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Abstract

Research concerning project planning under uncertainty has primarily

focused on the stochastic resource-constrained project scheduling prob-

lem (stochastic RCPSP), an extension of the basic RCPSP, in which the

assumption of deterministic activity durations is dropped. In this paper,

we introduce a new variant of the RCPSP for which the uncertainty is

modeled by means of resource availabilities that are subject to unfore-

seen breakdowns. Our objective is to build a robust schedule that meets

the project deadline and minimizes the schedule instability cost, defined as

the expected weighted sum of the absolute deviations between the planned

and the actually realized activity starting times during project execution.

We describe how stochastic resource breakdowns can be modeled, which

reaction is recommended when a resource infeasibility occurs due to a

breakdown and how one can protect the initial schedule from the adverse

effects of potential breakdowns. An extensive computational experiment
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is used to show the relative performance of the proposed proactive and

reactive strategies. It is shown that protection of the baseline schedule

coupled with intelligent schedule recovery yields significant performance

gains over the use of deterministic scheduling approaches in a stochastic

setting.

1 Introduction

Most of the research in project scheduling deals with the generation of an initial
project schedule (baseline schedule) in a static and deterministic environment
with complete information. Traditional objective functions include minimiz-
ing the project makespan, leveling the resource usage over time, minimizing
the total cost of acquiring the necessary resources, maximizing the project net
present value and minimizing weighted earliness-tardiness penalty costs. For an
extensive overview we refer to Brucker et al. (1999), Herroelen et al. (1998) and
Demeulemeester and Herroelen (2002).

In practice, however, these assumptions will hardly, if ever, be satisfied. As
Aytug et al. (2005) indicate, it is often assumed that ‘a system that works in
a deterministic environment can be engineered to work under at least certain
stochastic conditions’. Whereas for some problems this will indeed be the case
(e.g. Pinedo (1995) shows that the WSPT rule minimizes the average weighted
flow time for the single machine problem in the deterministic case and like-
wise the WSEPT rule minimizes the expected average weighted flow time in
the stochastic case in the class of nonpreemptive static list policies and nonpre-
emptive dynamic policies), for others it will not. For an overview of stochastic
scheduling we refer the interested reader to Scholl (2001) and Nikulin (2004).

We have to protect the initial baseline schedule from the adverse effects of
possible disruptions. This protection is necessary because often project activi-
ties are subcontracted or executed by resources that are not exclusively reserved
for the current project. A change in the starting times of such activities could
lead to infeasibilities at the organizational level (in a multi-project context)
or penalties in the form of higher subcontracting costs. A possible measure
for the deviation between the initial schedule and the realized schedule is the
weighted instability cost. It can be defined as the expected weighted absolute
deviation between the planned and the actually realized activity starting times.
The weight wi, assigned to each activity i, reflects that activity’s importance of
starting it at its planned starting time in the initial schedule. More specifically,
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wi denotes the marginal cost of deviating from the planned starting time of ac-
tivity i during project execution. This marginal cost can be seen as an extra cost
for having subcontractors start later than originally agreed or as an inventory
cost for storing raw materials between the delivery time and the starting time
of the activity. We assume that activities are never started before their planned
starting times si (‘railroad scheduling’) and that the total deviation cost is a
linear function of the absolute deviation. We assume there are no interaction
effects between individual deviation costs.

Minimizing instability then means that we are looking for a schedule which is
able to accommodate disruptions without too much change in activity starting
times, i.e. a robust schedule that satisfies the precedence and resource con-
straints and does not exceed the deadline set by the project’s client. Meeting
this deadline during project execution is encouraged by giving a higher insta-
bility weight to the activity that signals the end of the project. Recent research
by Leus (2003) and Van de Vonder et al. (2005a) considers this objective func-
tion for the case of project scheduling with stochastic activity durations. Other
possible causes for uncertainty in project execution might be, amongst others,
inaccurate time estimates, bad weather conditions or unavailability of resources.
In this paper we study the last of these possible causes.

In machine scheduling, the problem of machines randomly breaking down
has been reasonably well studied for the single machine (Mehta and Uzsoy, 1999)
and the job shop case (Mehta and Uzsoy, 1998). However, except for Drezet
(2005) we are not aware of any existing research in project scheduling dealing
with the stochastic resource availability case. Drezet (2005) considers the prob-
lem of project planning with human resource constraints such as competences,
a limit on the number of hours an employee works per day, vacation periods
and unavailability of employees. A mathematical model as well as several algo-
rithms are presented for building a robust schedule and for repairing a disrupted
schedule.

2 Problem Statement

Aytug et al. (2005) stress the importance of taking potential disruptions into
account when building and executing production schedules. The authors dis-
tinguish between predictive and reactive scheduling. Predictive (proactive)
scheduling approaches try to accommodate uncertainties in advance whereas
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reactive approaches react after the fact.
Purely reactive project scheduling forgoes the construction of a baseline

schedule and solely relies on the use of scheduling policies (Stork, 2001) to de-
cide on-line which activities are to be started at random decision points t that
occur serially through time. These random decision points correspond with the
completion times of the activities and the decision to start a precedence and
resource feasible set of activities at time t can only be based on the information
that has become available up to that time (non-anticipativity assumption).

Contrary to scheduling policies, proactive scheduling is based on the con-
struction of a baseline schedule. This baseline schedule will guide schedule ex-
ecution by providing for each activity its planned periods of execution as well
as the resource units to be reserved during these execution periods. A baseline
schedule is indispensable to coordinate resource allocation between multiple
projects in a multi-project environment and to coordinate outsourced activities
with subcontractors. The arguments Aytug et al. (2005) use to underline the
importance of developing a production schedule in machine scheduling also ap-
ply to project scheduling. Some of the motivations they cite are: verifying the
feasibility of executing the given tasks within a certain timeframe, providing
visibility of future actions for internal and external parties, offering degrees of
freedom for reactive scheduling, evaluating performance and avoiding further
problems.

