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Abstract

Recently the performance of nonlinear transforms have been given a lot of attention
to overcome the suboptimal n-terms approximation power of tensor product wavelet
methods on higher dimensions. The suboptimal performance prevails when the lat-
ter are used for a sparse representation of functions consisting of smoothly varying
areas separated by smooth contours. This paper introduces a method creating nor-
mal meshes with nonsubdivision connectivity to approximate the nonsmoothness
of such images efficiently. From a domain decomposition viewpoint, the method
is a triangulation refinement method preserving contours. The method is nonlin-
ear as it depends on the actual image. This paper proposes a normal offset based
compression algorithm for digital images. The discretisation causes the transform
to become redundant. We further develop a model to encode the obtained coeffi-
cients. We show promising rate distortion curves and compare the results with the
JPEG2000 encoder.

Key words: normal multiresolution mesh, image compression, piecewise smooth,
wavelets

1 Introduction

Over the last decade normal meshes have been studied as a method for ap-
proximating smooth curves [5] and surfaces [2, 13, 15, 17]. A normal mesh

∗ Corresponding author.
Email addresses: ward.vanaerschot@cs.kuleuven.be (W. Van Aerschot),

maarten.jansen@wis.kuleuven.be (M. Jansen),
adhemar.bultheel@cs.kuleuven.be (A. Bultheel).

Preprint submitted to Image and Vision Computing 9 July 2008



is created by successive refinements of an initial mesh, where each refinement
step uses information from the target function to create a new mesh and a
better approximant. Each refinement step adds an additional vertex (one for
each edge) that can be represented by one coefficient, called “normal offset”,
in a local frame instead of its usual three coordinates.

This paper investigates the application of normal meshes to compress piecewise
smooth images whose content is dominated by contours. This kind of images
will be referred to as geometrical images. It is well known that, for this type of
images, transform coders using nonredundant bases fall short when creating
compact high resolution representations. Let fn be an element of subspaces
(Sn)n≥0 of a normed space X which can be described by n parameters. We
define the best approximation error as σX(n) := inf

g∈Sn

‖f − g‖X. The high-

est achievable n-term approximation rate using a wavelet transform combined
with a nonlinear thresholding equals σ2

L2
(n) = O(n−1) [8]. Therefore, trans-

form coders like JPEG2000 will perform suboptimally compared to recently
developed schemes capable of sparsely representing line discontinuities.

Candès and Donoho [4] presented Curvelets as tight directional frames com-
bined with a nonlinear n-term selection which are able to achieve σ2

L2
(n) =

O(n−2). Contourlets, a filterbank approach was presented in [9] and allow for
fast implementations on digital images. Donoho [10] presented Wedgelets as
an extension of recursive dyadic partitioning methods where terminal nodes
are decorated with so-called wedges. Wedgelets achieve σ2

L2
(n) = O(n−2) + δ

on piecewise constant objects with boundaries of Hölder2 regularity, where δ
represents the angular resolution of the wedges. On the other hand, we have
adaptive schemes where the construction of the approximants is driven by
the target function. Le Pennec and Mallat [16] proposed bandelets which are
based on tensor product of wavelet bases combined with local warping op-
erators (based on geometrical flow) adapted to the edge of the image. Dekel
and Leviatan [6] proposed geometric wavelets based on binary partitioning
algorithms. The computational complexity, however, makes the scheme less
suitable for practical algorithms. Gray-scale images can be also be seen as
elevation models. In the area of terrain modelling elevation models are ap-
proximated by triangular irregular networks. For piecewise smooth images
Demaret et al. [7] present an adaptive thinning strategy capable of preserving
edges. The common goal of all these schemes is to partition the image domain
into parts of different sizes and shapes. The small parts correspond to image
regions that contain much information (e.g. edges, texture) and larger parts
correspond to smooth image regions that can be approximated by few param-
eters given a certain error bound. The normal offset scheme proposed in this
paper is in that respect no different from the previous approaches. In contrast
to previous methods, however, we do not track boundaries actively but rely
on the implicit boundary locating property of normal meshes. This way our
algorithm performs significantly faster compared to coarse-to-fine partitioning
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algorithms which perform an exhaustive search looking for the best domain
dissection over a large set of allowed dissections.

