
Security by Contract on the .NET Platform

Lieven Desmet†, Wouter Joosen†, Fabio Massacci‡, Pieter Philippaerts†,
Frank Piessens†, Ida Siahaan‡ and Dries Vanoverberghe†

Pieter.Philippaerts@cs.kuleuven.be
†DistriNet Research Group, Department of Computer Science

Katholieke Universiteit Leuven, Celestijnlaan 200A, B-3001 Leuven, Belgium
‡Department of Information and Communication Technology

Università di Trento, Via Sommarive 14, I-38050 Povo (Trento), Italy

ABSTRACT
Over the last few years, the success of GPS-enabled PDAs
has finally instigated a breakthrough of mobile devices. Many
people now already have a device that can connect to the
internet and run untrusted code, typically a cell-phone or
PDA. Having such a large interconnected and powerful com-
puting base presents some new security issues. In order to
counter new threats, the traditional security architectures
need to be overhauled to support a new and more flexible
way of securely executing mobile code.

This article describes the concept of security-by-contract
(SxC) and its implementation on the .NET platform. This
new model allows users to guarantee that an untrusted ap-
plication remains within the boundaries of acceptable be-
havior, as defined by the user herself. A number of different
techniques will be presented that can be employed to enforce
this behavior.

In order to support the SxC paradigm, some new steps can
be introduced in the application development process. In
addition to building an application, developers can create an
application contract and securely bind this contract to the
application. The application deployment process supports
legacy applications developed without such contracts, but
it can support more advanced enforcement technologies for
those applications that are SxC aware.

1. INTRODUCTION
The ubiquitousness of mobile devices has given birth to a

whole new spectrum of mobile applications. These applica-
tions can be downloaded on the fly, and are often used for
only a short period of time. One example is an electronic
tourist guide. When a tourist arrives in a historically impor-
tant city, she might want to download an application that
can lead her car to the different touristic hotspots. This elec-
tronic guide can be distributed in public places, like the local
train station or a nearby airport. Of course, all this means

that the tourist guide needs to be able to communicate with
the navigation system in order to function properly. This
interaction is necessary for this sort of application, but it’s
not something that should be enabled for every application
that the user downloads to her device.

As mobile applications become more prevalent, a small
percentage of these applications will be malicious in nature.
It is up to the security architecture of a mobile device to pro-
tect users from these malicious applications, but the current
implementation fails to do so. The .NET Compact Frame-
work offers no protection for mobile code whatsoever. The
Code Access Security (CAS, [9]) system that is implemented
in the full version of the .NET framework, is not supported
on the compact framework. The only defense that stands
between a user and malicious code, is the Windows CE se-
curity architecture [8]. But this too is far from sufficient to
adequately protect users from harmful code.

The security system of Windows CE can run in different
modes, depending on the needs of the user. In the more
secure ’two-tier’ mode, applications can be run in a trusted
or partially trusted context. In a trusted context, an ap-
plication runs unrestricted, whereas in a partially trusted
context it is prohibited from accessing a predefined set of
sensitive services, thus limiting the amount of damage it
can do. When an application is started, the operating sys-
tem checks the digital signature on the executable. If the
signature traces back to a certificate in the trusted certifi-
cate store, the application is executed in a trusted context.
Likewise, if the signature traces back to a certificate in the
untrusted certificate store, the application is executed in a
partially trusted context. If the signer is unknown, if the sig-
nature is invalid, or if no signature is present, the operating
system will ask the user whether the application should be
executed. When the user indicates that the system should
run the application, it is executed in a partially trusted con-
text.

This signature-based system doesn’t work well in the case
of roaming mobile code. The first problem is that the deci-
sion of allowing an application to run or not, is too difficult
for a user to make. She would like to run an application
as long as the application doesn’t misbehave or doesn’t vio-
late some kind of policy. But she is in no position to know
what the downloaded application exactly does, so she cannot
make an educated decision to allow or disallow the execution
of a program. A second problem is that certifying an appli-
cation by a trusted third party is rather expensive. Many



of these mobile application developers are small companies
that do not have the resources to certify their applications.
A third, and perhaps most damning, problem is that these
digital signatures do not have a precise meaning in the con-
text of security. They confer some degree of trust about the
origin of the software, but they say nothing about how trust-
worthy the application is. Cases are already known where
malware was signed by a commercial trusted third party [11].
This malware would have no problems passing through the
Windows CE security architecture, without a user noticing
anything.