The aim of proactive scheduling is to build a robust baseline schedule: a
schedule that is protected as much as possible against disruptions during sched-
ule execution. Of course, it is still possible that the robust baseline sched-
ule, despite the built-in protection, becomes infeasible during project execution
(Davenport and Beck, 2002) due to the occurrence of one or more resource
breakdowns and the resulting resource shortage. Therefore, we need a reactive
policy R that dictates how to revert to a feasible schedule that deviates as little
as possible from the original baseline. Proactive-reactive project scheduling thus
implies a combination of a proactive strategy for generating a protected base-
line schedule S with a reactive strategy R to resolve the schedule infeasibilities
caused by the disturbances that occur during schedule execution.

The proactive baseline scheduling problem is an extension of the classical de-
terministic resource-constrained project scheduling problem (RCPSP or problem
m, 1|cpm|Cmax in the notation of Herroelen et al. (2000)) for which a conceptual
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formulation can be written as follows:

minimize sn (2.1)

subject to

si + di 6 sj ∀(i, j) ∈ A (2.2)∑
i:i∈St

rik 6 ak ∀t,∀k (2.3)

A project is commonly represented using the activity-on-node representation
by means of a digraph G = (N,A) where the set of nodes N represents the
activities and the set of directed arcs A the finish-start, zero-lag precedence
relations. When (i, j) ∈ A we say that activity i (i : 1 to n) is an immediate
predecessor of activity j, implying that activity j cannot start before activity
i has finished. Precedence feasibility is enforced by constraints (2.2) where di

is the deterministic duration of activity i and si the planned starting time of
activity i. Constraints (2.3) enforce the renewable resource constraints. When
executing the project, a deterministic amount ak is available of each resource
type k (k : 1 to K). A feasible baseline schedule will always have to respect
this maximal resource availability. The constraints imply that there does not
exist a time period t and a resource type k for which the cumulative resource
requirements of the activities that are in progress during period t exceed the
deterministic per-period availability ak for the considered resource type. Here
rik denotes the number of units of renewable resource type k required per period
by activity i and St is the set of activities that are in progress at time period
t. The objective (2.1) of the deterministic RCPSP is to minimize the project
duration sn.

The main difference with the model dealt with in this paper is that we now
incorporate uncertainty by dropping the assumption of deterministic resource
availabilities. Each of the ak units of resource type k, allocated at the start of
the project, is subject to wear and tear and can therefore break down during
execution, resulting in a real availability of resource type k at time point t of
akt. Furthermore, in order not to deviate too much from the initial baseline
schedule, the objective function becomes:

minimize
∑
i∈N

wi|E(si)− si| (2.4)

The decision variables si represent the planned starting times for each activity

5



i and have to respect the sets of constraints (2.2) and (2.3). Together, they de-
fine the baseline schedule which is represented by the vector S = (s1, s2, . . . , sn).
Because of the stochastic nature of the problem we cannot always stick to this
baseline schedule. The real starting times are consequently stochastic variables
that are represented by the stochastic vector S = (s1, s2, . . . , sn) and that de-
pend on the realization of the stochastic resource availabilities (akt), on the
planned starting times (si) and on the reactive policy R that is used to re-
pair a disrupted schedule. We assume that a ’railroad scheduling’ approach is
used. This means that activities are never started before their planned start-
ing time (si > si), implying that the objective function can be rewritten as∑
i∈N

wi(E(si)− si). Finally, we add a deadline constraint:

sn 6 δ (2.5)

to prevent the construction of an unreasonably long protected baseline schedule.
Using the classification scheme of Herroelen et al. (2000), our problem can

be classified as m, 1,va|cpm, δ|
∑

wi(E(si) − si). The first field specifies the
resource characteristics: (m, 1,va) refers to an arbitrary number of renewable
resource types, each with a stochastic availability that varies over time. The
second field indicates the use of finish-start, zero-lag precedence relationships
and a deterministic project deadline. Finally, the last field shows the objective
function, here the expected weighted instability cost.

The deterministic resource-constrained project scheduling problem is known
to be strongly NP-hard. Allowing for stochastic resource availabilities compli-
cates the problem. Moreover, the analytic evaluation of the objective function
(2.4) is very cumbersome, so that one usually relies on simulation. For NP-
hardness proofs of several cases of the scheduling problem for stability subject
to a deadline and discrete disturbance scenario, we refer to Leus and Herroelen
(2005).

We introduce the example network in figure 1 to illustrate the various proac-
tive and reactive strategies we present in this paper. This graph represents a
project consisting of 10 activities. Above each activity node, we indicate its
planned duration, its resource requirement of a single renewable resource type
with a deterministic per period availability of 8 units (each subject to break-
downs) and its instability weight. Note that activities 1 and 10 are dummy
activities with a duration and a resource usage of 0. Activity 1 indicates the
start of the project whereas activity 10 signals the end. The instability weight

6



for activity 10 is much larger than the other instability weights in order to re-
flect the fact that in practice meeting the project deadline is often deemed more
important than meeting planned activity starting times. In this example we
assume a project deadline of 18. The baseline starting time of the dummy start
activity is then set to the release date of the project (time period 0) whereas the
dummy end activity is assumed to end at the project deadline. Note that for
ease of notation and illustration only one resource type is considered, but the
examples as well as the algorithms presented in this paper are easily extensible
to and will be tested for the multi-resource case.