There are many papers involving normal mesh compression for smooth mani-
fold surfaces [11, 12, 13, 15, 17]. Despite the similarities between surface and
image compression we cannot take ‘off the shelf’ normal mesh encoders and
apply them to the surface equivalents of a geometrical image. The first ma-
jor difference concerns the smoothness properties of the target surfaces. While
surfaces in computer graphics are smooth, geometrical images are non-smooth:
the edges are the information carrying feature. A second major difference – and
the actual reason for using a normal offset transform in an image compression
algorithm– is the exploitation of normal approximation properties in order to
compress. The reason for using normal offsets in surface rendering applica-
tions is that they contain almost all geometrical information [13]. Thanks to
the minor contribution of the parametrical information, semi-regular meshes
– demanding almost no connectivity information – can be utilized. As such,
the surface can be approximated by a mesh where each point is defined using
a single scalar. This leads to a bonus compression factor of three. In contrast,
image grey levels are not triple coordinates in R

3, but single values on a given
regular lattice, so there is no bonus to gain in the image case. Futhermore,
for piecewise smooth images, irregular meshes have to be used to preserve
contours. In this respect, the fundamental reason for using normal offsets in
image processing is the edge locating property of the normal search direction.

A first attempt to use normal mesh techniques for image approximation was
made by Jansen et al. [14]. Gray scale images are treated as two dimensional
functions dominated by geometric structures comparable with terrain mod-
els used in geographical information systems. The authors achieve an n-term
approximation rate of σ2

L2
(n) = O(n−2) that is twice as good as wavelet ap-

proximations on the studied images. Since approximation and compression are
tightly related their results indicate that the normal offset method should be
considered for the development of rate-distortion efficient piecewise-smooth
image encoders. The focus of this paper is more practical oriented where we
focus on rather small n, i.e. far from values where asymptotical theoretical
behaviour can be observed. Also results given in an earlier paper [21] indicate
that for images of geometrical nature the normal offset decomposition is a
promising compression technique.

Unfortunately, the authors of [14] do not address compression. For instance,
the multi-resolution model used is non nested and additional side informa-
tion needs to be stored in order to encode the complex dependency relations
between consecutive resolution levels. In addition, the authors do not incor-
porate a contour preserving triangulation method which explains the rather
poor visual results in practice.
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This paper focusses on compression issues. In this context, we use nested
triangulations for which we have to redefine the normal direction. Addition-
ally we utilize local mesh refinement operations, i.e. triangle splits, to create
piecewise linear approximations of the smooth trajectories of the contours by
triangle edges. The use of local mesh refinements results in tree-structured
dependency relations between successive approximations that can be encoded
in a straightforward manner.

The main contribution of this paper is the development of a model for the
offsets such that they can be encoded efficiently by an entropy coder.

The paper is outlined as follows. Section 2 introduces the class of piecewise
smooth images. In Section 3 the proposed normal mesh algorithm is given in
detail. This nonlinear transform forms the main component of the encoder. It
produces sparse representations of geometrical images. The efficient encoding
of the wavelet coefficients (normal offsets) is done by a model based entropy
coder and will be explained in Section 4. Finally Section 5 shows rate-distortion
curves of the proposed encoder and compares the results with the state of the
art JPEG2000 encoder.

2 Piecewise smooth images and the Horizon Class

Since we aim to extract geometrical information, we mainly focus on horizon
classH, introduced by Donoho [10], which contains objects are constant except
for a smooth boundary (with Hölder regularity ∈ (1, 2]) over the unit square
[0, 1]2. Let us first define the Hölder conditions.

• Let 0 < α ≤ 1 we say that c ∈ Hölderα(Cα) if

|c(x)− c(x′)| ≤ Cα|x− x′|α, 0 ≤ x, x′ ≤ 1 (2.1)

• Let 1 < α ≤ 2 we say that c ∈ Hölderα(Cα) if

|c′(x)− c′(x′)| ≤ Cα|x− x′|(α−1), 0 ≤ x, x′ ≤ 1 (2.2)

with c′(x) the derivative of c(x).

Definition 2.1 We define the Horizon class Hα as follows:
Hα := {H} with H(x1, x2) : [0, 1]2 → {0, h} :











h if x2 ≤ c(x1)

0 if x2 > c(x1)
,

with c(x1) ∈ Hölderα (Cα) ∩ Hölder1 (C1), α ∈ (1, 2].
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Fig. 1. Global coordinate system XY Z together with local coordinate frames xy

and x′y′.

Up to a sign value, all image information is located in c(x). For H2, we will
drop the exponent and note H.

3 The normal offset scheme

In this section we state the algorithm that produces successive normal mesh
approximations of a given function f defined on Ω ∈ [0, 1]2. We use the fol-
lowing notationMj := (Vj , Ej,Fj) to denote a mesh built of vertices V, edges
E and faces F at resolution level j. We note ∆j for the triangulation obtained
by projecting Mj on Ω.

Initially the algorithm starts from an interpolating triangular meshM0. From
then on the normal offset scheme consists of an iterative application of three
steps. The first step, the prediction step, constructs additional vertices – pre-
diction points – as linear combinations of surrounding mesh points. The sec-
ond step, the correction step, constructs piercing points as the intersection of
rays normal to the coarser mesh, going through those prediction points and
the image surface. The third step, the interconnection step, adds all piercing
points to the set of vertices Vj forming Vj+1. The corresponding mesh Mj+1

with edges Ej+1 and triangles ∆j+1 is constructed by a triangulation of Vj+1.
These steps are repeated, creating meshes at different resolution levels j until
a certain stopping criterion is met.

