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1 Introduction

By Gauss-type quadrature formulas we mean the set of Gaussian, Gauss-
Radau and Gauss-Lobatto rules and their generalizations. The classical n-
point Gauss quadrature formulas are of interpolatory type, which means that
they are obtained by integrating an interpolating polynomial of degree n.
An interpolatory quadrature formula will obviously have degree of accuracy
at least equal to n, i.e., they integrate exactly any polynomial of degree n
or lower. By an appropriate choice of nodes of interpolation (which are also
the nodes of the quadrature formula), it is possible to increase the degree of
accuracy. For an n-point formula, the maximal possible degree of accuracy
is 2n − 1 which is obtained by the Gauss quadrature formulas whose nodes
are the zeros of the orthogonal polynomial of degree n. They are particularly
interesting because it is guaranteed that all these nodes are in the support of
the measure (we suppose here that this is a finite or infinite interval of the real
line) and also that the weights of the quadrature formula are positive. These
properties are important for practical, numerical and theoretical reasons.

For some applications though, it may be interesting to fix some of the nodes in
advance. For example because these points correspond to points where some
particular property should hold, or because we know some special values of the
integrand in those nodes. Most often these are one or both of the endpoints if
the integral is over a finite interval. For each node that is fixed in advance, the
maximal degree of accuracy will decrease by one. For example, fixing one or
two endpoints corresponds to the classical Gauss-Radau and Gauss-Lobatto
formulas having a maximal degree of accuracy equal to 2n − 2 and 2n − 3
respectively. These Gauss-type formulas have been discussed over and over in
the literature and can be found in almost any textbook dealing with numerical
quadrature. See for example [10] to mention a recent one.

The situation where one or two prefixed nodes are endpoints is rather sim-
ple because the remaining nodes can be obtained by constructing a classical
Gauss-type formula with fewer points for a modified measure. If µ is the origi-
nal measure on the interval [a, b] and for example a is a (finite) prefixed node,
then the remaining n − 1 nodes are the zeros of the (n − 1)th orthogonal
polynomial for the measure µ̃(x) = (x − a)µ(x). This measure is positive.
Any other prefixed node less than a would also give a positive measure, but
will obviously be outside the interval. Similarly if both (finite) endpoints are
prefixed, then the remaining n−2 nodes are the zeros of the (n−2)th orthog-
onal polynomial for the measure µ̃(x) = (x− a)(b− x)µ(x). However, when a
prefixed node is inside the interval, things are not so simple. The quadrature
formula may not exist or may have non-positive weights or nodes may drift
outside the interval. The subject of this paper is precisely to discuss for which
choices of the prefixed nodes we shall have “good” quadrature formulas with
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positive weights, nodes inside the interval and maximal degree of accuracy.
This will be analysed in detail for one or two points. For more points, the
analysis becomes intractable, unless in some special cases. The computation
can always be done, and we shall also discuss this aspect, and show with sev-
eral numerical experiments with the classical orthogonal polynomials where
the “good” formulas can be found.

Fixing more than two nodes, and/or fixing nodes inside the interval can also
have applications. For example in [18], a quadrature formula is discussed for
the Lebesgue measure on the interval [0, 1], with positive weights, maximal
degree of accuracy, and with three fixed nodes, two of them being the endpoints
of the interval and the third one in (0, 1). This is used in the context of
constructing implicit Runge-Kutta methods for the numerical solution of stiff
problems and algebraic differential equations.

Note that the quadrature formulas discussed here are quite different from
Gauss-Kronrod formulas where several nodes are added to the classical Gauss
nodes. Also the situation is much more complicated than the corresponding
Szegő-type formulas for integration over the unit circle of the complex plane
T := {z ∈ C : |z| = 1}. Recall that Szegő quadrature formulas on the unit cir-
cle were introduced and characterized in [16], and they represent the analogue
on the unit circle of the Gaussian rules for intervals of the real axis. However,
two big differences must be remarked: the nodes are not the zeros of the nth
orthogonal polynomial with respect to the considered measure on T and an
n-point Szegö quadrature formula has maximal domain of accuracy in a sub-
space of Laurent polynomials whose dimension is 2n−1 instead of 2n; see also
[2], [5], [4], [12], [14] and references therein. The counterpart of the deficiency
in the dimension of the maximal domain of exactness is that the nodes of such
formulas are the zeros of a nth para-orthogonal polynomial with respect to the
measure on T, also introduced and characterized in [16]. Such para-orthogonal
polynomials are shown to depend on one parameter of unit magnitude, and
thus a one-parameter family of Szegő quadrature formulas arises. It is trivial
to choose this free parameter in an appropriate way in order to fix one node
in the rule and so, Szegő-Radau quadrature formulas arises trivially. Recently,
in [15] Szegő-Lobatto quadrature formulas have been deduced, proving their
existence without restrictions on the two distinct nodes on the unit circle to
be prescribed; for an alternative approach, see [3]. In the results presented in
this paper we will prove that Gauss-type quadrature formulas with prescribed
nodes anywhere on the real line exists only under certain conditions on the
nodes to be fixed.

In Section 2 we shall first recall some general background and known results
about Gauss-type quadrature formulas. Then we give a detailed analysis of
the Radau and of the Logatto case and give some remarks about special cases
and some generalizations. For example the quadrature formula of [18] will be
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derived. In Section 3, we discuss some computational aspects, generalizing
the classical approach for Radau and Lobatto formulas, but we also give an
alternative giving a simpler algorithmic linear algebra approach. Finally, in
Section 4 several numerical examples are presented.

2 Gauss-type quadrature formulas

We start this section by recalling briefly some well known results on orthogonal
polynomials and Gauss-type quadrature formulas on intervals of the real line
that will be necessary in the rest of the paper. We shall first recall some general
results in section 2.1 and consider in section 2.2 the Radau and 2.3 the Lobatto
cases where one or two nodes are prefixed. In section 2.4 we briefly note some
simple generalisations when besides the internal prefixed nodes also one or
two nodes are prefixed at the endpoints of the interval.

2.1 General considerations

Let µ be a positive Borel measure on a finite or infinite interval [a, b] of the
real line and such that all the moments

mn =
∫ b

a
xndµ(x) n = 1, 2, . . .

are finite and that the support of µ

supp(µ) = {x ∈ [a, b] : µ(x− ǫ, x + ǫ) > 0 for every ǫ > 0}

contains infinitely many points. Orthogonalizing the linear space of polyno-
mials, we obtain a system of orthonormal polynomials on [a, b] which will be
denoted for all n ≥ 0 by pn(x), and so

〈pn(x), pm(x)〉 =
∫ b

a
pn(x)pm(x)dµ(x) = δn,m, ; m,n ≥ 0,

with δn,m the Kronecker delta symbol. This system is unique if we impose the
leading coefficients to be positive:

pn(x) = γnx
n + δnxn−1 + · · · , γn > 0.

As usual, for f ∈ Lµ
2([a, b]), we define the norm ‖f(x)‖ =

√
〈f(x), f(x)〉.

It is very well known that the family {pn(x)}∞n=0 satisfies for all n ≥ 0 the
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three-term recurrence relation

xpn(x) = un+1pn+1(x) + vnpn(x) + unpn−1(x), (1)

with initial conditions p−1(x) ≡ 0, p0(x) ≡ 1/
√

m0 and

un =
∫ b

a
xpn−1(x)pn(x)dµ(x) =

γn−1

γn

> 0 , vn =
∫ b

a
xp2

n(x)dµ(x) =
δn

γn

− δn+1

γn+1

.

From this recurrence relation it is easy to deduce that

n−1∑
k=0

pk(x)pk(y) = un
pn(x)pn−1(y)− pn−1(x)pn(y)

x− y
.

This formula is known as the Christoffel-Darboux identity and when y tends
to x we obtain its confluent form

n−1∑
k=0

p2
k(x) = un

[
p
′
n(x)pn−1(x)− p

′
n−1(x)pn(x)

]
. (2)

The recurrence (1) can be alternatively written in a matrix form as

JnPn(x) = xPn(x)− unpn(x)en, (3)

with

Jn =



v0 u1 0 0 · · · 0

u1 v1 u2 0 · · · 0

0 u2 v2 u3 0
...

. . . . . . . . .
...

0 0 un−2 vn−2 un−1

0 0 · · · 0 un−1 vn−1


, Pn(x) =



p0(x)

p1(x)

p2(x)
...

pn−2(x)

pn−1(x)


, en =



0

0

0
...

0

1


. (4)

The matrix Jn is tridiagonal and symmetric and it is known as the (finite)
Jacobi matrix. From (3)-(4) it is observed that if we take xj,n so that pn(xj,n) =
0 for all j = 1, . . . , n then xj,n turns out to be an eigenvalue of Jn with
eigenvector

[p0(xj,n), p1(xj,n), · · · , pn−2(xj,n), pn−1(xj,n)]T . (5)

The zeros of orthogonal polynomials on the real line have the following crucial
property
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Theorem 2.1 (1) The zeros of pn(x) are all simple and located in (a, b).
(2) Suppose x1,n < x2,n < · · · < xn,n are the zeros of pn(x), then they interlace

with those of pn−1(x), that is xj,n < xj,n−1 < xj+1,n.