Figure 1: Example project network

The paper is structured as follows. In section 3 the proactive strategies
will be treated in detail. The reactive policies are then presented in section 4,
where we introduce two list scheduling policies and a tabu search procedure.
Section 5 reports on extensive computational results obtained by testing the
proactive-reactive procedures on a set of randomly generated test instances.
Finally, section 6 presents our overall conclusions.

3 Proactive Strategies

We propose an approach for proactive scheduling in which three choices need to
be made. Each choice consists of two options, giving us a total of 23 different
strategies as can be seen in the decision tree depicted in figure 2. First of
all, the schedule can be built using the optimal solution for the RCPSP as
a starting schedule or alternatively using a schedule in which activities that
have a high impact on instability are scheduled as early as possible so that the
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probability that they get disrupted is lower. Secondly, it needs to be decided
whether to allow for resource slack or instead use the deterministic, maximum
availabilities. Allowing for resource slack means that one plans the project
considering a resource availability that is lower than the amount ak that is
allocated at the start of the project, so that a certain margin exists for absorbing
resource breakdowns. Finally, it is either possible to protect individual activity
starting times by inserting a time buffer of one or more time units in front of
them or alternatively not to explicitly buffer activities at all.

Figure 2: Proactive strategies

3.1 Optimal solution for the RCPSP

The problem under study is an extension of the RCPSP. Since the objective of
the deterministic RCPSP is to minimize the project makespan, the associated
schedule will usually be very dense. This means that activities are scheduled
compactly with as little resource and time slack as possible. In such a schedule
even a minor disruption in the resource availabilities during a scheduling period
will have a major impact on the starting times of all activities that are scheduled
in subsequent periods. Therefore, it can be expected that such a schedule will
perform very badly for the weighted instability cost objective. The optimal
solution for the RCPSP associated with the project instance of figure 1 is given
in figure 3. As expected, little free slack exists in this schedule. Free slack has
been proposed by Al-Fawzan and Haouari (2005) as a metric for measuring the
robustness of a schedule. We can use it here as an ex-ante surrogate measure for
giving an indication of how well the schedule can be expected to perform for the
weighted instability objective function (Lambrechts et al., 2006). The free slack
of an activity is defined as the amount of time the activity can be delayed beyond
its planned starting time without forcing any other activities in the schedule to
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be postponed. In contrast to the traditional free float metric, this measure does
not only take precedence but also resource constraints into account. In our
example the total free slack is equal to 6. Because of the resource constraints,
no activity can be delayed without compromising the execution of subsequent
activities except for activities 6 and 9. Both activities can be delayed with at
most 3 time units while respecting the project deadline (δ = 18). This yields a
total free slack of 6.

Figure 3: Minimal makespan schedule

3.2 Highest cumulative instability weight first

One way to improve schedule robustness is to schedule the activities in de-
creasing order of their cumulative instability weight. We define the cumulative
instability weight of activity i as follows:

CIWi = wi +
∑

j:j∈SUCC∗
i

wj (3.1)

with SUCC∗
i the set of direct and indirect successors of activity i. Because

disruptions propagate throughout the schedule, activities for which a change
in starting time would have a high impact on instability are now less likely to
get severely disrupted than activities with a lower impact since the former are
scheduled earlier in time and are thus less prone to disruptions. The schedule
is constructed in two phases. In the first phase, a precedence feasible priority
list is constructed with the activities in non-increasing order of their CIWi (tie-
breaker is lowest activity number) so that no activity enters the list in front of
one of its predecessors. In the second phase, this priority list is transformed into
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a precedence and resource feasible schedule using the serial schedule generation
scheme that was first introduced by Kelley (1963). The serial schedule genera-
tion scheme sequentially adds activities to the schedule until a feasible complete
schedule is obtained. In each step, the next activity in the priority list is selected
and for that activity the first precedence and resource feasible starting time is
chosen. If we apply this heuristic to our example network, we obtain the vector
of cumulative instability weights: CIW = (102, 73, 54, 58, 57, 47, 39, 44, 43, 38).
This vector corresponds to a priority list L = (1, 2, 4, 5, 3, 6, 8, 9, 7, 10) that yields
the schedule depicted in figure 4 when decoded using the serial schedule gener-
ation scheme. As expected, this schedule has a higher total free slack than the
minimal makespan schedule (13 versus only 6): the free slack amounts to 5 time
units for activity 6, 7 time units for activity 7 and 1 time unit for activity 9.

Figure 4: ‘Highest CIW first’ schedule

3.3 Protection by means of resource slack

The number of renewable resource units of type k actually available in period t is
a random variable akt instead of a deterministic value. That means that each of
the ak resource units originally allocated to the project is subject to breakdowns
characterized by a certain failure time and repair time distribution. Baseline
schedules can be protected against disruptions by including resource slack. This
means that the project is planned using a resource availability a∗k that is lower
than the maximum, deterministic availability ak. In this case, a breakdown of
one or more resource units will not always lead to a disruption of the schedule.
This principle is inspired by the well-known result from factory physics that
the lead time increases in a strongly non-linear fashion with increasing resource
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utilization and that therefore excess capacity is important (Hopp and Spearman,
2001). The required size of the resource buffer will depend on the probability
distribution of the resource availabilities. This probability distribution can be
obtained using the theory of birth-death processes or renewal theory. We opted
for the last approach as this allows us to avoid the assumption of exponentially
distributed failure and repair times. It can be shown (Ross, 1983) that a single
resource unit of resource type k with independent and identically distributed
failure times Xk and independent and identically distributed repair times Yk

has a stationary availability (the probability that the resource is active at a time
in the future):

Ak =
E(Xk)

E(Xk) + E(Yk)
(3.2)

As is commonly done in literature dealing with machine breakdowns, we write
E(Xk) = 1