3.1 The algorithm

We now give a specific implementation of each step the normal offset refine-
ment scheme:

(a) Prediction: In what follows, we use linear interpolation for the prediction
step. Suppose the image f is given as a surface Sf := (X, Y, f(X, Y )). In
order to obtain an hierarchical edge refinement scheme we consider the
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subspace defined as the vertical plane (⊥XY ) containing edge ej,k ∈ Ej

with end points Pj,k, Pj,k+1 ∈ Vj. The part of the image contained in the
vertical plane is denoted by fe. We attach a 2d coordinate system to this
plane with the x-axis in the XY -plane and the y-axis parallel w.r.t. the Z-
axis (see Figure 1). The prediction point p∗j+1,2k+1 = (x∗

j+1,2k+1, y
∗
j+1,2k+1)

on location 2k + 1 and resolution level j + 1 is defined as:

p∗j+1,2k+1 :=
pj,k + pj,k+1

2

where pj,k, pj,k+1 are the projections of Pj,k, Pj,k+1.
(b) Correction: The correction step adds a vector in the direction normal to

the coarse mesh to the points predicted in the previous step. The normals
−→n j,k, on the coarse mesh such that ‖−→n j,k‖ = 1 are expressed as

−→n j,k =







n[x]j,k

n[y]j,k





 := [−(yj,k+1 − yj,k), xj,k+1 − xj,k]/‖pj,k+1 − pj,k‖,

and represent the direction of the perpendicular bisector on e(pj,k+1,pj,k).

The normal ray rj+1,2k+1 going through p∗j+1,2k+1 is defined as:

rj+1,2k+1(γ) := p∗j+1,2k+1 + γ−→n j,k

For fe ∈ C, with C the class of continuous functions, the correction step
calculates

γj+1,2k+1 := min {γ | rj+1,2k+1(γ) = [x, fe(x)]} . (3.1)

The minimum value of γ over a set is taken, since in general the normal
ray can pierce fe more than once.

For fe /∈ C and r parameterized as rj+1,2k+1(γ) = (xj+1,2k+1(γ), yj+1,2k+1(γ)),
Eq. (3.1) takes the following form:

γj+1,2k+1 := min







γ| sign

(

lim
xj+1,2k+1(γ)→x+

yj+1,2k+1(γ)− fe(x)

)

(3.2)

= − sign

(

lim
xj+1,2k+1(γ)→x−

yj+1,2k+1(γ)− fe(x)

)







.

As such we always obtain a subdivision scheme i.e., xj,k ≤ xj+1,2k+1 ≤
xj,k+1. Setting xj+1,2k := xj,k we obtain a monotonically increasing se-
quence xj = {xj,k, xj,k+1, xj,k+2, . . .} on each edge. A new piercing point
pj+1,2k+1 is inserted between pj,k and pj,k+1 in order to form the sequence
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pj+1:

pj+1,2k ← pj,k

pj+1,2k+1 ← rj+1,2k+1 (γj+1,2k+1) .

pj+1,2k+2 ← pj,k+1

Each slice fe created by the previous step is gradually approximated by a
polyline (a continuous curve composed of several line segments) through

the sequence pj =
{

pj,0, . . . , pj,k . . . , pj,2j+1

}

.

(c) Interconnection: Each coarse triangle is split into 4 disjunct subtriangles
whose projection on the XY -plane form a planar graph. The inner edges
of the tessellation are formed from couples from the set of vertices of the
coarse triangle and the piercing points. The choice of these inner edges
yields four possible triangle splits. The split minimising an error metric is
included into the finer resolution mesh. We will use the L2-error metric
between the original surface Sf and the approximating mesh Mj in the
remainder of the paper.

The recursive partitioning, as constructed by the interconnection step, can be
represented by a quadtree Tj where each node t corresponds to a triangle ∈
∪j

k=0∆k . In this respect the refinement can be seen as tree growing algorithm.
In a later section we will prune this tree to find almost optimal tilings of Ω.