Example 2.2 Set [a, b] = [−1, 1] and consider for l ∈ {1, 2} the absolutely
continuous measures given by dµl(x) = ωl(x)dx, with weight functions ω1(x) =

1√
1−x2 and ω2(x) =

√
1− x2. The corresponding orthogonal polynomials are

the well known Chebyshev polynomials of first and second kind, defined by
Tn(cos θ) = cos(nθ) and Un(cos θ) = sin((n+1)θ)

sin θ
respectively, where x = cos θ

for θ ∈ [0, π]. They satisfy the same three term recurrence relation Tn+1(x) =
2xTn(x)−Tn−1(x) and Un+1(x) = 2xUn(x)−Un−1(x), but with different initial
values: T0(x) = U0(x) ≡ 1 and T1(x) = x, U1(x) = 2x. Thus, the entries of the
associated Jacobi matrices are given by vn = 0 for all n ≥ 0 (observe that both
measures are symmetric on [−1, 1]), um = 1/2 for all m ≥ 2 and u1 =

√
2/2

and u1 = 1/2 for the polynomials of the first and second kind respectively.
The definition given for such polynomials give rise to an explicit expression
for their zeros:

x
(1)
j,n = cos

(
π

2

2j − 1

n

)
, x

(2)
j,n = cos

(
j

n + 1
π
)

; j = 1, . . . , n.

3

Numerical quadrature consists of approximating the integral of a function f

Iµ(f) =
∫ b

a
f(x)dµ(x) (6)

by a finite sum which uses only n function evaluations

In(f) =
n∑

k=1

Ak,nf(xk,n). (7)

Here f belongs to a class of functions for which Iµ(f) and In(f) exist. The
n nodes xk,n and the n weights (quadrature coefficients) Ak,n for 1 ≤ k ≤ n
have to be chosen properly so that the quadrature formula is correct for as
many functions f as possible. Since the Weierstrass approximation theorem
states that any continuous function on a closed and bounded interval can
be uniformly approximated on that interval by polynomials to any degree of
accuracy, it is usual to determine the nodes and the weights in the quadrature
rule imposing it to be exact in the space of polynomials of degree as high as
possible. We say that the degree of accuracy of the quadrature rule is s when
all polynomials of degree s are integrated correctly but there is a polynomial
of degree s + 1 which is not integrated correctly.

It is very well known that if we fix n distinct points in [a, b], then n weights
can be determined so that the corresponding quadrature rule has degree of
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accuracy at least n − 1. Such quadrature formulas are called of interpolatory
type and the weights are explicitly given by

Ak,n =
∫ b

a
lk,n(x)dµ(x),

where the fundamental polynomials of Lagrange interpolation are given by

lk,n(x) =
πn(x)

π′
n(xk,n)(x− xk,n)

, πn(x) =
n∏

j=1

(x− xj,n).

The following triviality shows that the degree of accuracy of an n-point quadra-
ture formula is strictly less than 2n:

In(π2
n(x)) =

n∑
k=1

Ak,nπ
2
n(xk,n) = 0 and Iµ(π2

n(x)) > 0.

The next result proves that the nodes of the quadrature formula can be ap-
propriately chosen to get the highest degree of accuracy, that is 2n−1, leading
to the well known Gaussian quadrature formulas.

Theorem 2.3 (Gauss) The quadrature formula In(f) given by (7) for Iµ(f)
given by (6) has degree of accuracy 2n− 1, if and only if, it is of interpolatory
type and the nodes are the zeros of the nth orthogonal polynomial pn(x) with
respect to µ. Moreover, the weights are positive and are given by

Ak,n =
1

unpn−1(xk,n)p′n(xk,n)
=

−1

un+1pn+1(xk,n)p′n(xk,n)

or equivalently by

Ak,n =

n−1∑
j=0

p2
j(xk,n)

−1

=

 n∑
j=0

p2
j(xk,n)

−1

. (8)

Thus, from Theorem 2.3 and (5) it is deduced that the nodes and weights of
the quadrature formula In(f) for Iµ(f) can be computed as the eigenvalues
and the first component of the normalized eigenvectors of Jn given by (4),
respectively. Moreover, it is also a well known fact (see e.g. [17, pp. 264-265])
that the positive character of the weights in an interpolatory type quadrature
formula guarantees its convergence.

Quadrature formulas with a or/and b being one or two prescribed nodes and
maximal domain of validity have also been considered in the literature. In this
respect, we recall that a polynomial Rn of exact degree n ≥ r is called quasi-
orthogonal of order r on [a, b] with respect to µ if it satisfies the orthogonality
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conditions

∫ b

a
xkRn(x)dµ(x)

= 0 for k = 0, . . . , n− 1− r,

6= 0 for k = n− r.

It is not difficult to prove (see e.g. [1, Theorem 1]) that if Rn(x) is a polynomial
of degree n, then it is quasi-orthogonal of order r on [a, b] with respect to µ,
if and only if,

Rn(x) = c0pn(x) + c1pn−1(x) + · · ·+ crpn−r(x), (9)

where {pn(x)}∞n=0 is a sequence of orthogonal polynomials on [a, b] with respect
to µ and ci = ci(n) are numbers for all i = 0, . . . , r such that c0cr 6= 0. The
following result states the role played by quasi-orthogonality in the construc-
tion of quadrature rules with degree of accuracy n + k, with 0 ≤ k ≤ n − 1.
Thus, by taking k = 0 and k = n − 1 we recover the interpolatory type and
Gaussian formulas respectively (see e.g. [17, pp. 101-102], [6, pp. 109-112] and
[19]).

Theorem 2.4 The quadrature formula In(f) =
∑n

j=1 Aj,nf(xj,n) for Iµ(f) =∫ b
a f(x)dµ(x) has degree of accuracy n + k, if and only if, it is of interpolatory

type and the nodal polynomial πn(x) =
∏n

j=1(x − xj,n) is quasi-orthogonal of
order n− k − 1 in [a, b] with respect to dµ.

When one endpoint is assumed to be fixed, the corresponding rule is called
Gauss-Radau quadrature formula. When both endpoints are fixed, then the
corresponding rule is called a Gauss-Lobatto quadrature formula. Two direct
consequences of Theorem 2.4 are the following charaterization results (see e.g.
[6, pp. 102-105]).

Theorem 2.5 (Gauss-Radau) Let [a, b] be a finite interval on the real line.
The quadrature formula In(f) = Aαf(α) +

∑n−1
k=1 Ak,nf(xk,n) with α ∈ {a, b},

approximating the integral Iµ(f) given by (6), has the highest degree of accu-
racy, that is 2n − 2, if and only if, it is of interpolatory type and the nodes
{xk,n}n−1

k=1 are the zeros of the (n− 1)th orthogonal polynomial with respect to
µ̃(x) = (x − a)µ(x) if α = a or with respect to µ̃(x) = (b − x)µ(x) if α = b.
Moreover, the weights are positive.

Theorem 2.6 (Gauss-Lobatto) Let [a, b] be a finite interval on the real
line. The quadrature formula In(f) = Aaf(a) + Abf(b) +

∑n−2
k=1 Ak,nf(xk,a),

approximating the integral Iµ(f) given by (6), has the highest degree of ac-
curacy, that is 2n − 3, if and only if, it is of interpolatory type and the
nodes are the zeros of the (n − 2)th orthogonal polynomial with respect to
µ̃(x) = (x− a)(b− x)µ(x). Moreover, the weights are positive.

Example 2.7 From Example 2.2 and Theorem 2.6 it follows that the (n+2)-
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point Gauss-Lobatto quadrature formula for the Chebyshev weight function
of the first kind dµ1(x) has as fixed nodes {±1} and the remainder nodes
in (−1, 1) are the nodes of the n-point Gauss quadrature formula for the
Chebyshev weight funcion of the second kind dµ2(x). 3

The set of Gauss, Gauss-Radau and Gauss-Lobatto rules are known in the
literature as Gauss-type quadrature formulas (see e.g. [7]).

In this paper we shall be concerned in the characterization and the effective
computation of quadrature formulas with positive weights and with one or
two fixed nodes but not necessarily being the endpoints of the interval of
integration. For this purpose and from Theorem 2.4 we also need the following
crucial result proved in [19].

Theorem 2.8 If Rn(x) is quasi-orthogonal of order r on [a, b] with respect to
µ, then at least (n− r) distinct zeros of Rn(x) lie in the interval (a, b).