λk
= MTTFk (mean time to failure), E(Yk) = 1

µk
= MTTRk (mean

time to repair) and ρk = MTTRk

MTTFk
so that:

Ak =
1

1 + ρk
(3.3)

We can now write:

Pr(ak = j) =
(

ak

j

)
Ak

j(1−Ak)ak−j =
(

ak

j

)
ρak−j

k

(1 + ρk)ak
(3.4)

Since we now know the discrete probability distribution of these steady state
availabilities, we can determine the expected value (taking breakdowns into
account) of the resource availability in the steady state for resource type k as

E(ak) = b
ak∑

m=0
mPr(ak = m)c and use it as the buffered availability a∗k. In case

this buffered availability is smaller than max
i∈N

rik , we increase it until the activity
with the highest resource demand for resource type k can be executed. The
schedule is then built using the exact RCPSP method or the ‘highest CIW first’-
method, but now with these adapted, buffered availabilities. Note, however, that
it is possible that the obtained resource buffered schedule exceeds the deadline.
Therefore, we need to add a mechanism that limits the maximal amount of
resource buffering so that the deadline constraint (2.5) is not violated. If the
resource buffered schedule turns out to be deadline-infeasible, we determine the
most constraining resource type, and progressively increase its availability up
to the maximum (original) availability and re-execute the RCPSP or ‘highest
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CIW first’ procedure until the deadline is met. We define the most constraining
resource type as the resource type that leads to the highest decrease in schedule
makespan when its buffered availability is increased by one unit. As a tie-breaker
we choose the resource type with the smallest deviation between the expected
resource availability and the adjusted buffered availability.

Figure 5: Resource buffering applied to a minimal makespan schedule

In our example, adding resource buffering to the minimal makespan schedule
would yield the schedule depicted in figure 5. For this project using a MTTF of
18 and a MTTR of 5, the average availability is equal to b6.26c = 6. Clearly, it is
impossible to construct a feasible schedule for this availability since

∑
i

(diri) >

a∗kδ. Increasing a∗k with one unit and calculating the minimal makespan schedule
for a∗k = 7 gives the schedule in figure 5.

3.4 Time buffering

Instead of or in addition to resource buffering, another form of schedule pro-
tection can be used. Time buffering boils down to the inclusion of slack time
in front of activities in order to absorb potential disruptions caused by earlier
resource breakdowns and the resulting activity shifts. We start from a feasi-
ble baseline schedule to which protection is added by iteratively right-shifting
activities with the aim of protecting the activity starting times as well as pos-
sible. Our objective is to insert a time buffer of size bi in front of the starting
times si of each activity i so that the expected instability is minimized while
not exceeding the deadline.

In order to set correct buffer sizes bi for each activity i, we need to have a
rough idea of the impact of the disruption (Ii) we can expect for that activity
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given a certain baseline schedule S. Disruptions, forcing the activity to start at
a later point in time than originally planned, can occur amongst others when
one or more of the activity’s predecessors finish at a later time than expected
because of resource breakdowns. First of all, we will describe how the duration
increase (∆i) of an activity due to resource breakdowns can be approximated.
We will then show how we can use these expected duration increases to deter-
mine which activities in the schedule will be affected. Finally, we will introduce
a heuristic that selects the activities to be buffered and determines the proper
buffer size, based on the expected impact of resource breakdowns on the activ-
ities constituting the project.

In a preempt-repeat environment, it is assumed that whenever an activity
is disrupted because of a breakdown of one of the resources it is being executed
on, it has to be restarted from scratch after repair of the affected resource. This
means that in reality the time it will take to complete activity i is not di but
di + ∆i. Part of the duration extension of i consists of repair time, the other
part represents the subsequent re-executions due to the preempt-repeat setting.
We will now show how E(∆i) can be calculated using three assumptions. First
of all, we assume that the times to failure (Xk) and the repair times (Yk) for
each resource unit of each resource type k are exponentially distributed with
respective parameters λk = 1

MTTFk
and µk = 1

MTTRk
. The assumption of expo-

nentially distributed interfailure times can be motivated as follows: resources,
whether they are humans, complex machinery or tools, can fail for a wide vari-
ety of reasons. We can therefore consider each resource unit to be composed of
different components, each associated with a possible failure cause, with differ-
ent times to failure. Let N(t) be the total amount of breakdowns up to time t,
split up by components 1 to m as follows: N(t) = N1(t) + N2(t) + ... + Nm(t).
If m is large enough and the times between counts for each breakdown cause are
independent and identically distributed stochastic variables, then the resulting
counting process N(t) will follow a Poisson distribution (Hopp and Spearman,
2001). Because a Poisson counting process corresponds to an exponential dis-
tribution of interarrival times (Girault, 1959), the times between failures will
be exponentially distributed. Unfortunately, this reasoning cannot be so easily
applied to the repair times. However, it is analytically interesting but also prac-
tically acceptable to assume that these times are also exponentially distributed.
The second assumption is that of fixed resource allocations. This means that in
case a resource unit used by activity i breaks down, activity i will be preempted
and repeated after the repair of this resource unit. This implies that it is not
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possible to prevent the preemption of i by assigning it to other resource units.
Finally, resource units are only subject to wear and tear when they are in use.
Therefore, it is only possible for an active unit to break down.