Remark 3.1 We emphasize some major differences where our method distin-
guishes itself from the method proposed in [14]. We restrict the rays emanating
from the prediction point to lie in a plane perpendicular to the XY plane, still
forming a right angle (∠ = π

2
) with an edge of the coarser mesh. Also the

choice of the triangulation method is crucial for approximation and compres-
sion performance. Despite the theoretical approximation rate of O(n−1) using
a Delaunay retriangulation it is not particulary suited for compression. The
edges defining the local frames for the piercing points can disappear in higher
resolution levels. This requires a lot of bookkeeping when we want to recon-
struct the compressed image from thresholded and quantised coefficients. Even
vertex connectivity can change when the triangulation method is sensitive to
perturbations in the vertex positions due to a quantisation step on the normal
coefficients. This further complicates the compression stage. Furthermore a lot
of exception handling has to be done to avoid triangle fold overs since the nor-
mal direction does not guaranty a proper parametrisation. We therefore opt for
a local triangulation scheme equipped with a certain amount of flexibility to
preserve contours. The level-to-level mesh refinement relations can be captured
by tree structures.
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3.2 Digital setting

Consider a digital image obtained from sampling an analogue grayscale im-
age. A digital grayscale image is defined as a regular tessellation of pixels,
disjunct rectangular areas having a gray value. The gray values attached to
a pixel take on a discrete value. We use the term discrete edge for the set
of adjacent pixels connecting two pixels. The collection of pixels is generated
by a line rasterisation algorithm B 1 taking the two end pixel locations as
input giving back an array of in between pixel locations. The number of pix-
els generated by B(Pj,k, Pj,k+1) is represented by Lj,k. We use the notation
B[X](Pj,k, Pj,k+1)i, i ∈ [0 . . . Lj,k − 1] to indicate the X-value of the ith edge
pixel. The pixels at both ends of a digital edge are the digital counterparts of
a vertex. As such discrete edges have a nonzero area, just as discrete points
(namely pixels). Accordingly three discrete edges – having pairwise an end
point in common– together with the pixels residing in the interior define a
discrete triangle.

In this paper we approximate a digital image by a discrete mesh which is
defined as the triple of the set of discrete points, edges and triangles. For the
sake of brevity we will drop the word ‘discrete’ in the remainder of this paper.

3.2.1 Definitions and notations

The definitions used in Section 3.1 have to be adjusted towards the digital
setting. In the digital setting where the pixels (X, Y, f(X, Y )) ∈ N × N × R,
the prediction point expressed in the global coordinate system is defined as:

P ∗
j+1,k+1 =















B[X](Pj,k, Pj,k+1)⌊Lj,k/2⌋

B[Y ](Pj,k, Pj,k+1)⌊Lj,k/2⌋

yj,k + yj,k+1

2















such that also P ∗
j,k ∈ N × N × R. The definition of the normal ray in the

previous section is slightly adapted for the digital setting.

Definition 3.1 (normal ray) The digital normal ray r̄j+1,2k+1(γ) = (r̄x
j+1,2k+1(γ), r̄y

j+1,2k+1(γ))
expressed in the coordinate system xy through ej,k is defined as:

1 In this paper we take for B Bresenham’s line rasterisation algorithm.
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r̄j+1,2k+1(γ) =















0

yj,k+yj,k+1

2





+ dj,k(γ)









1
n[y]j,k

n[x]j,k

















(3.3)

for

γ = 0 . . . Lj,k − 1

and dj,k(γ) = sign (γ − ⌊Lj,k/2⌋)
∥

∥

∥

(

B(Pj,k, Pj,k+1)γ,B(Pj,k, Pj,k+1)⌊Lj,k/2⌋

)∥

∥

∥

L2

the

signed distance between the midpixel of ej,k and the pixel with index γ.

Definition 3.2 (normal index) We define the normal index ij,k as:

ij,k := min







γ − ⌊Lj,k/2⌋ | sign
(

r̄y
j,k(γ)− fe(r̄

x
j,k(γ))

)

(3.4)

= − sign
(

r̄y
j,k(γ + 1)− fe(r̄

x
j,k(γ + 1))

)







.

Contrary to the continuous setting the normal offset algorithm for the digital
setting is unlikely to exactly pinpoint a sample. Indeed, due to discretisation
in most of the cases yj,k, the y-value of the piercing point, will differ from
the exact function value fe(xj,k) as r̄y

j,k(γ + 1) − r̄y
j,k(γ) ≈ s−1

j,k , with sj,k ∈ R

the slope of the normal ray r̄j,k(γ). To ensure perfect reconstruction a vertical
offset vj,k is introduced.

Definition 3.3 (vertical offset) The vertical offset is the difference between
the exact function value and the value of the digital ray (Definition (3.1)) at
ij,k:

vj,k = r̄x
j,k(ij,k)− r̄y

j,k(ij,k). (3.5)

This extra offset caused by the discretisation process makes the transform
redundant.