2.2 Gauss-Radau with an arbitrary prefixed node

We start by considering an n-point quadrature formula for Iµ(f) given by (6)
with one fixed point α ∈ [a, b], positive weights, and with the highest degree
of accuracy, that is 2n− 2, namely

In(f) = Aαf(α) +
n−1∑
k=1

Ak,nf(xk,n). (10)

It is an evidence that if pn(α) = 0, then the Gauss-Radau rule is actually a
Gaussian quadrature formula, characterized in Theorem 2.3. We will suppose
from now on that pn(α) 6= 0. If α ∈ {a, b}, then the Gauss-Radau rule has
been already characterized by Theorem 2.5. Suppose first that pn−1(α) 6= 0.
From Theorem 2.4, the nodes of such rule will be the zeros of

Rn(x) = pn(x) + anpn−1(x), (11)

where an is an appropriate nonzero constant to ensure that Rn(α) = 0, that
is

an = − pn(α)

pn−1(α)
. (12)

The positive character of the weights is assured in this case since, setting
α = xn,n and Aα = An,n, then

0 <
∫ b

a
l2k,n(x)dµ(x) =

n∑
j=1

Aj,nl
2
k,n(xj,n) = Ak,n, k = 1, . . . , n.

9



So, we distinguish two situations. If pn−1(α) = 0 it follows from Theorem 2.1
that Rn(α) 6= 0 and hence there does not exist a Gauss-Radau quadrature
formula with the highest degree of accuracy and with α as the prescribed
node; see further. If pn−1(α) 6= 0 then by taking an as given by (12) it follows
in this case that there exists a Gauss-Radau quadrature formula with degree
of accuracy equal to 2n− 2, with positive weights and with α as a fixed node.
However, from Theorem 2.8 it follows that at least (n − 1) distinct zeros of
Rn(x) given by (11) lie in the interval (a, b). Our interest now will be to analyze
which choices of the parameter α assure us to have the n nodes of the desired
rule distinct and on [a, b].

Thus, for n > 0 consider the function fn(x) = pn(x)/pn−1(x). The following
sharper result on the localization of the zeros of Rn(x) given by (11) is stated
in [1, Theorem 3].

Theorem 2.9 (1) The zeros y1 < · · · < yn of Rn(x) are real and distinct
and at most one of them lies outside (a, b).

(2) (a) If an < 0, then xi,n < yi < xi,n−1 for i = 1, . . . , n− 1 and xn,n < yn.
(b) If an > 0, then y1 < x1,n and xi−1,n−1 < yi < xi,n for i = 2, . . . , n.

(3) If −an < fn(a) < 0, then y1 < a.
(4) If −an > fn(b) > 0, then b < yn.
(5) If fn(a) < −an < fn(b), then Rn(x) has all its zeros in (a, b).

Now, we notice some elementary properties of the function fn(x). From Theo-
rem 2.1 we have that fn(x) has n zeros at {xj,n}n

j=1 and (n−1) interlaced poles

in between these zeros at {xj,n−1}n−1
j=1 . Since we are assuming that the leading

coefficients of the family of orthogonal polynomials are all positive, fn(x) < 0
for x < x1,n and fn(x) > 0 for x > xn,n. Moreover, from (2) it is clear that
f

′
n (x) > 0, so it increases from −∞ to ∞ in the intervals xν,n−1 < x < xν+1,n−1

for ν = 0, 1, . . . , n−1, where x0,n−1 = −∞ and xn,n−1 = +∞. In our situation,
we have from (12) that an = −fn(α).

Consider α ∈ (a, x1,n). Then, fn(α) < 0, implying an > 0 and from Theorem
2.9-(2b) it can occur that α = y1 < x1,n. But fn(x) increases in (−∞, x1,n), so
we have that −an = fn(α) > fn(a) and from Theorem 2.9-(3) it follows that
y1 > a. Thus, the n zeros of Rn(x) are distinct and located in (a, b). A similar
argument yields the same result when α ∈ (xn,n, b).

Consider now simultaneously the cases α ∈ Ii := (xi,n, xi,n−1) and α ∈ Ji :=
(xi,n−1, xi+1,n) for a fixed i ∈ {1, . . . , n − 1}. Here, fn(x) > 0 for x ∈ Ii,
fn(x) < 0 for x ∈ Ji and fn(x) increases in Ii ∪ Ji. Moreover, we know that
fn(a) < 0 and fn(b) > 0, so there exist a unique ζi ∈ Ii and a unique ξi ∈ Ji

such that fn(ζi) = fn(b) and fn(ξi) = fn(a). Thus, denoting by {yj}n
j=1 the

zeros of Rn(x), we can conclude from Theorem 2.9 that the following situations
are possible:
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(1) If α ∈ (xi,n, ζi) ⊂ Ii, then Rn(x) has all its distinct zeros on (a, b) and
xn,n < yn.

(2) If α = ζi ∈ Ii, then the (n− 1) first distinct zeros of Rn(x) are located in
(a, b) and yn = b.

(3) If α ∈ (ζi, xi,n−1) ⊂ Ii, then Rn(x) has exactly n − 1 distinct zeros in
(a, b) and yn > b.

(4) If α ∈ (xi,n−1, ξi) ⊂ Ji, then Rn(x) has exactly n − 1 distinct zeros in
(a, b) and y1 < a.

(5) If α = ξi ∈ Ji, then y1 = a and the remaining n − 1 distinct zeros of
Rn(x) are in (a, b).

(6) If α ∈ (ξi, xi+1,n) ⊂ Ji, then Rn(x) has all its distinct zeros on (a, b) and
y1 < x1,n.

Note that with only slight modifications, the previous discussion also holds
for a = −∞ and/or b = +∞ if we set fn(−∞) = −∞ and fn(+∞) = +∞. A
consequence is that ζi will coincide with xi,n−1 if b = +∞, i.e., fn(b) = +∞,
and ξi = xi,n−1 if a = −∞, i.e., fn(a) = −∞.

With these considerations, we have proved the following (see Figure 1)

Theorem 2.10 (Gauss-Radau) Let µ be a positive Borel measure on a fi-
nite or infinite interval [a, b] of the real line and let {pn(x)}∞n=0 be the sequence
of orthonormal polynomials with respect to µ in [a, b] normalized to have pos-

itive leading coefficients. Set fn(x) = pn(x)
pn−1(x)

for all n ≥ 1 and α ∈ [a, b] a

fixed point such that pn−1(α) 6= 0. Let In(f) be a n-point quadrature formula
for Iµ(f) given by (6) of the form (10) with fixed node α. Then, In(f) has the
highest degree of accuracy, that is 2n− 2, if and only if, it is of interpolatory
type and the nodes are the zeros of Rn(x) = pn(x)−fn(α)pn−1(x). The weights
of the quadrature are positive. Moreover, all the nodes of the quadrature lie in
(a, b), if and only if,

α ∈ (a, b) \
n−1⋃
i=1

[ζi, ξi], (13)

where for all i = 1, . . . , n − 1, ζi ∈ (xi,n, xi,n−1) and ξi ∈ (xi,n−1, xi+1,n). If b
is finite, then ζi is the unique solution of fn(ζi) = fn(b), while ζi = xi,n−1 if
b = ∞. If a is finite, then ξi is the unique solution of fn(ξi) = fn(a), while
ξi = xi,n−1 if a = −∞. The endpoint a is one of the nodes of In(f), if and
only if, α ∈ {a, ξ1, . . . , ξn−1} while the endpoint b is one of the nodes of In(f)
if and only if α ∈ {ζ1, . . . , ζn−1, b}.

Remark 2.11 From Theorem 2.10 it follows that if pn−1(α) = 0, then there
does not exist a Gauss-Radau quadrature formula for Iµ(f) with α as the
prescribed node and with the highest degree of accuracy, that is 2n − 2. In
what follows we will prove that even a Gauss-Lobatto quadrature rule with
degree of accuracy equal to 2n − 3 and a zero of pn−1(x) as one prescribed
node can not be constructed in general.
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Fig. 1. The plot shows the function y = fn(x) in [a, b]. The set of points {ζi}n−1
i=1

and {ξi}n−1
i=1 are the abcissas of the intersection of this function with y = fn(b) and

y = fn(a), respectively. Thus, for all i = 1, . . . , n − 1, if α = ζi, then b is a node
of the rule and if α moves from ζi to → x−i,n−1, then this node moves from b to ∞;
if α = ξi, then a is a node of the rule and if α moves from ξi to → x+

i,n−1, then
this node moves from a to −∞. When α satisfies (13), then all the nodes of the
Gauss-Radau quadrature formula are in (a, b).

Remark 2.12 If {pn(x)}∞n=0 is a sequence of orthogonal polynomials with
respect to µ on a finite interval [a, b], then it is clear that Qn−1(x, a) :=

1
x−a

[pn(x)− fn(a)pn−1(x)] and Qn−1(x, b) := 1
b−x

[pn(x)− fn(b)pn−1(x)] are
(n − 1)th orthogonal polynomials with respect to µ̃(x) = (x − a)µ(x) and
µ̃(x) = (b− x)µ(x), respectively. Thus, by taking α ∈ {a, b} in Theorem 2.10,
then Theorem 2.5 is recovered.