Let us consider resource type k. The duration increase of activity i due to
breakdowns on this resource type can be split up into a part that corresponds to
aggregated repair times and a part that corresponds to aggregated re-execution
times:

∆ik = ∆repair
ik + ∆repeat

ik (3.5)

Both ∆repair
ik and ∆repeat

ik will depend of the number of times activity i is pre-
empted. Let the stochastic variable Bik represent the number of interruptions
experienced by activity i due to breakdowns of resource type k before comple-
tion. During each execution of activity i on resource type k the activity will
either be completed or preempted. Let πik be the probability that activity i is
preempted due to breakdown of k:

πik = 1− [Pr(Xk > di)]rik (3.6)

= 1− [
∫ ∞

di

λke−λkxdx]rik (3.7)

= 1− e−λkdirik (3.8)

(3.9)

This allows us to write:

Pr(Bik = Bik) = (1− πik)πBik

ik (3.10)

We can now write:

∆ik = ∆repair
ik + ∆repeat

ik (3.11)

=
∞∑

Bik=0

[E(∆repair
ik |Bik = Bik) + E(∆repeat

ik |Bik = Bik)] (3.12)

For Bik = Bik we have Bik repairs and Bik re-executions. The expected duration
of a repair is equal to the expected repair duration for a single resource unit
(µk) since the activity breaks down as soon as one resource unit breaks down
and resource units can only break down during the execution of an activity. The
expected duration of a re-execution corresponds to the smallest time to failure
over all resource units used by activity i. The minimum of rik exponentially dis-
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tributed random variables with parameter λk can be shown to be exponentially
distributed with parameter rikλk. Therefore we can write:

∆ik =
∞∑

Bik=0

(1− πik)πBik

ik (BikE[Yk] + BikE[min(Xk1, ...,Xkrik
)])(3.13)

=
∞∑

Bik=0

(1− πik)πBik

ik Bik(
1
µk

+
1

rikλk
) (3.14)

= (
1
µk

+
1

rikλk
)

πik

1− πik
(3.15)

Let us now assume that:
∆i = dmaxk∆ike (3.16)

Of course this is a simplification of reality, but taking the interaction effects be-
tween resource types into account would greatly complicate the results because
of the different parameters of the exponential distributions.

The expected duration increases can now be used to approximate the impact
of resource breakdowns on the given schedule S. For each non-dummy activity
i we determine its direct and transitive predecessors j ∈ PRED∗

i . In case the
predicted finish time of the considered predecessor (sj + dj + E(∆j)) exceeds
si, the planned starting time of activity i, it can be expected that there is
a reasonable chance that activity i will be disrupted. The impact Ii on the
objective function that can be attributed to the disruption of activity i caused
by its predecessors j can be estimated as:

Ii =
∑

j∈PRED∗
i

wimax{0, sj + dj + E(∆j)− si} (3.17)

The non-dummy project activities are placed in a list Q in non-increasing impact
order with the lowest activity number as a tie-breaker. The first activity in
list Q is selected and right-shifted with one time unit. Affected activities are
likewise right-shifted with one time unit in order to keep the schedule precedence
and resource feasible. In case the resulting schedule also respects the deadline
constraint, we can move to the next iteration by recalculating the expected
impacts for each activity for the new schedule S′ and building a new list Q′. In
case the new schedule is not deadline feasible, we revert the move and select the
next activity in Q; if no such activity can be found, the procedure is terminated.
The pseudocode for this pseudo-polynomial approach is given in algorithm 1.
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Algorithm 1 Time buffering heuristic
1: for i := 2 to n− 1 do
2: bi := 0
3: E(∆j) := dmaxk[( 1

µk
+ 1

rikλk
) πik

1−πik
]e

4: end for
5: for i := 2 to n− 1 do
6: Ii :=

∑
j∈PRED∗

i

wimax{0, sj + dj + E(∆j)− si}

7: end for
8: Q := N \ {1, n}
9: sort Q in non-increasing order of Ii (tie-breaker is lowest activity number)

10: bQ(1) := bQ(1) + 1
11: determine S′

12: if s′n 6 δ then
13: S := S′

14: go to line 5
15: else
16: bQ(1) := bQ(1) − 1
17: Q \ {Q(1)}
18: if Q = ∅ then exit else go to line 10
19: end if

We illustrate the time buffering heuristic by describing some of the steps
applied to our example network. Using the procedure to calculate the ex-
pected activity duration increases detailed above, we obtain the duration exten-
sion vector E(∆) = (0, 4, 25, 10, 14, 31, 14, 11, 6, 0). We start from the ‘highest
CIW first’-baseline schedule shown as the top schedule in Figure 6. Calculat-
ing the expected impacts for this schedule yields the disruption impact vector
I = (0, 0, 0, 44, 0, 99, 13, 32, 175, 2432). Activity 10 clearly has the highest im-
pact value but is not considered for buffering because doing so would violate the
deadline of 18 since activity 10 is assumed to start and end at the project dead-
line. Therefore activity 9 is selected and buffered with one time unit, yielding
the second schedule in figure 6. The impact values are indicated between paren-
theses. The activity that is selected for buffering is marked in black. Continuing
the algorithm eventually yields the third schedule of figure 6. The corresponding
vector of buffer sizes is now B = (0, 0, 0, 0, 0, 5, 4, 0, 1, 0).

16



Figure 6: Time buffering applied to a ‘highest CIW first’ schedule

4 Reactive Strategies

After the baseline schedule has been determined, project execution can start.
However, no matter how much we try to protect the predictive schedule against
possible disruptions, we can never totally eliminate their occurrence. The ex-
ecution of the baseline schedule continues either until the completion of the
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dummy end activity, signaling the end of the project, or until a resource conflict
is encountered resulting from the breakdown of one or more resources. When
a resource conflict occurs, this conflict will have to be resolved by postponing
one or more activities in order to restore schedule feasibility. We assume that
preemption is not allowed unless a resource infeasibility due to a resource break-
down is resolved by interrupting the execution of an activity that was in progress
at the time of the breakdown. Furthermore, we assume that this interrupted
activity then has to be restarted from scratch (preempt-repeat). An extension
to a preempt-resume setting would be an interesting topic for further research.