4 Compression

The previous section stated the algorithm that adaptively partitions a given
image, where the possible triangle splits are dictated by the generated piercing
points. The output of the algorithm consists of both topological data, i.e.
the representation of the tree Tj , and geometrical data, i.e. the sequence of
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normal and vertical offsets. A previous paper [21] discusses the encoding of
the hierarchical mesh structure to a serialized bitstream and explains data
structures used by the normal mesh algorithm. This section focusses on how
the geometric information can be encoded efficiently for images ∈ H. We
introduce a probability model for the normal indices ij,k and vertical offsets
vj,k in order to reduce the overall bitrate given a target signal to noise ratio.
Apart from the local function behavior, the PMF (Probability Mass Function)
of ij,k depends on orientation of the edge ej,k w.r.t. the XY -plane. Once we
have a sound model for the PMF in terms of Hj,k := |Zj,k+1 − Zj,k| and
lj,k := ‖(Xj,k+1, Yj,k+1), (Xj,k, Yj,k)‖ for those indices ij,k, we apply an entropy-
coder to reduce the expected bitrate.

4.1 Model for the vertical offsets

Vertical offsets will have a high probability to have significant values when
piercing points are found on the trajectory of c(x). The detail information or
the high-frequency part of the input signal is gathered into vertical offsets.
According to [18] and confirmed by the experiments shown in Figure 2, the
vertical offsets v, can be modelled by a two-parametric zero inflated geomet-
rical distribution ZID(p, λ) (see [1] and references therein) given by:

v ∼ fV (v) = pδ(v) + (1− p)λ/2(1− λ)v. (4.1)

In the next paragraph we discuss how to obtain the parameters p and λ using
a most-likelihood estimate (MLE) method.

4.1.1 Zero inflated distribution: parameter estimation

Given a parametric distribution π(v|λ). We define the associated zero-inflated
distribution to have:

P (V = 0|p, λ)= p + (1− p)π(0|λ) (4.2)

P (V = v|p, λ)= (1− p)π(v|λ) (4.3)

with p the chance that the hidden state Z finds itself in the δ distribution. We
have the following properties:

E(V |p, λ)= (1− p)Eπ(V |λ)

Var(V |p, λ)= p(1− p)Eπ(V |λ)2 + (1− p)V arπ(V |λ)
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Fig. 2. Histogram of the vertical offsets coming from a large test set of geometrical
images. The figure suggests a zero inflated double geometrical distribution to model
the statistics of the vertical offsets. The parameters produced by the MLE procedure
are p = 0.3955 and λ = 0.0339.

For a sample of size n (vi given) the full likelihood is given by:

L(p, λ|V, Z)=
n
∏

i=1

P (V = vi|Zi = zi)P (Zi = zi)

=
n
∏

i=1

pzi((1− p)π(v|λ))1−zi

=
∏

vi>0

((1− p)π(vi|λ))
∏

vi=0

pzi((1− p)π(0|λ))1−zi (4.4)

The log-likelihood is given by:

log L(p, λ|V ) =N0 log(p + (1− p)π(0|λ)) (4.5)

+ (n−N0) log(1− p) +
∑

vi>0

log(π(vi|λ))

where N0 is the number of zero occurrences.

Suppose we model the samples with a zero inflated geometrical distribution,
i.e., π(v|λ) ∼ λ(1− λ)v, v ∈ N. Equation (4.5) becomes:

log L(p, λ|V ) =N0 log(p +(1−p)λ) (4.6)

+ (n−N0) (log(1−p) + log λ) + log(1− λ)V̄

with V = Evi>0 [vi], the mean of the values vi > 0. We have to maximize
Eq. (4.6) under the constraints 0 ≤ p ≤ 1 and 0 ≤ λ ≤ 1. Note that Eq. (4.6)
is concave within the feasible region. This can be translated into an ICP (in-
equality constrained problem), which can be solved by a Newton minimization
procedure. The derivatives of log L(p, λ|V ) are:
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∂ log L(p, λ|V )

∂p
=N0

(1− π(0|λ))

p + (1− p)π(0|λ)
− (n−N0)

1

1− p
(4.7)

∂ log L(p, λ|V )

∂λ
=N0

π′(0|λ)(1− p)

p + (1− p)π(0|λ)
+
∑

vi>0

π′(vi|λ)

π(vi|λ)

with π′(v|λ) =
∂π(v|λ)

∂λ
. For the case of a zero inflated geometrical distribution

we have π(v|λ) = λ(1− λ)v and π′(v|λ) = (1− λ)v−1 (1− λ(1 + v)). Figure 2
shows the parameter outcome of the minimization procedure applied to exper-
imental data; that is, the vertical offsets resulting from the proposed normal
offset transform applied to a large test set of simple geometrical images.

4.2 Model for the normal indices i

The normal indices can be encoded directly with codewords of ⌈log2 Lj,k⌉ bits,
with Lj,k the number of pixels in the edge ej,k decaying like O(2−j). However,
this way of encoding the normal indices presupposes that those indices are
distributed uniformly, maximising the entropy.