Example 2.13 Consider the weight functions ωl(x) given in Example 2.2 for a

fixed l ∈ {1, 2}. Set α ∈ [−1, 1] with α 6= cos
(

[2(i−1)+l]π
2(n−2+l)

)
for all i = 1, . . . , n−1

and fn(x) = 2n − 1/fn−1(x) for all n ≥ 2 with f1(x) = lx. Then, the nodes
of a n-point Gauss-Radau quadrature formula for Iωl

(f) of the form (10) are
for all j = 1, . . . , n of the form yj = cos γj with γj the solutions of cos(nθ) =
fn(α) cos((n − 1)θ) for l = 1 and sin((n + 1)θ) = fn(α) sin(nθ) for l = 2
with θ ∈ [0, π]. Moreover, the set {ζi, ξi}n−1

i=1 defined in Theorem 2.10 can be
computed as follows: setting ζi = cos ωi and ξi = cos νi for all i = 1, . . . , n− 1,
and

Ĩi :=

(
2(i− 1) + l

2(n− 1 + l)
π,

2(i− 1) + l

2(n− 2 + l)
π

)
, J̃i :=

(
2(i− 1) + l

2(n− 2 + l)
π,

2i + l

2(n− 1 + l)
π

)
,

then ωi ∈ Ĩi and νi ∈ J̃i are respectively the unique solutions of cos nθ =
cos(n−1)θ and cos nθ = − cos(n−1)θ for l = 1 and sin((n+1)θ) = n+1

n
sin(nθ)

and sin((n + 1)θ) = −n+1
n

sin(nθ) for l = 2. 3
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2.3 Gauss-Lobatto with two arbitrary prefixed nodes

Our next step will be to consider an n-point quadrature formula for Iµ(f)
given by (6) with two distinct fixed points α, β ∈ [a, b], positive weights and
with the highest degree of accuracy, that is 2n− 3, namely

In(f) = Aαf(α) + Aβf(β) +
n−2∑
k=1

Ak,nf(xk,n). (14)

By Theorem 2.4, the nodes of such a rule will be the zeros of

Rn(x) = pn(x) + anpn−1(x) + bnpn−2(x), (15)

where an and bn are appropriate constants to ensure that Rn(α) = Rn(β) = 0.
The following result follows from [19].

Theorem 2.14 Consider the polynomial Rn(x) given by (15) with bn < 0.
Then, all the zeros are real, distinct and at most n− 2 of them lie in (a, b). In
that case, the weights of the n-point quadrature formula with nodes the zeros
of Rn(x) and degree of accuracy equal to 2n − 3 are positive. If bn > 0, then
double zeros may appear.

Observe from (15) that if pn−1(λ) 6= 0, then Rn(λ) = 0, if and only if, fn(λ) =
−an− bn/fn−1(λ) where fk = pk/pk−1. From this, the following sharper result
on the localization of the zeros of Rn(x) can be proved (see [1, Theorem 5]):

Theorem 2.15 If bn < 0, then the zeros {yi}n
i=1 of Rn(x) given by (15)

are such that y1 < x1,n−1, xi−1,n−1 < yi < xi,n−1 for i = 2, . . . , n − 1,
and xn−1,n−1 < yn. The {xj,n−1}n−1

j=1 are the zeros of pn−1. Moreover, setting
T (x) = −an − bn/fn−1(x), with fn(x) = pn(x)/pn−1(x), then

(1) yn < b ⇔ T (b) < fn(b) and yn = b ⇔ T (b) = fn(b),
(2) y1 > a ⇔ T (a) > fn(a) and y1 = a ⇔ T (a) = fn(a).

Consider α, β ∈ [a, b], α 6= β and such that Rn(α) = Rn(β) = 0. This yields
the system

∆

 an

bn

 = −
 pn(α)

pn(β)

 , ∆ =

 pn−1(α) pn−2(α)

pn−1(β) pn−2(β)

 ,

which has a unique solution, if and only if,

det∆ = pn−1(α)pn−2(β)− pn−2(α)pn−1(β) 6= 0. (16)
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In case det∆ 6= 0, the unique solutions are given by

an =
pn(β)pn−2(α)− pn(α)pn−2(β)

det∆
, bn =

pn(α)pn−1(β)− pn(β)pn−1(α)

det∆
.

(17)

If det∆ = 0, then the desired Gauss-Lobatto quadrature formula (14) does
not exist. For det∆ 6= 0 and depending on α and β, the following situations
may occur:

GL1. If bn = 0, then the problem is reduced to Theorem 2.10. The Gauss-Radau
quadrature formula with fixed node α or β is actually a Gauss-Lobatto
rule with prescribed nodes α and β, and hence the degree of accuracy
is now 2n − 2. The nodes are the zeros of Rn(x) given by (11) with
an = −fn(α) = −fn(β) and the weights are positive.

GL2. If bn > 0, then the Gauss-Lobatto quadrature formula (14) exists, if and
only if, the nodes are the zeros of Rn(x) given by (15) and all are distinct.
However, even if this last condition holds, one node may be on (−∞, a)
whereas another one in (b,∞). If the rule exists, the degree of accuracy
is 2n− 3 and the weights are positive.

GL3. If bn < 0, then the existence of the Gauss-Lobatto quadrature formula
(14), with α and β prescribed nodes, degree of accuracy 2n − 3 and
positive weights is guaranteed. The nodes are the zeros of Rn(x) given by
(15) and with fn(x) and T (x) defined as in Theorem 2.15, the following
also may occur:

GL3a. If T (b) > fn(b), then the largest node of the Gauss-Lobatto quadra-
ture formula lies in (b,∞).

GL3b. If T (a) < fn(a), then the smallest node of the Gauss-Lobatto quadra-
ture formula lies in (−∞, a).

GL3c. If T (b) ≤ fn(b) and T (a) ≥ fn(a), then all the nodes of the Gauss-
Lobatto rule are in [a, b].

Note that in the previous enumeration and in the discussion that follows, the
statements also hold if we interpret fn(±∞) = ±∞ while T (±∞) = −an.

Before analyzing a general situation, and making use of Theorems 2.1-(2) and
2.15, we consider first two particular cases.

Suppose that pn−1(α) = 0. Then, det∆ = −pn−2(α)pn−1(β) and det∆ = 0 ⇔
pn−1(β) = 0. So, when pn−1(α) = 0 and pn−1(β) 6= 0, then (17) becomes

an =
fn(α)fn−1(α)

fn−1(β)
− fn−1(β), bn = −fn(α)fn−1(α) 6= 0. (18)

But it follows in this case that bn = − pn(α)
pn−2(α)

> 0, yielding the case GL2. This
explains Remark 2.11.
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Suppose now that pn−2(α) = 0 (and pn−1(β) 6= 0; so, this case is not reduced to
the previous one). Then, det∆ = pn−1(α)pn−2(β) and det∆ = 0 ⇔ pn−2(β) =
0. So, when pn−2(α) = 0 and pn−2(β) 6= 0, then (17) becomes

an = −fn(α), bn = fn−1(β) [fn(α)− fn(β)] . (19)

Here, the condition fn(α) = fn(β) implies the case GL1. Clearly, the case
GL3 is obtained, if and only if, fn−1(β) > 0 when fn(α) < fn(β) or if
fn−1(β) < 0 when fn(α) > fn(β). If [a, b] is finite, the conditions T (b) ≤
fn(b) and T (a) ≥ fn(a) are equivalent to bn ≥ fn−1(b) [fn(α)− fn(b)] and
bn ≥ fn−1(a) [fn(α)− fn(a)], respectively. Thus, setting

C1 := fn−1(b)
fn(α)− fn(b)

fn(α)− fn(β)
, C2 := fn−1(a)

fn(α)− fn(a)

fn(α)− fn(β)
, (20)

it is obtained the case GL3c, if and only if, 0 < fn−1(β) ≤ min{C1, C2} when
fn(α) < fn(β) or max{C1, C2} ≤ fn−1(β) < 0 when fn(α) > fn(β). Clearly,
GL3a and GL3b never occur if b = ∞ and a = −∞, respectively.

In a more general situation, suppose that α, β are not in the set of zeros of
pn−1(x) and pn−2(x). Then, det∆ = 0 ⇔ fn−1(α) = fn−1(β). When det∆ 6= 0,
then (17) becomes

an = fn(β)fn−1(β)−fn(α)fn−1(α)
fn−1(α)−fn−1(β)

,

bn = fn−1(α)fn−1(β) fn(α)−fn(β)
fn−1(α)−fn−1(β)

.
(21)

Again, the condition fn(α) = fn(β) implies the case GL1. When fn(α) 6=
fn(β), cases GL2 and GL3 depends on sgn(bn). Moreover, if [a, b] is finite,
setting

C1 := −fn−1(b) [an + fn(b)] , C2 := −fn−1(a) [an + fn(a)] , (22)

then the case GL3c is obtained, if and only if, min{C1, C2} ≤ bn < 0, whereas
GL3a and GL3b never occur when b = ∞ and a = −∞, respectively.