4.1 List scheduling

A good reactive strategy restores schedule feasibility while minimizing the de-
viation from the baseline schedule and preventing future disruptions from oc-
curring. A simple reactive strategy could rely on list scheduling.

A random precedence feasible priority list can serve as a benchmark. As an
alternative, we rely on a scheduled order list that allows us to reschedule the
activities in the order dictated by the schedule, while taking into account the
new, reduced resource availabilities. More specifically, when a disruption occurs
at time t∗, we create a priority list L including the activities that are not yet
completed, ordered in non-decreasing order of their baseline starting times.

The priority list is decoded into a feasible schedule using a modified serial
schedule generation scheme and taking into account the known resource avail-
abilities up to the current time period. The modification of the serial schedule
generation scheme has to do with the case where the current activity taken
from the list is in progress but not yet completed when the infeasibility occurs.
This activity can be left unchanged, or it can be interrupted and repeated. The
pseudocode for this procedure is given in algorithm 2. The new activity starting
times are denoted as s′i, the currently known availabilities as a′kt and the set of
direct predecessors of activity i as PREDi. M is a sufficiently large integer so
that the project ends before time period M .

Activities selected from the list are scheduled as early as possible. For activ-
ities that are in execution during the time of disruption t∗, this means that the
procedure first tries the current scheduled starting time. If this turns out to be
infeasible, the procedure searches for feasibility by starting the activity in the
next time period (t∗+1) and subsequent time periods if necessary. For activities
that did not start yet, it is only necessary to consider the earliest precedence
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Algorithm 2 Modified Serial Schedule Generation Scheme
1: t∗ := time period with resource infeasibility
2: L := precedence feasible ordered list with activities i : si + di > t∗

3: for k := 1 to K, t := 1 to M do
4: if t 6 t∗ then a′kt := akt

5: else a′kt := ak

6: end for
7: for i := 1 to n do
8: if i /∈ L then s′i := si

9: end for
10: for p := 1 to |L| do
11: if sL(p) < t∗ then s′L(p)

:= sL(p)

12: else s′L(p)
:= max{t∗ + 1,maxi∈PREDL(p)

(s′i + di)}
13: while ∃k, t :

∑
i:i∈St

rik > a′kt do

14: s′L(p)
:= t + 1

15: end while
16: end for

feasible starting time. Note that, as we stated in section 2, we never allow an
activity to start before its baseline starting time si.

4.2 Tabu search

Solutions may be improved by superimposing a tabusearch based improvement
heuristic (Glover and Laguna, 1993) on the priority list rule. This procedure will
try to improve the starting solution by iteratively executing the best precedence
feasible adjacent interchange of two activities in the priority list that does not
lead to a state included in the tabu list. The objective is to find a precedence
feasible ordering of activities that corresponds to a feasible schedule that devi-
ates as little as possible from the baseline schedule. This deviation is measured
by calculating the weighted sum of the absolute deviations between the baseline
and the reactive schedule starting times. The advantage of tabu search is that
by using a tabu list (a list of moves or states that are forbidden for a num-
ber of iterations) the procedure can also choose non-improving moves so that
it avoids getting stuck in local optima like traditional local search approaches.
The procedure is explained in algorithm 3.

Our implementation considers a maximum number of iterations MAXITER

that has to be executed before the procedure ends and includes a frequency
based penalty function to further prevent cycling. The length of the tabu list
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Algorithm 3 Tabu-search based reactive procedure

1: set L∗ := L , O∗ :=
∑

i∈N

wi(s′i − si) , T := b
√
|L|c, iter := 0

2: while (iter < MAXITER) do
3: O0 := 999999, i∗ := 0
4: for i := 2 to n− 2 do
5: if (L(i), L(i+1)) /∈ A then
6: exchange L(i) and L(i+1)

7: generate S by applying the modified serial schedule generation
scheme to list L

8: O :=
∑

i∈N

wi(s′i − si)

9: if s′n 6 δ and O + freqL(i),s
′
L(i)

+ freqL(i+1),s
′
L(i+1)

< O0 then

10: if (iter > tabuL(i),s
′
L(i)

AND iter > tabuL(i+1),s
′
L(i+1)

) OR O < O∗

then
11: store i → i∗

12: O0 := O
13: end if
14: end if
15: exchange L(i) and L(i+1)

16: end if
17: end for
18: if i∗ 6= 0 then
19: freqL(i),s

′
L(i)

+ 10 , freqL(i+1),s
′
L(i+1)

+ 10

20: tabuL(i),s
′
L(i)

:= iter + T , tabuL(i+1),s
′
L(i+1)

:= iter + T

21: exchange L(i∗) and L(i∗+1)

22: if O =
∑

i∈N

wi(s′i − si) < O∗ then

23: O∗ := O AND L∗ := L
24: end if
25: end if
26: iter := iter + 1
27: end while
28: generate S by applying the modified serial schedule generation scheme to

list L∗
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is set to b
√
|L|c. The best solution that is found so far is stored in L∗ and

has an objective function value equal to O∗. O0 then is the objective function
value of the best adjacent interchange found so far in the current iteration. The
frequency based penalties are stored per pair (i, si) in the variables freqi,si . A
value of 10 was chosen because this yielded the best overall results and because
a sufficiently large penalty is necessary to significantly change the usually rela-
tively large objective function value. Likewise, the tabu status is stored in the
variables tabui,si

. Observe that an aspiration criterion is included: in case a
tabu solution L has an objective function that outperforms the best solution
value that was found so far (O < O∗), then the tabu status will be overridden
and the solution will be stored anyway.

In order to illustrate the reactive procedure we include the example in figure
8. The schedule shown in figure 7 is disrupted in period 10 due to the breakdown
of two resource units.

