of course we want that the sum of the outliers determined by both situations

does not exceed m, the maximal number of outliers that the auxiliary regression estimator

can withstand. Let k = ⌊ m
⌊T+1

2
⌋
⌋, where ⌊·⌋ stands for integer part. We need to corrupt at

least k blocks in a concentrated way, by which we mean contaminating ⌊(T + 1)/2⌋ of its

points. Then we still need to have at least l = m − kT extra outliers in the panel. But

if l > ⌊(T + 1)/2⌋, then we contaminate only ⌊(T + 1)/2⌋ outliers within the same block,

yielding T extra outliers after centering, causing breakdown of the regression estimator.

Therefore we may conclude that (3.23) holds. �

Proof of Proposition 2. By definition of block breakdown point, we are going to look

for the smallest number of blocks which, being contaminated, cause the breakdown of the

slope estimates. Thus, if k blocks are contaminated, this yields in the worst case kT outliers.

Then, to cause the break of the β estimates we require that

kT ≥ m

that is

k ≥
m

T
.

So it suffices to take k = ⌈m/T ⌉ which implies that the block breakdown point is given by

(3.24). �
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Computation of the standard errors of the robust estimators

For the computation of the (asymptotic) standard errors we use the formula:

ˆCov(β̂) = σ̂2(x′D1x)−1(x′D2x)(x′D1x)−1. (7.1)

For the MS approach Maronna and Yohai (2002) showed that the estimator is asymptotically

normal. The first order condition (3.22) for the slope estimator β̂WMS is the same as for an

M-estimator. Hence, the formulas for asymptotic variance of M-estimators can be used (cfr.

Huber 1981): D1 is a NT × NT diagonal matrix with diagonal elements defined as

(D1)it = W (
rit

σ̂
) + W ′(

rit

σ̂
)(

rit

σ̂
) = ρ′′

S(
rit

σ̂
) i = 1, ..., N t = 1, . . . , T

with the ρS function defined in (3.10) and the weighing function W (u) = ρ′
S(u)/u. The

NT × NT diagonal matrix D2 has elements

(D2)it = W 2(
rit

σ̂
)(

rit

σ̂
)2 i = 1, ..., N t = 1, . . . , T.

Here σ̂ is the S-scale estimate computed from the residuals rit = yit − β̂ ′
WMSxit − α̂i(β̂WMS).

In the WGM approach formula (7.1) still applies, with diagonal matrix D1 defined as

(D1)it = (Wx)it ρ′′(
ri

σ̂
) i = 1, ..., N t = 1, . . . , T

while D2 has elements

(D2)it = (Wx)it W 2(
rit

σ̂
)(

rit

σ̂
)2 i = 1, ..., N t = 1, . . . , T.

As in section 3.1, the ρ function is defined by (3.10), W (u) = ρ′(u)/u, Wx is the diagonal

weighing matrix defined in (3.13), and σ̂ = σ̂LTS. These standard errors are robust with re-

spect to heteroscedastic error terms, and correspond to White standard errors in the classical

case.
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Table 4: Weights (averaged over the time span) assigned to countries by the WGM and

WMS procedures.

Country WGM WMS

Angola 0.73 0.63

UArbEmir 0.66 0.56

Argentina 0.83 0.72

Antigua 0.98 0.96

Burundi 0.95 0.87

Benin 0.89 0.79

Burkina 0.93 0.84

Bangladesh 0.95 0.87

Bahrain 0.84 0.66

Bahamas 0.95 0.89

Belize 0.85 0.67

Bolivia 0.66 0.60

Brazil 0.75 0.61

Barbados 0.96 0.91

Bhutan 0.56 0.46

Botswana 0.76 0.60

CAfricRp 0.92 0.80

Chile 0.76 0.62

China 0.99 0.96

C d’Ivoire 0.93 0.85

Cameroon 0.95 0.88

Congo 0.80 0.65

Colombia 0.98 0.95

Comoros 0.92 0.81

Costa Rica 0.97 0.94

Country WGM WMS

Cyprus 0.98 0.95

Dominica 0.97 0.95

DominicR 0.93 0.81

Ecuador 0.97 0.90

Egypt, A 0.92 0.81

Ethiopia 0.97 0.93

Fiji 0.95 0.88

Gabon 0.68 0.56

Ghana 0.98 0.94

Guinea 0.99 0.97

Gambia 0.58 0.43

Guinea-B 0.81 0.60

Grenada 1.00 0.99

Guatemala 0.98 0.96

Guyana 0.50 0.35

Hong Kong 0.97 0.93

Honduras 0.96 0.88

Haiti 0.97 0.92

Indonesia 0.95 0.89

India 0.99 0.98

Iran, Is 0.90 0.82

Israel 0.70 0.65

Jamaica 0.90 0.78

Jordan 0.94 0.85

Kenya 0.96 0.90

Country WGM WMS

Kiribati 0.76 0.77

Korea 0.97 0.94

Kuwait 0.65 0.52

Liberia 0.92 0.83

Sri Lanka 0.98 0.95

Lesotho 0.54 0.36

Morocco 0.98 0.94

Madagascar 0.97 0.93

Mexico 0.92 0.80

Mali 0.93 0.83

Malta 0.95 0.89

Mozambique 0.80 0.66

Mauritan 0.83 0.65

Mauritius 0.95 0.91

Malawi 0.94 0.87

Malaysia 0.95 0.88

Namibia 0.86 0.75

Niger 0.88 0.73

Nigeria 0.91 0.78

Nicaragua 0.18 0.53

Nepal 0.99 0.97

Oman 0.75 0.51

Pakistan 0.95 0.90

Panama 0.83 0.69

Peru 0.76 0.67
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Country WGM WMS

Philippines 0.97 0.90

PapuaNGu 0.91 0.77

Paraguay 0.95 0.87

Rwanda 0.92 0.83

Sudan 0.94 0.85

Senegal 0.96 0.90

Singapore 0.96 0.92

Solomon 0.65 0.58

Sierra Leone 0.96 0.90

El Salvador 0.95 0.89

Somalia 0.63 0.62

Sao Tome 0.76 0.70

Suriname 0.72 0.56

Swazilan 0.87 0.71

Seychelles 0.72 0.57

Syria 0.87 0.72

Chad 0.63 0.47

Country WGM WMS

Togo 0.87 0.77

Thailand 0.98 0.96

Tonga 0.88 0.71

Trinidad 0.87 0.76

Tunisia 0.97 0.92

Turkey 0.98 0.95

Taiwan 0.99 0.98

Tanzania 0.90 0.80

Uganda 0.88 0.81

Uruguay 0.89 0.85

Venezuela 0.85 0.71

Vanuatu 0.76 0.56

S Africa 0.97 0.94

Zaire 0.97 0.91

Zambia 0.71 0.58

Zimbabwe 0.93 0.84
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