With these considerations, we have proved the following

Theorem 2.16 (Gauss-Lobatto) Let µ be a positive Borel measure on a
finite or infinite interval [a, b] of the real line and let {pn(x)}∞n=0 be the se-
quence of orthonormal polynomials with respect to µ in [a, b] with positive

leading coefficients. Set fn(x) = pn(x)
pn−1(x)

for all n ≥ 1, Rn(x) given by (15)

and α, β ∈ [a, b] two distinct finite fixed points. Let In(f) be a n-point Gauss-
Lobatto quadrature formula for Iµ(f) given by (6) and of the form (14), with
prescribed nodes α and β and degree of accuracy 2n− 3. Then, we distinguish
the following situations depending on α and β:
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(1) Suppose that pn−1(α) = 0.
(a) If pn−1(β) = 0, then does not exist such In(f).
(b) If pn−1(β) 6= 0, then case GL2 holds, with an and bn given by (18).

(2) Suppose that pn−2(α) = 0.
(a) If pn−2(β) = 0, then does not exist such In(f).
(b) If pn−2(β) 6= 0 and fn(α) = fn(β), then the case GL1 is obtained.
(c) If pn−2(β) 6= 0 and fn(α) 6= fn(β), let an and bn be given by (19).

Then, the case GL2 occurs, if and only if, sgn (fn−1(β)) = sgn (fn(α)− fn(β)).
Otherwise, the case GL3 is obtained. Moreover, if [a, b] is finite, the
case GL3c holds, if and only if, 0 < fn−1(β) ≤ min{C1, C2} when
fn(α) < fn(β) or max{C1, C2} ≤ fn−1(β) < 0 when fn(α) > fn(β),
where C1 and C2 are given by (20). In particular, the cases GL3a
and GL3b occur if fn(α) ≥ fn(b) and fn(α) ≤ fn(a), respectively,
and they never occur if b = ∞ and a = −∞, respectively.

(3) Suppose that α and β are not in the set of zeros of pn−1(x) and pn−2(x).
(a) If fn−1(α) = fn−1(β), then does not exist such In(f).
(b) If fn−1(α) 6= fn−1(β) and fn(α) = fn(β), then case GL1 occurs.
(c) If fn−1(α) 6= fn−1(β) and fn(α) 6= fn(β), then let an and bn be given

by (21). Cases GL2 and GL3 depend on sgn(bn). If [a, b] is finite, the
case GL3c occur, if and only if min{C1, C2} ≤ bn < 0, where C1 and
C2 are given by (22). In particular, if bn < 0, then GL3a and GL3b
occur if an < −fn(b) and an ≥ −fn(a), respectively, and never occur
if b = ∞ and a = −∞, respectively.

In all the cases where the Gauss-Lobatto quadrature rule exist, it must to be
of interpolatory-type and the positivity of the weights is guaranteed.

Remark 2.17 Let {pn(x)}∞n=0 be a sequence of orthogonal polynomials with
respect to µ on a finite interval [a, b] and set

Qn−2(x, a, b) :=
1

(x− a)(b− x)
[pn(x) + anpn−1(x) + bnpn−2(x)] ,

with an and bn given by (17) taking α = a and β = b (here, bn 6= 0). Then, it
is clear that Qn−2(x, a, b) is a (n−2)th orthogonal polynomial with respect to
µ̃(x) = (x − a)(b − x)µ(x), and thus by taking α = a and β = b in Theorem
2.16, then Theorem 2.6 is recovered.

2.4 Particular cases and generalisations

A particular case of Theorem 2.16 is to consider one of the two prescribed
nodes to be an endpoint of the interval of integration. In this case, an alter-
native approach to this problem trivially follows from Theorems 2.5 and 2.10.
The Lobatto formula with one point in an endpoint of the interval is actually
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a Radau formula for a modified measure (modified to fix the endpoint) with
one other prefixed node that can be anywhere.

Corollary 2.18 Let µ be a positive Borel measure on a finite or half-infinite
interval [a, b] ( R of the real line and consider the following n-point quadrature
formula for Iµ(f) given by (6):

In(f) = Aλf(λ) + Aαf(α) +
n−2∑
k=1

Ak,nf(xk,n), (23)

with α ∈ [a, b]\{λ} and λ = a or b if [a, b] is finite, or λ equal to the finite
endpoint if the interval is half-infinite. Consider the positive Borel measure
µ̃(x) = (x − a)µ(x) (µ̃(x) = (b − x)µ(x), respectively) on [a, b] if it is finite,
µ̃(x) = (x−a)µ(x) if b = ∞ and µ̃(x) = (b−x)µ(x) if a = −∞. Let {p̃n(x)}∞n=0

be the sequence of orthonormal polynomials with respect to µ̃ in [a, b] and

normalized to have positive leading coefficients and set f̃n(x) = p̃n(x)
p̃n−1(x)

for

all n ≥ 1. Let x̃i,n denote the ith root of p̃n(x) and for all i = 1, . . . , n − 2,
let ζ̃i ∈ (x̃i,n−1, x̃i,n−2) and ξ̃i ∈ (x̃i,n−2, x̃i+1,n−1) be the unique solutions of
f̃n−1(ζ̃i) = f̃n−1(b) and f̃n−1(ξ̃i) = f̃n−1(a), respectively when [a, b] is finite,
ζ̃i = x̃i,n−2 if b = ∞ and ξ̃i = x̃i,n−2 if a = −∞. Suppose that p̃n−2(α) 6= 0
and that α 6∈ {ξ̃1, . . . , ξ̃n−2} when λ = a or α 6∈ {ζ̃1, . . . , ζ̃n−2} when λ = b.
Then, In(f) has the highest degree of accuracy, that is 2n − 3, if and only
if, it is of interpolatory type and the (n − 1) nodes except λ are the zeros
of R̃n−1(x) = p̃n−1(x) − f̃n−1(α)p̃n−2(x). The weights of the quadrature are
positive. Moreover, all the nodes of the quadrature, except λ lie in (a, b), if
and only if,

α ∈ (a, b) \
n−2⋃
i=1

[ζ̃i, ξ̃i],

and when [a, b] is finite, the endpoint b (a, respectively) is one of the nodes of
In(f), if and only if, α ∈ {ζ̃1, . . . , ζ̃n−2, b} (α ∈ {a, ξ̃1, . . . , ξ̃n−2}, respectively).

In a similar way, the combination of Theorems 2.5, 2.6, 2.10 and 2.16 allows us
to characterize the following n-point quadrature formulas with positive weights
and the highest degree of accuracy. It boils down to saying that prefixing three
nodes, two of them being at the endpoints of a finite interval is equivalent to
considering a Radau formula for a modified measure (modified to prefix the
two endpoints) with one other prefixed node. Prefixing four nodes, two of
which are the endpoints of a finite interval is equivalent with considering a
Lobatto formula with two free points prefixed, but for a measure modified in
such a way that the two endpoints are prefixed nodes. And so on. We omit
the details.

17



In(f) = Aaf(a) + Abf(b) + Aαf(α) +
n−3∑
k=1

Ak,nf(xk,n);

α ∈ (a, b), −∞ < a < b < ∞,

In(f) = Aλf(λ) + Aαf(α) + Aβf(β) +
n−3∑
k=1

Ak,nf(xk,n);

α, β ∈ (a, b), α 6= β; λ ∈ {a, b},
−∞ < a < b ≤ ∞ if λ = a,

−∞ ≤ a < b < ∞ if λ = b,

In(f) = Aaf(a) + Abf(b) + Aαf(α) + Aβf(β) +
n−4∑
k=1

Ak,nf(xk,n);

α, β ∈ (a, b), α 6= β, −∞ < a < b < ∞.

Example 2.19 As an application of the latter approach, we will show how
to derive the quadrature formula recently deduced in [18] in the context of
the numerical solution of stiff problems and algebraic differential equations.
It is proved there that a quadrature formula exists for the Lebesgue measure
dµ(x) ≡ dx in [0, 1] with the following properties. It has positive weights, and
both endpoints are prescribed; it has one arbitrary parameter which can be
used to fix another node, and it has the highest possible degree of precision,
that is 2n − 4. The nodes of that quadrature formula are the zeros of the
polynomial

Rn(x) = p∗n(x)− p∗n−2 + β
√

2n− 1
(
p∗n−1(x)− p∗n−3

)
,

where p∗n(x) denotes the nth Legendre polynomial shifted into [0, 1] and β is
the free parameter. Setting γn =

√
2n− 1/(2n − 3), then for |β| < γn, all

the nodes belong to [0, 1] and for |β| > γn, one node is outside the interval,
whereas in the case |β| = γn there does not exist such rule.