Figure 7: Disturbed schedule: 2 units down in period 10

Keeping the original schedule order, the partial priority list (3, 7, 6, 8, 9, 10)
is obtained, which yields the repaired schedule depicted in the top part of figure
8. However, improvement is possible. If we preempt and postpone activity 7
instead of activity 6, we obtain the partial priority list (3, 6, 7, 8, 9, 10) and the
schedule depicted in the bottom part of figure 8. The former schedule corre-
sponds to a weighted schedule deviation cost of 9, whereas the latter schedule
yields a weighted deviation cost of only 2.
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Figure 8: Reactive improvement procedure: scheduled versus improved ordering

5 Results

5.1 Experiment

The above algorithms were coded in Microsoft Visual C++ 6.0 and executed on a
Dell Optiplex GX270 workstation. In order to evaluate the instability objective
we use simulation. For determining the optimal solution to the deterministic
RCPSP, we use the branch-and-bound algorithm developed by Demeulemeester
and Herroelen (1992,1997).

The instability weights wi for all non-dummy activities are drawn from a
discrete, triangularly shaped distribution between 1 and 10 with P (wi = x) =
0.21− 0.02x. Corresponding to what can be expected in real-life projects, most
activities will have a low instability weight whereas only a minority are more
heavily penalized for being started later than planned. The instability weight
of the dummy end activity represents the importance of meeting the projected
deadline and is set equal to β times the average of the instability weight dis-
tribution function, which is 3.85 for P (wi = x). Because meeting the project
deadline is usually deemed more important than starting each activity at the
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planned starting time, we set β = 10 for our experiment.
The project deadline is derived from the minimal makespan schedule. In

a static and deterministic environment, the lower bound on the makespan,
CRCPSP

max , corresponds to the makespan of the schedule obtained when optimally
solving the RCPSP. It seems reasonable to assume that the project manager will
prefer a makespan that does not deviate too much from this lower bound. There-
fore, we set the deadline of the robust schedule at CRCPSP

max (1 + α), where the
deadline factor α is a parameter chosen by the project manager that constitutes
the trade-off between project stability and project duration (Van de Vonder
et al., 2005b).

As mentioned in section 3.4, it can be shown that resource breakdowns can
be modeled using exponential distributions with the parameters MTTFk and
MTTRk. We draw the MTTRk values from a uniform discrete distribution
between 1 and 5. The values for MTTFk are drawn from a uniform discrete
distribution between 50% and 150% of CRCPSP

max .
As a test set for assessing the effectiveness of the proactive-reactive strate-

gies, we use the 480 30-activity RCPSP instances of the well-known PSPLIB set
of test problems (Kolisch and Sprecher, 1997). Each combination of a proactive
policy and a reactive policy was tested using 10 replications for each problem
instance, each having different MTTFk’s and MTTRk’s. Furthermore, we used
50 iteration steps for the reactive tabu search.

5.2 Computational Results

The computational results are shown in tables 1, 2 and 3. The results shown
in table 1 were obtained for a tight deadline setting α = 15%, those in table 2
for α = 30%, and those in table 3 for an ample deadline setting of α = 45%.

We list the median values of the weighted instability costs over all projects and
MTTF-MTTR scenarios for the eight proactive scheduling combinations (time
buffering or not, resource buffering or not, in combination with a minimum
makespan schedule or a schedule obtained using ‘highest CIW first’) in com-
bination with the three reactive procedures (random list scheduling, scheduled
order list scheduling and tabu search). The numbers shown in italic in the last
column give the average weighted instability cost value for each of the proactive
scheduling rules, the italic numbers in the bottom row represent the average
instability cost value for each of the reactive procedures.

Let us first have a look at the results for the proactive procedures. As could
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be expected, a proactive scheduling procedure using time buffering always seems
to outperform procedures that do not. Of course, the possible improvement of
time buffering directly depends on the degree of freedom offered to the time
buffering algorithm for inserting buffers in the schedule. Therefore, whereas for
the α = 30% scenario, an average improvement of 41.27% can be observed for a
minimal makespan schedule, this decreases to 32.18% for the ‘highest CIW first’-
schedule and only 25.24% for a resource buffered ‘highest CIW first’-schedule.
Similar results hold when varying the deadline factor. For minimal makespan
schedules, a 54.86% improvement seems to be possible when α = 45% compared
to only 21.92% when α = 15%.

Resource buffering performs quite well, offering average improvements of
60.19% for the minimal makespan case. Again, the improvement potential
decreases as the deadline factor is decreased. Taking into consideration the
promising required computation time, resource buffering based strategies can-
not be neglected. In case of minimal makespan scheduling, for 83 of the 480 test
instances the calculated buffered availability turned out to be too low. However,
for ‘highest CIW first’ scheduling the picture is slightly different. For the net-
works for which ‘highest CIW first’ scheduling respected the project deadline,
the average availability turned out to be insufficient to obtain a feasible schedule
for 14.79% of the cases when α = 15% and for 17.29% when α = 30% and when
α = 45%.

For most cases, ‘highest CIW first’ performs better than minimal makespan
scheduling. This is not surprising since we actively try to improve the objective
function value of the minimal makespan schedule. However, for α = 30% the
use of time buffering actually seemed to favour minimal makespan scheduling.
A possible reason might be that minimal makespan scheduling creates a shorter
schedule in which more opportunities for time buffering exist. On the other
hand, similar results were not found for α = 45%. For α = 45% the combinations
based on ‘highest CIW first’ performed slightly better than the ones based on
minimal makespan. Also note that for α = 15%, 30%, 45%, determining the
‘highest CIW first’-schedule turned out to be impossible in respectively 26.46%,
3.13% and 0.00% of the instances, because the corresponding schedule exceeded
the deadline.