Previous section derived a model for the vertical offsets. When the class of
target functions is the Horizon class H given in section 2, we are now able to
give a model that allows us to efficiently encode normal indices.

For now we assume the trajectory of the contour runs in between the two end
points of ej,k. Remaining scenarios (state) will be discussed at the end of this
section. An algorithm to detect in which scenario an edge finds itself in will
be given in Section 4.2.1.

To lower the entropy we derive an appropriate PMF associated with i for the
class of Horizon images which allows an entropy encoder such as an Huffman
encoder to lower the expected bitrate. The following lemma connects the PMF
to the orientation of an edge somewhere during the decomposition stage as-
suming the function fe above the edge behaves like a step function, which is
true for images belonging to H and the edge endpoints are located at both
sides of the contour. Vertical offsets show up in the derivation since in the
discrete setting normal offsets are incapable of exactly pinpointing a function
value.

Lemma 4.1 Let the image be an instance of H. Assume c(x) = y runs in
between the endpoints of edge e as depicted in Figure 3. Further assume that the
horizontal distance d between the begin point of the edge and the discontinuity
is uniformly distributed on the interval [0, l], with l the euclidian distance in
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the example v0 > 0 while v1 < 0.

the XY -plane between the end points of e:

fD(d) =
1

l
χA(d)with χA(x) =











1, x ∈ A

0, else
, A = [0, l] (4.8)

the signed magnitude of the vertical offsets associated with the begin point and
end point of e are respectively v0, v1 ∈ N having a zero inflated geometrical
distribution (see Eq. (4.1)) and independently distributed with parameters λ0 =
λ1 = λ and p0 = p1 = p. Define i0 and i1 as:

i0 = −H/l (H/2 + v1)

i1 = H/l (H/2 + v0)
(4.9)

then, for 0 < i < l/2, the PDF is given by:

fI(i) =
l
2
− i1
l

[

(1− p)
λ0

2
(1− λ0)

| l
H

i−H
2 | + pδ

(∣

∣

∣

∣

∣

l

H
i−

H

2

∣

∣

∣

∣

∣

)]

+
∑

v0

fV0
(v0)

∑

v1

1− (fI(i0(v1)) + fI(i1(v0)))

i1 − i0
fV1

(v1).

(4.10)

Analogously for − l
2

< i < 0.

Proof 4.1 Assuming v0, v1 independently distributed, the probability mass func-
tion fI(i) is given by:
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fI(i) =
∞
∑

−∞

∞
∑

−∞

fI(i|V0 = v0, V1 = v1)fV0,V1
(v0, v1)dv0dv1

=
∞
∑

−∞

fV0
(v0)

∞
∑

−∞

fI(i|V0 = v0, V1 = v1)fV1
(v1)dv1dv0

(4.11)

with

fI(i|V0 = v0, V1 = v1) := fI(i0(v1))δi0(i)

+
(1− [fI(i0(v1)) + fI(i1(v0))])

i1 − i0
χ[i0,i1]

+ fI(i1(v0))δi1(i)

fI(i0(v1)) :=
l
2

+ i0(v1)

l

fI(i1(v0)) :=
l
2
− i1(v0)

l

The top right picture of Figure 4 shows an instance of the set of distributions
given by Eq. (4.11), together with the other possible states an edge can find
itself into when it comes into contact with a contour. Lemma 4.2 gives normal
index PDF for each of the states. The proof of Lemma 4.2 is similar to the
proof of Lemma 4.1.

Lemma 4.2

(1) Assume that a discontinuity is present between both edge points then the
PDF is given by:

a) Equation (4.10) ; H < l (4.12)

b)p(i) = 1/l, i ∈ [−l/2, l/2] ; H ≥ l (4.13)

0, else (4.14)

(2) Assume that one of the endpoints of the edge is located at the discontinuity
then:

a)p(i) =
1

2

[

(1− p)
λ0

2
(1− λ0)

| l
H

i−H
2 | + pδ

(∣

∣

∣

∣

∣

l

H
i−

H

2

∣

∣

∣

∣

∣

)]

; H < l

(4.15)

b)p(i) =











1/2, i = ±l/2

0, else
; H ≥ l

(4.16)
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Fig. 4. Four edge vs. step function situations together with their associated PMF
for the normal indices given by Eq.(4.13)-(4.16). The two situations at the top of
the figure assume a contour runs through the vertical plane containing edge e. The
two situations at the bottom involve an edge where one of the end points is located
on the contour.The a-part of each group concerns an edge where H < l where the
b-part concerns edges where H ≥ l.
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4.2.1 Finer scale model selection from given coarse scale situation

Previous section enumerated the different PMF to model the normal indices,
given the state of the edge corresponding to the piercing point. Although we
could estimate the state from the image at the encoder side, this data would
additionally have to be transmitted to the decoder. We therefore present a
heuristic procedure to predict the state solely on the offset behaviour known
at a particular time instance.