So, let us check that this quadrature formula can be recovered from our results.
Explicit expressions for the polynomials p∗n(x) are known. What we need is
the fact that p∗n(0) = (−1)n and p∗n(1) = 1, and that the derivative at x = 0
equals (−1)n+1n(n + 1). Since the quadrature formula has degree of accuracy
2n− 4, it follows from Theorem 2.4 that the nodes of the quadrature are the
zeros of a quasi-orthogonal polynomial of order three, that is of a polynomial
of the form

Rn(x) = p∗n(x) + ãnp
∗
n−1(x) + b̃np

∗
n−2(x) + c̃np

∗
n−3(x).

The conditions Rn(0) = Rn(1) = 0 imply that Rn(x) can be rewritten as

Rn(x) = p∗n(x)− p∗n−2(x) + a
[
p∗n−1(x)− p∗n−3(x)

]
, (24)

where a is an arbitrary constant. Observe that with the choice a = 0 we
recover the Gauss-Lobatto rule characterized in Theorem 2.6.
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Since we are dealing with three prefixed nodes, two of them at the endpoints
of [0, 1] and one at α ∈ (0, 1), we should consider the Radau case for the
modified weight x(1−x). Therefore recall the definition of the Jacobi(a,b) weight
functions defined in [−1, 1] by ω(x) = (1− x)a(1 + x)b for a, b > −1. Observe
that if we denote by qn(x) the nth Jacobi(1,1) polynomial and we shift it to
[0, 1] we obtain a polynomial p̃n(x) = 2qn(2x− 1) which is the nth orthogonal
polynomial in [0, 1] with respect to the weight function ω(x) = x(1−x). From
the well known explicit expression for the polynomial qn(x), it follows that

p̃n(x) = 2
n + 1

n + 2

n∑
m=0

(
n

m

)(
n + m + 2

m + 1

)
(x− 1)m, (25)

and so p̃n(0) = 2(−1)n(n + 1) and p̃n(1) = 2(n + 1). This implies that f̃n−2 =
p̃n−2/p̃n−3 takes values f̃n−2(1) = −f̃n−2(0) = n−1

n−2
. The “good” node α should

satisfy

−n− 1

n− 2
= f̃n−2(0) < A = f̃n−2(α) < f̃n−2(1) =

n− 1

n− 2
or |A| < n− 1

n− 2
.

On the other hand, the node α should be a zero of the quasi-orthogonal poly-
nomial R̃n−2(x) = p̃n−2(x)−Ap̃n−3(x). To relate this A to the parameter a in
(24), we note that x(1 − x)R̃n−2(x) and Rn(x) of (24) should have the same
zeros and hence should be the same up to a constant multiple. Comparison of
the leading coefficients, which is minus the leading coefficient of p̃n−2 in the
first one and the leading coefficient of p∗n in the second one shows that

Rn(x) = −2n− 1

n− 1
x(1− x)R̃n−2(x).

Computing the derivative of both sides in x = 0 gives

2[(2n− 1)− a(2n− 3)] =−2n− 1

n− 1
[p̃n−2(0) + Ap̃n−3(0)]

=
2n− 1

n− 1
2[(n− 1) + A(n− 2)]

since (p∗k)
′(0) = (−1)k+1k(k + 1). Solving this for A results in

A = −(2n− 3)(n− 1)

(2n− 1)(n− 2)
a.

Thus |A| < (n − 1)/(n − 2) is equivalent with |a| < (2n − 1)/(2n − 3), and
if we set a = β

√
2n− 1, it is equivalent with |β| < √

2n− 1/(2n− 3), as was
indeed claimed in [18]. 3

To end this section, let us comment briefly on a drawback of a quadrature
formula with the highest degree of accuracy, positive weights and r arbitrary
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prescribed nodes, with r > 2. A first approach to this problem is given in [19].
In this case, from Theorem 2.4 it follows that the rule has to be of interpolatory
type and the nodes are the zeros of the quasi-orthogonal polynomial Rn(x)
given by (9). From Theorem 2.8, only (n − r) distinct zeros of Rn(x) are
assured to be in the interval (a, b), whereas double zeros may appear in the
r remainder ones. It is also proved that if [a, b] is finite and just two zeros
lie outside (a, b), then one appears in (−∞, a) and the other one in (b,∞);
in this case, the weights of the quadrature formula are all positive. However,
if more than two zeros lie outside (a, b), then at least two zeros will appear
in (−∞, a) or in (b,∞), and then it is also proved that the weights of the
quadrature formula corresponding to these two nodes alternate sign, being
positive the weight corresponding to the node which is nearest to the interval
(a, b); the weights corresponding to the interior nodes are still positive. The
same behaviour occur if b = ∞ (a = −∞, respectively) and two zeros of Rn(x)
lie in (−∞, a) ((b,∞), respectively). Thus, in the construction of such rules,
we need to guarantee that all the zeros of Rn(x) are distinct and that no more
than two zeros may appear outside (a, b), in order to assure the convergence
of the procedure.

3 Computational aspects

The computation of the quadrature formulas is classical and dates back to work
by Golub (e.g., [11]) and Gautschi (e.g., [7–10]). The idea is that the Jacobi
matrix is modified in the last elements in such a way that the required nodes
become eigenvalues of that modified matrix. The corresponding coefficients in
the quadrature formula are given by the first components of the normalized
eigenvectors multiplied with the zeroth moment of the measure.

3.1 The classical approach

It will be convenient for the computations to work with the monic orthogonal
polynomials p̂k instead of the normalized ones pk. This makes no difference
since we are only interested in its zeros. The recurrence relation for the monic
polynomials is

p̂n+1(x) = (x− v̂n)p̂n(x)− ûnp̂n−1(x), p̂−1 ≡ 0, p̂0 ≡ 1.

The ûk = u2
k and v̂k = vk where the uk and vk are the coefficients appearing

in the normalized recurrence. Also ‖p̂0‖2 is needed which is usually stored as
û0. The advantage of this recursion is that to compute p̂n+1 we only need
{(v̂k, ûk) : k = 0, . . . , n} and since we do not normalize, ûn+1 is not needed.
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The tridiagonal Jacobi matrix

Ĵn =



v̂0 1 0 0 · · · 0

û1 v̂1 1 0 · · · 0

0 û2 v̂2 1 0
...

. . . . . . . . .
...

0 0 ûn−2 v̂n−2 1

0 0 · · · 0 ûn−1 v̂n−1


is similar to the symmetric Jacobi matrix Jn and thus it has the same eigen-
values but it is trivial to construct one from the other.

So to obtain for example an n-point Gauss-Radau formula with a prefixed
node α, given the recursion coefficients {v̂k, ûk}n−1

k=0 for the measure µ under
consideration (i.e., the Jacobi matrix of size n), one has to modify the measure
µ, to µ̃ such that its nth orthogonal polynomial p̃n has α as one of its zeros, if
such a measure exists. This will be obtained by changing v̂n−1 into ṽn−1. Thus

p̃n(x) = (x− ṽn−1)p̂n−1(x)− ûn−1p̂n−2(x) (26)

should vanish for x = α. The values p̂n−1(α) and p̂n−2(α) can be computed
by the recurrence relation since these recurrence coefficients are not modified:
{(ûk, v̂k) : k = 0, . . . , n − 2}. Only v̂n−1 needs to be modified, which can be
obtained from (26) by setting it equal to zero for x = α:

ṽn−1 = α− ûn−1p̂n−2(α)/p̂n−1(α). (27)

We do get orthogonality with respect to the modified measure µ̃ but by chang-
ing v̂n−1 we loose one orthogonality condition with respect to the original
measure µ. We therefore have only quasi-orthogonality. Since we loose only
one orthogonality condition, quasi-orthogonality is only of order 1. This also
means that we give in only one degree of accuracy of the quadrature formula.
This gives all the elements in the modified Jacobi matrix J̃n. Whenever the
quadrature formula with all the good properties exists, the eigenvalues and
eigenvectors of J̃n give the nodes and weights just like for ordinary Gauss
formulas, which it is, but for a modified measure.

When for a Gauss-Lobatto formula, we want to prefix two nodes α and β, then
we have that (26) should hold for x = α and for x = β. This system of two
equations can be solved if we allow two parameters. So we modify the last two
v̂n−1 and ûn−1. Changing both values will cost two orthogonality conditions,
and hence we are left with quasi-orthogonality of order 2, giving a degree
of accuracy that is 2 less than the usual Gauss quadrature for the original
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measure, i.e., it is only 2n− 3. So we require that

ṽn−1p̂n−1(x) + ũn−1p̂n−2(x) = xp̂n−1(x), for x ∈ {α, β}

and solve this system for ṽn−1 and ũn−1. Together with the original values
of {(v̂k, ûk) : k = 0, . . . , n − 2}, these define the modified Jacobi matrix J̃n

for which the Gaussian quadrature can be computed. For a bad choice of α
and/or β, the ũn−1 may for instance become negative and lead to complex
nodes and weights. In other cases, the nodes may be real but the weights may
be negative, etc.

Note that the previous system is related to, but not the same as the system
considered in Theorem 2.15.