The results for the reactive strategies are as expected. Random list schedul-
ing performs worst. Scheduled order list scheduling offers a significant perfor-
mance increase. Tabu search allows further improvements upon scheduled order
list scheduling.

24



Table 1: Median of weighted instability for α = 15%
random list scheduled order tabu search

no
time
buf

no res
buf

min Cmax 1348.55 325.55 276.60 650.23
max CIW 1004.60 225.60 177.90 469.37

res buf
min Cmax 612.55 122.50 112.20 282.42
max CIW 524.10 104.00 76.50 234.87

time
buf

no res
buf

min Cmax 1080.30 234.50 208.35 507.72
max CIW 746.20 152.70 140.10 346.33

res buf
min Cmax 541.10 107.35 96.50 248.32
max CIW 376.10 80.70 72.60 176.47

779.19 169.11 145.09

Table 2: Median of weighted instability for α = 30%
random list scheduled order tabu search

no
time
buf

no res
buf

min Cmax 1117.40 296.50 239.30 551.07
max CIW 1011.30 243.90 198.80 484.67

res buf
min Cmax 477.40 96.75 80.80 218.32
max CIW 433.40 82.90 67.80 194.70

time
buf

no res
buf

min Cmax 707.85 141.65 121.35 323.62
max CIW 711.40 145.90 128.80 328.70

res buf
min Cmax 293.15 53.65 49.10 131.97
max CIW 333.30 55.40 48.00 145.57

635.65 139.58 116.74

Table 3: Median of weighted instability for α = 45%
random list scheduled order tabu search

no
time
buf

no res
buf

min Cmax 1025.15 296.50 232.30 517.98
max CIW 866.30 234.40 188.00 429.57

res buf
min Cmax 393.05 93.85 78.65 188.52
max CIW 322.60 68.50 55.10 148.73

time
buf

no res
buf

min Cmax 501.20 104.35 95.90 233.82
max CIW 486.40 97.10 87.60 223.70

res buf
min Cmax 173.15 39.85 36.10 83.03
max CIW 173.90 35.60 29.20 79.57

492.72 121.27 100.36

Table 4: Average CPU time in seconds
α = 15% α = 30% α = 45%

proactive

no
time
buf

no res
buf

min Cmax 0.066 0.066 0.068
max CIW 0.000 0.000 0.000

res buf
min Cmax 0.173 0.076 0.078
max CIW 0.001 0.001 0.000

time
buf

no res
buf

min Cmax 0.149 0.188 0.234
max CIW 0.172 0.189 0.236

res buf
min Cmax 0.124 0.162 0.209
max CIW 0.149 0.163 0.208

reactive
random list 0.000 0.000 0.000
scheduled order 0.000 0.000 0.000
tabu search 0.069 0.070 0.073
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Table 4 lists the average required CPU times in seconds. Proactive policies
based on ‘highest CIW first’ are computationally very cheap. This is not sur-
prising given the simple schedule construction procedures based on the serial
schedule generation scheme. Minimal makespan scheduling is slower because of
the exact branch-and-bound approach. Especially when looking at the case of
α = 15% we see that the minimal makespan procedure combined with resource
buffering is rather slow. This is probably due to the fact that given the restric-
tive deadlinefactor the procedure has to be executed a number of times until the
buffered availability allows for the creation of a deadline feasible schedule. The
time buffering procedure is also quite demanding with increasing computation
times as the deadlinefactor increases. The simple reactive policies are very fast,
tabu search, however, is computationally slightly more expensive.

6 Conclusion

In this paper we gave an overview of the challenges a project manager has to
deal with in an environment characterized by uncertain resource availabilities.
We gave an overview of the literature on scheduling under uncertainty and un-
derlined the necessity of building a proactive baseline schedule for minimizing
weighted instability. For the generation of a robust baseline schedule we pro-
posed eight strategies. First of all, a starting schedule can be built using for
example minimal makespan scheduling or ‘highest CIW first’ scheduling. This
schedule can then be protected against the effects of disruptions by using the av-
erage resource availabilities, obtained from steady-state probability calculations,
instead of the given deterministic availabilities. Alternatively or additionally,
protection can be added in the form of explicitly inserted idle time. To determine
where and in what amount to insert these so-called time buffers, we developed a
time buffer allocation heuristic based on the estimation of the expected impacts
of activity duration prolongations due to resource breakdowns. The advantages
of ‘highest CIW first’ scheduling, combined with resource buffering and time
buffering, immediately become apparent when comparing the weighted insta-
bility results with those from a minimal makespan strategy without buffering.
From a simulation experiment using the PSPLIB set of test problems we were
able to observe an average improvement of 77%.

Unfortunately, no matter how much one tries to protect the initial sched-
ule, the occurrence of disruptions during project execution can never be totally
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avoided. Therefore reactive policies, indicating how to restore schedule feasi-
bility after the occurrence of a resource breakdown, are required. We proposed
three reactive policies to resolve infeasibilities resulting from schedule disrup-
tions. A random order rule was included for benchmarking purposes. The
scheduled order rule seems to perform reasonably well in comparison but can
still be improved by tabu search at the cost of an increase in computation time.
Here the computational experiment also immediately showed the advantages of
using an intelligent reactive strategy. Using scheduled order instead of random
order allowed us to obtain results that were on average 77% better. A fur-
ther improvement of about 16% was possible when superimposing a tabusearch
improvement procedure on the original order rule.

In conclusion, we were able to show that a combination of ‘highest CIW first’
scheduling, resource buffering, time buffering and a reactive strategy based on
an improvement of the scheduled order rule, allows for an improvement of the
objective function of 96% compared to minimal makespan scheduling without
any buffering using a naive random order strategy.
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