We differentiate the cases in three groups.

(1) S0: An edge can be approximately flat (S0). From Equation (3.5) we see
that magnitude of the vertical offset v is greatly influenced by the slope
s of the normal ray r. We therefore say that an edge e is flat (∈ S0) is
the slope s = n[x]j,k

/n[y]j,k

|s| <
1

δ
, (4.17)

with δ a tunable threshold parameter.
(2) S1: S1 contains both states 1.a and 1.b
(3) S2: S2 contains states 2.a and 2.b

The last two groups fall into the states mentioned in previous section, once
the group of an edge e is known, the particular instance of the distribution
depicted by Figure (4) can be easily determined by Hj,k and lj,k.

The main difficulty is the separation of the 3 groups only at what will be
known at the decoder side, i.e., Hj,k, lj,k, ij,k. The flow chart given in Figure 5
gives a rough outline of where the decisions are based upon. The procedure

cuts contour

H > lH > l

yes no

no no

parent

1.b)2.a)2.b)

yes yes

1.a)

e

Fig. 5. Decision tree to estimate the state of an edge.

to determine whether or not the edge is crossed by a contour is given by
Algorithm (1). Since our coder is a symmetric coder, Algorithm (1) will be
traversed in exactly the same way at both the encoder and decoder side. The
data needed for a certain decision at the encoder will also be available at the
decoder side.
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Algorithm 1 Group selection procedure

procedure Parent Status(ej,k)
if e has no parents then

goto: No Parent(ej,k)
else if The normal ray of the parent of edge ej,k has not pierced a contour

then
goto: Parent Did Not Pierced Contour(ej,k)

else
goto: Parent Pierced Contour(ej,k)

end if
end procedure

procedure No Parent(ej,k)
goto: S0 or S1(ej,k)

end procedure

procedure Parent Did Not Pierced Contour(ej,k)
if the parent edge belongs to S0 then

goto: S0 or S1(ej,k)
else if Hj−1 < lj−1 then

if i < H2
j−1/(2lj−1)× Lj−1/lj−1 then

goto: S0 or S2(ej,k)
else

goto: S0 or S1(ej,k)
end if

else
e ∈ S2

end if
end procedure

procedure Parent Pierced Contour(ej,k)
goto: S0 or S2(ej,k)

end procedure

procedure S0 or S1(ej,k)
if slope of r satisfies Equation (4.17) then

ej,k ∈ S0

else
ej,k ∈ S1

end if
end procedure

procedure S0 or S2(ej,k)
if slope of r satisfies Equation (4.17) then

ej,k ∈ S0

else
ej,k ∈ S2

end if
end procedure
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For more natural images there could be more than one contour passing through
the vertical plane in between the end points of the edge. In that case it will be
possible for an edge to form a merely flat ‘bridge’ spanning over a canyon-like
region, although its normal offset can be assigned a large value. These images
can be tiled making sure that each tile contains no more than one contour.
This can be obtained by a preprocessing procedure, like presented in [20],
which constructs the initial coarse mesh adapted to the main features of the
function to be processed.

5 Results and Further research

Recently much research has been done to solve the problem of sparsely rep-
resenting two dimensional functions having line discontinuities. Since many
images consist of large smooth areas separated by smooth contours, they can
be interpreted as a regular sampling of such functions. Current transform
coders based on wavelet decompositions have a suboptimal n-terms approx-
imation rate for such images. They fail to produce sparse representations of
smooth line discontinuities.
We proposed a nonlinear refinement procedure based on normal mesh tech-
niques to sparsely represent contours. We adapted the nonlinear transform
towards the digital setting.
We proposed a model for the wavelet coefficients coming from our encoder
and added an entropy encoder to reduce the bit-rate. Here we show several
results on the performance of the proposed encoder.

5.1 Experiments

For the experiments depicted in Figure 6 we used the L2-norm (MSE). Us-
ing the L1-norm, for which the transform performs best, the outcome of our
experiments would be more favorable, since in contrast to L1, the L2-norm
prefers a lot of little errors over a few big errors. The experiments shown in
Figure 6 indicate that the current normal offset encoder as described here does
not yet outperform the JPEG2000 encoder over the entire range. At low rates
the strong aliasing effect of the scheme being a refinement scheme plays the
dominant role. The justification for this is that over the entire range (even for
low resolution triangulations) the vertical offsets are stored losslessly in our
current implementation while they are not the main contributors of the image
quality. Once the mesh is fine enough the distortion decays rapidly. Including
a rate distortion optimized quantizer ([19]) on the vertical offsets starting from
the lossless encoded image will improve the performance at lower rates.
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Fig. 6. The rate distortion curve of a JPEG encoder and a JPEG2000 encoder
together with the rate distortion curve of a normal offset encoder without using
offset modelling (Raw) and a normal offset encoder using the proposed models
as input for an Huffman entropy encoder (Huffman). Note that the gain of using
entropy coding of the non Horizon images kicks in at higher bit rates, when the fine
representation of the contour becomes more and more important.
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Fig. 7. Percentage of the bits allocated to different coefficients for the bottom
(‘circles’) image of Figure 6. (Top) The vertical offsets where not entropy coded.
The normal offsets where coded with a number of bits decaying like log2(O(2−j)).
(Bottom) The bottom Figure shows the reduction in both vertical and normal offsets
when entropy coding is used as explained in Section 4.