The previous methods of computing are well known in the literature and
nothing is claimed to be original. It may be somewhat less known that a
similar kind of method can be used for 3 or more prescribed nodes. Take for
example 3 nodes α, β and λ. To make these three points a zero of p̂n imposes
three conditions which will define modifications of the last three recursion
parameters ûn−1, v̂n−1 and v̂n−2. This means 3 fewer orthogonality conditions
with respect to µ that can be satisfied, giving quasi-orthogonality of order 3,
and a maximal degree of accuracy 2n− 4. Since

p̃n(x) = (x− ṽn−1)p̃n−1(x)− ũn−1p̂n−2(x)

should be zero for x ∈ {α, β, λ}, we have only two parameters. To introduce
more parameters we replace p̃n−1 by its recurrence relation p̃n−1(x) = (x −
ṽn−2)p̂n−2(x)− ûn−2p̂n−3(x) and find that

anxp̂n−2(x) + bnp̂n−2(x) + cnp̂n−3(x) = x2p̂n−2(x)− ûn−2xp̂n−3(x), (28)

where

an = ṽn−1 + ṽn−2, bn = ũn−1 − ṽn−1ṽn−2, cn = −ûn−2ṽn−1

should hold for x ∈ {α, β, λ}. This gives 3 equations from which the num-
bers an, bn and cn can be found. Once these are known, we can solve for the
recurrence coefficients, giving

ṽn−1 = −cn/ûn−2, ṽn−2 = an − ṽn−1, ũn−1 = bn + ṽn−1ṽn−2.

Similarly when we have 4 points prescribed, say {α, β, λ, γ} then we have to
also modify ûn−2 so that we should rewrite the relation (28) as

anxp̂n−2(x) + bnp̂n−2(x) + cnp̂n−3(x) + dnxp̂n−3(x) = x2p̂n−2(x)
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with an, bn, cn as before and dn = ũn−2. Replacing x by the values α, β, λ, γ,
delivers 4 equations from which an, bn, cn, dn are found. Set ũn−2 = dn and
proceed as in the previous case to find the modified values of ṽn−2, ûn−1 and
ṽn−1. We omit the details. Similar procedures can be followed for more pre-
scribed nodes. It may however be clear that as the number of prescribed
points increases, setting up the right hand side of the linear system such as
(28) becomes more involved and, once the linear system is solved, a nonlinear
transformation is needed to obtain the modified parameters ṽk and ũk from
the solution of the linear system.

3.2 An alternative algorithm

There is however a much more systematic approach to this with a simple
linear algebra interpretation as we shall explain next. Therefore we need the
following lemma.

Lemma 3.1 Define the matrix

Cn(ŵ) = Ĵn − enŵ
T

where Ĵn is as before and ŵT = (ŵ0, . . . , ŵn−1) and eT
n = (0, . . . , 0, 1). Then

the characteristic polynomial p̃n(x) = det(xIn − Cn(ŵ)) is given by

p̃n(x) =
n−1∑
i=0

ŵip̂i(x) + p̂n(x) (29)

where p̂i(x) = det(xIi − Ĵi), i = 1, . . . , n.

PROOF. This follows immediately by computing the Laplace expansion of
the determinant along the last row, which results in

p̃n(x) =
n−1∑
i=0

ŵip̂i(x) + (x− v̂n−1)p̂n−1(x) + ûn−1p̂n−2(x)

and the recurrence relation shows that the last part is just p̂n(x). 2

If for the Radau case, we require that the quasi-orthogonal polynomial p̃n(x) =
p̂n + ŵn−1p̂n−1(x) has a zero for x = α, hence ŵn−1 = −p̂n(α)/p̂n−1(α), then,
we can use the previous lemma with ŵk = 0 for k = 0, . . . , n − 2 and it is
clearly seen that then Cn(ŵ) becomes J̃n by only modifying the last element
ṽn−1 = v̂n−1 − ŵn−1. Thus the following is proved.
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Proposition 1 If v̂n−1 is the (n − 1)th recursion coefficient in the original
recursion for the monic orthogonal polynomials p̂k, and ṽn−1 is the modified
value needed for the Gauss-Radau formula with prefixed node α, then they are
related by

ṽn−1 = v̂n−1 +
p̂n(α)

p̂n−1(α)
.

For the case of Lobatto, two prescribed nodes α and β are imposed on the
polynomial

p̃n(x) = p̂n(x) + ŵn−1p̂n−1(x) + ŵn−2p̂n−2(x),

which results in the system p̂n−2(α) p̂n−1(α)

p̂n−2(β) p̂n−1(β)


 ŵn−2

ŵn−1

 = −
 p̂n(α)

p̂n(β)

 .

Again, by setting in Lemma 3.1 ŵk = 0 for k = 0, . . . , n− 3 and taking ŵn−2

and ŵn−1 as solutions of the previous system, we see that Cn(ŵ) becomes
J̃n so that the solution of this system is precisely the update needed for the
parameters v̂n−1 and ûn−1. So the following is proved.

Proposition 2 If [v̂n−1, ûn−1]
T are the (n− 1)th recursion coefficients in the

original recursion for the monic orthogonal polynomials p̂k, and [ṽn−1, ũn−1]
T

are the modified values needed for the Gauss-Lobatto formula with prefixed
nodes α, β, then they are related by

 ṽn−1

ũn−1

 =

 v̂n−1

ûn−1

+

 p̂n−1(α) p̂n−2(α)

p̂n−1(β) p̂n−2(β)


−1  p̂n−1(α)

p̂n−1(β)

 .

In general, if m < n− 1 nodes are prefixed, we set ŵk = 0 for k = 0, . . . , n−
m−1 in (29) and determine the remaining ŵk, k = n−m, . . . , n−1 by solving
the system of m equations resulting from the conditions p̃n(αi) = 0 where αi,
i = 1, . . . ,m are the prefixed nodes. This defines the matrix Cn(ŵ) completely,
and solving for its eigenvalues will give all the nodes: the prefixed ones and
the remaining ones chosen in such a way that they give a maximal domain of
validity, whenever such a quadrature formula exists.

Giving explicit expressions of the modified parameters ṽk, ũk will be as compli-
cated as in the previous approach, but there is a simple algorithm to compute
them. Such an algorithm should reduce the matrix Cn(ŵ) by similarity trans-
formations to a tridiagonal form like Ĵn is. Since only the trailing elements
of ŵ are nonzero, we need the similarity transformations only for the lower
right part of Cn(ŵ). Thus without loss of generality assume that we have to
eliminate by similarity transformations all but the last two elements in the
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last row of a matrix with the following structure:

× 1

× × 1

× × 1

× × 1

× × 1

× × 1

× × × × × × ×



.

As long as the subdiagonal elements are nonzero, one may use the following
steps.

(1) For k = 1, . . . , n− 2
eliminate the elements in column k in the rows k + 2, . . . , n by doing the
following:
(a) for j = k + 2, . . . , n: if element (j, k) is nonzero then

add a multiple of row k + 1 to row j to eliminate element (j, k) and
complete the similarity transform by subtracting the same multiple
of column j from column k + 1.

In the 7 × 7 example above, eliminating the element (7,1) (by a similarity
transform) will result in a nonzero element (6,2). Elimination of the (6,2)
element will result in nonzero entries (5,3), (6,3) and (6,4). Elimination of the
element (7,2) will not alter the structure. From now on the unwanted elements
can be eliminated at each step eliminating one element without introducing
new nonzero ones. At all stages of the algorithm, the matrix stays unit lower
Hessenberg. Note also that only the last 7 parameters are modified. That are
the last 4 elements of the main diagonal and the last 3 on the subdiagonal.
The first 3 elements on the main diagonal and the first 3 on the subdiagonal
are left unaltered.

If only 3 nodes are prefixed, there is only one similarity transform necessary
and this leads to updating formulas

ṽn−2 = v̂n−2 − A, ṽn−1 = v̂n−1 − ŵn−1 + A, ũn−1 = ûn−1 − ŵn−2 + A2,

where A = ŵn−3/ûn−2 is the parameter of the tranformation matrix.

When there are several prescribed nodes, the modified Jacobi matrix has
several known nodes for its eigenvalues. In that case, it might be interest-
ing to compute the remaining nodes as the zeros of the polynomial qn−m in
p̃n(x) = qn−m(x)

∏m
i=1(x−αi). This means as the eigenvalues of a deflated ma-
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trix. This is easily done by some deflating bulge chasing algorithm [20] applied
to the modified Jacobi matrix.

4 Numerical examples

To conclude this section, we present some numerical illustrations of the results
presented in the paper for some of the classical weight functions on the real
line; so, we are dealing with absolutely continuos measures. The experiments
were done with software MATLAB 7.6.

We start by considering the Chebyshev-Radau quadrature formulas with n =
6, i.e., one node α is prefixed and the five other nodes are chosen in an optimal
way. The results are shown in Figure 2: It is for Chebyshev polynomials of the
first kind. For Chebyshev polynomials of the second kind, the figure looks very
similar. On the horizontal axis the value of α is seen, ranging from −1.5 on
the left to 1.5 on the right. The vertical axis shows the location of the six
nodes. The straight diagonal is the location of α. The five vertical asymptotes
correspond to α = xk,5, the zeros of the Chebyshev polynomial of degree
five. For these values, one of the nodes is at infinity. For values of α in the
neighborhoods of these asymptotes, one of the nodes is outside the interval
[−1, 1], For α < xi,5 there is a point ζi where the largest node leaves the
interval on the right (top of the figure). For α > xi,5 there is a point ξi where
a node enters the interval on the left (bottom of the figure). For α ∈ [ζi, ξi],
there is not a Chebyshev-Radau formula with all the nodes in (−1.1). However
for all values α ∈ [−1, 1] \ ∪5

i=1[ζi, ξi], all the nodes are in (−1, 1) and all the
weights are positive. In the figure on the right the same plot is given but now
the nodes for the “good” intervals of α are plotted with crosses (which are seen
as thick lines). Note how the varying node α (corresponding to the straight
diagonal line) gradually pushes the nodes to the right in the interval [−1, 1]
(upwards in the plot) and eventually outside the interval, while new nodes are
coming in from the left at −1 (at the bottom of the plot). This corresponds
to Theorem 2.10.

Now we consider the Legendre weight function ω(x) = 1/2 and the Jacobi(a,b)

weight functions defined in subsection 2.4, both on the interval [a, b] = [−1, 1].
The following examples correspond to the 7-point Gauss-Lobatto quadrature
formula (23) for the Legendre weight function with one prefixed point at 0.2
(left) and Jacobi(1,−1/2) with one prefixed point at 0.2 (right). The other point
ranges from−1.5 to 1.5 and the crossed nodes correspond to the good situation
where all nodes are inside the interval [−1, 1], and all weights are positive. The
results are shown in Figure 3. The explanation is like for the previous figure.
Note that for the Legendre weight there are only few small intervals for α to
the left of x3,5 ≈ 0.2, the third zero of the Legendre polynomial of degree five,
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Fig. 2. The location of the nodes in a 6-point Chebyshev-Radau quadrature formula
with a prefixed node ranging from−1.5 to 1.5. On the right, the nodes for the “good”
formulas are indicated with crosses (thick lines).

where the proper Legendre-Lobatto formula exists. On the other hand, to the
right of it, almost all the choices of α are good with only narrow bad intervals
near x4,5 and x5,5.
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Fig. 3. The location of the nodes in a 7-point Gauss-Lobatto quadrature formula
with one prescribed node in 0.2 and the another one ranging from −1.5 to 1.5. The
“good” nodes are indicated with crosses. On the left for the Legendre weight, on
the right for the Jacobi(1,−1/2) weight.

The next example plotted in Figure 4, corresponds again with a 7-point Gauss-
Lobatto quadrature formula (14) for the Chebyshev weight function of the
first kind (left) and the Jacobi(1,−1/2) weight (right), but now with the two
prescribed nodes varying symmetrically from −1.5 to 1.5: the straight lines
from (−1.5,±1.5) to (1.5,∓1.5). The location of the nodes are shown in the
vertical axis. Note that the left hand side has only four asymptotes. That
is because the symmetric nodes hit the symmetric zeros of the Chebyshev
polynomial of degree five simultaneously. The fifth asymptote at the origin is
not plotted. On the right, the Jacobi weight, and hence also the polynomials
are not symmetric, and therefore, ten asymptotes can be seen. There will be
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one every time one of the two symmetric varying nodes hit a zero of the Jacobi
polynomial of degree five.
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Fig. 4. The location of the nodes in a 7-point Chebyshev-Lobatto quadrature for-
mula (left) and Jacobi(1,−1/2)-Lobatto (right) with prescribed nodes varying sym-
metrically from −1.5 to 1.5.

Our next examples are plotted in Figure 5 and corresponds to the Laguerre(a)

and Hermite weight functions defined on [0,∞) by ω(x) = xae−x for a > −1
and on R by ω(x) = e−x2

, respectively. On the left one can see the 6-point
Laguerre(1)-Radau nodes are plotted for a prefixed node α ∈ [−1, 20]. The
cases of positive nodes and positive weights are indicated by crosses. Note
that at the vertical asymptotes, α equals a zero of the Laguerre polynomial
of degree n − 1 = 5. Since ξk = xk,n−1, the intervals of “bad” α-values are
located on the left of the asymptotes, i.e., in the intervals [ζk, ξk] = [ζk, xk,n−1]
and all the “good” values are to the right of the asymptotes. On the right, we
see the Hermite-Radau nodes for a fixed node α ∈ [−5, 5]. All the values of α
are “good” except the ones corresponding to the vertical asymptotes, i.e., the
α’s equal to one of the zeros of the Hermite polynomial of degree five. Indeed,
the “bad” intervals are reduced to just these points because ζk = ξk = xk,n−1.

In the case of three or more prefixed points, the results look similar.

For example in Figure 6 we plotted the nodes of a Gauss-Legendre formulas
with prescribed nodes. On the left we see the nodes of an 8-point formula with
prescribed nodes in the endpoints −1 and 1 and a third one α ∈ [−1.5, 1.5].
On the right, a 9-point formula is shown with four prescribed nodes: the two
endpoints −1, 1, and the internal point 0.3. The fourth point ranges from −1.5
to 1.5.

Similar cases are plotted in Figure 7 but now for the Gauss-Chebyshev formu-
las of the first kind where two of the prefixed nodes are varying symmetrically
in [−1.5, 1.5] and the other one at −1 for the left plot or −1 and +0.3 for the
right plot.
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Fig. 5. On the left Laguerre(1)-Radau formula with prescribed node ranging from
−1 to 20. The good nodes are indicated with crosses. On the right Hermite-Radau
formula with prescribed node form −5 to 5.
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Fig. 6. On the left the nodes of the 8-point Gauss-Legendre formula with three
prescribed nodes at the endpoints −1 en 1 and a third node α ∈ [−1.5, 1.5]. The
good nodes are again indicated with crosses. On the right a 9-point Gauss-Legendre
formula with four prescribed nodes, three of them in the endpoints −1 and 1 and
in 0.3, while a fourth ranges form −1.5 to 1.5.

5 Conclusions

Gauss-type quadrature formulas on an interval of the real line have been exten-
sively considered in the literature. Here, none, one or two nodes are prescribed
being endpoints of the interval of integration, the remainder nodes are chosen
inside this interval in an optimal way and the weights are positive. Some con-
siderations have been given in [19] for quadrature formulas with some nodes
outside the interval of integration and highest degree of accuracy; here, the
positiveness of the weights is not always guaranteed. When dealing with Szegő-
type quadrature formulas on the unit circle, it is well known that one arbitrary
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Fig. 7. On the left the nodes of the 8-point Gauss-Chebyshev formula with three
prescribed nodes: one at the endpoint −1 and the other nodes are α and −α with
α ∈ [−1.5, 1.5]. On the right a 9-point Gauss-Chebyshev formula with four pre-
scribed nodes, two of them in the endpoints −1 and 1 and the other ones are α and
−α where α ranges form −1.5 to 1.5.

node on the unit circle can be generically fixed in a trivial way and recently
it has been proved in [15] that also two distinct nodes anywhere on the unit
circle can be prescribed without restrictions in the quadrature formula. So,
Szegő-type quadrature formulas always exists and also have positive weights.

In the results presented in this paper, by using some properties stated in [1]
on the location of the zeros of quasi-orthogonal polynomials we have charac-
terized Gauss-type quadrature formulas with at most two prescribed nodes
anywhere on the interval of integration, with positive weights and highest de-
gree of accuracy. Such rules do not always exist. Quadrature formulas with
one or both (finite) endpoints of the interval of integration fixed, and also one
or two more nodes prescribed inside this interval are derived. Such quadra-
tures also have positive weights have special interest as illustrated in [18], in
the context of differential equations. In order to guarantee “good” quadrature
formulas, i.e., positivity of the weights and nodes inside the interval of inte-
gration, in that paper, the degree of accuracy is one less than the maximal
one. With the two endpoints prefixed, an n-point formula has maximal degree
of accuracy 2n − 3. By imposing only a degree of accuracy that is 2n − 4,
the quadrature formulas have one degree of freedom that can be chosen in
an appropriate way (which corresponds to fixing a third, internal node). This
approach (reducing the degree of accuracy to meet other requirements of the
quadrature formula) is another track of investigation that will be faced in a
subsequent paper. Concerning the computation of the quadrature formulas
considered in the paper, an efficient procedure has been analyzed by consider-
ing an eigenvalue-finding problem for modified Jacobi matrices already used
in [8] for the computation of the same rules but where the prescribed nodes
are the endpoints of the interval of integration. Also an alternative approach
based on a simpler linear algebra algorithm is given. We finally present sev-

30



eral numerical experiments of the introduced quadrature formulas and for the
most known families of orthogonal polynomials on the real line.
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