Around the lossless rate a strong convergence is seen. For simple geometrical
images, the rate at which a lossless compression is achieved is much lower than
the JPEG2000 as shown in Table 1.

Figure 7 illustrates the gain in the relative bit budget consumed by both nor-
mal and vertical offsets using the proposed model. Figure 8 points out where
most of the distortion is put by both wavelet and normal mesh based image
coders. The comparison on piecewise smooth images (in contrast to piecewise
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Table 1
File size in kilo bytes of lossless encoded test images (Figure 6) using different en-
coders. We note that for ‘simple’ geometrical images the normal offset based algo-
rithms outperform both jpeg standards. For more complex images, e.g. ‘cameraman’
the jpeg standards still perform better, since our encoder has not yet incorporated
a segmentation procedure to create an appropriate initial mesh where the rest of
the refinement procedure is based upon.

Image JPG JPEG2000 Raw Huffman

horizon 2.42 1.70 1.47 1.33

circles 9.97 7.28 4.58 4.17

cameraman 22.5 32 93 75.8

constant images) favours the JPEG2000 as it is equipped with enough vanish-
ing moments to efficiently capture the smooth regions. However, lots of error
is introduced along the trajectory of the smooth contours due to the inability
of tensor product wavelet to efficiently capture geometric smoothness. The
normal offset scheme does quite the opposite, i.e., it does a good job approx-
imating the contour but lacks higher order polynomials to approximate the
smooth evolving regions.

Further research has to be done to finetune different parameters on the level
of the transform as well as on the bitcoding level. For instance more suitable
and image specific basemeshes can be used instead of the trivial diagonal split
of the domain. Parameters p, λ described in Section 4 can be adjusted for each
image and could be made ‘resolution level dependent’. The ‘ad hoc’ algorithm
described in Section 4.2.1 to select the appropriate probability model to encode
a certain offset has to be made more robust. Those measures can still further
improve the performance of the proposed encoder.

5.2 Real-life images

The method presented in this paper is highly sensitive to noise. In order to
reduce this sensitivity, we could define the normal offset between the predicted
pixel value and a smoothed version of the true image. The vertical offset takes
care of the difference between the smoothed and observed values, thereby pre-
serving the perfect reconstruction property (see Fig. 9). In a post-processing
step these vertical offsets can even be adapted to increase the signal to noise
ratio.

Several tools can be included to alleviate some bottlenecks in the performance
of the current algorithm w.r.t. a broader class of images. We can, for in-
stance, incorporate a segmentation procedure to create an appropriate initial
mesh where the rest of the refinement procedure is based upon. This segmen-
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(a) JPEG2000 encoded piece-
wise smooth image (PSNR=45dB,
0.12bpp).

(b) Normal offset encoded piece-
wise smooth image. (PSNR=47dB,
0.13bpp)

(c) Difference image of Fig. 8(a) with
the original.

(d) Difference image of Fig. 8(b) with
the original.

Fig. 8. JPEG2000 and normal offset compressed piecewise smooth image. We see
that the wavelet-based JPEG2000 image coder introduces significantly more error
when approximating the contour.

tation procedure should make sure that each tile contains no more than one
contour. This can be obtained by a preprocessing procedure, like presented
in [20], which constructs the initial coarse mesh adapted to the main features
of the function to be processed. Currently, our implementation encodes the
vertical offsets losslessly while they are not the main contributors of the image
quality. The losslessly encoded vertical offsets account for more than 50% of
the total bit budget (see Fig. 10). The encoding of the vertical offsets should
be done in a rate-distortion framework. That is, only spending as much bits to
lossy encode vertical offsets as is justified by the overall distortion. Another
extension for real-life images is the use of a tree-pruning strategy, similar to the
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Fig. 9. For noisy images we define the normal offset between the predicted pixel
value and a smoothed version of the true image. The vertical offset takes care of
the difference between the smoothed and observed values, thereby preserving the
perfect reconstruction property.

optimal tree pruning algorithm in the CART book [3]. This would avoid the
currently greedy tree-growing algorithm spending too much effort (in terms of
parameters or bits) in approximating textured regions.
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