The European FP6 project Security of Software and Ser-
vices for Mobile Systems (S3MS) has addressed these issues
by working out a security-by-contract (SxC) paradigm for
the development, deployment and execution of mobile ap-
plications. SxC supports a number of different technologies
that verify or enforce security policies. In the case of the
tourist guide, the user could run the guide and enforce a
policy where the guide can access the navigation system,
but cannot access other resources such as the network or
the file system. When a malicious application tries to ac-
cess one of these restricted resources, the SxC system will
prevent it from doing so.

Taking full benefit of this new paradigm does require some
changes to the development and deployment process. The
development cycle must be modified to include the creation
and maintenance of application contracts. Then, during
deployment, the necessary checks must be incorporated to
make sure that the application contract is compatible with
the system policy, and to verify that the contract hasn’t
been tampered with. However, the paradigm also supports
legacy applications without contracts.

2. SECURITY BY CONTRACT
The concepts of system policies and application contracts

are of paramount importance in a SxC system. This section
will give a definition of a policy and a contract. Furthermore,
the updated software development life cycle is presented,
with a key focus on the differences between the traditional
and the new life cycle.

This section discusses SxC at a conceptual level. More
technical detail will follow in later sections.

2.1 Policies versus contracts
Loosely speaking, a system policy is a set of rules to which

an application must comply. These rules typically limit the
access of an application to a specific part of the system API.
For instance, there could be a set of rules to prohibit appli-
cations from accessing the network or to limit the access
to the file system. These accesses are also called security-
related events (SREs). One could think of a policy as an
upper-bound description of what applications are allowed
to do. System policies are defined by the owner of a mobile
device.

Application contracts are very similar, but instead of defin-
ing the upper-bound of what an application can do, it de-
scribes the upper-bound of what the application will do.
It’s the ‘worst case’ scenario of security-related behavior of
an application. The contract is typically designed by the
application developer and is shipped together with the ap-
plication as metadata.

If we go back to the tourist guide example, a contract for
this application could be: “This application will only access

the navigation system and show a window on the screen.” It
specifies what the application will do. The device, to which
the application is deployed, could have the following policy:
“An application cannot access the network, and cannot ac-
cess the file system, except for its installation directory. It
is free to use other resources.” In this case, the application
contract would be compatible with the system policy, and
the application should be allowed to run.

2.2 The software development life cycle
To take full advantage of this new paradigm, applications

have to be developed with SxC in mind. This means that
some changes occur in the typical Develop-Deploy-Run ap-
plication life cycle. Figure 1 shows an updated version of
the application development life cycle.

The first step to develop an SxC compliant application,
is to create a contract to which the application will adhere.
Remember that the contract represents the security-related
behavior of an application and specifies the upper-bound of
calls made to SREs. Designing a contract requires intimate
knowledge of the inner workings of the application, so it’s
typically done by a (lead-)developer or technical analyst.
Some mobile phone operators, companies or other authori-
ties may choose to publish contract templates that can then
be used as a basis for new application contracts. Once the
initial version of the contract has been specified, the appli-
cation development can begin. During the development, the
contract can be revised and changed when needed.

After the application development, the contract must some-
how be linked to the application code in a tamper-proof
way. One straightforward method to do this, is by having
a trusted third party inspect the application source code
and the contract. If they can guarantee that the applica-
tion will not violate the contract, they sign a combined hash
of the application and the contract. Another way to link
the contract and the code, is by generating a formal, verifi-
able proof that the application complies with the contract,
and adding it to the application metadata container. This
concept is called proof-carrying code [10]. When this step
is completed, the application is ready to be deployed. The
application is distributed together with its contract and op-
tionally other metadata such as a digital signature from a
third party or a proof.

When the program is deployed on a mobile device, the
SxC framework checks whether the application contract is
compatible with the device policy. This process is called
matching. What essentially happens is that the SxC frame-
work checks whether the security behavior described in the
contract is a subset of the security behavior allowed by the
policy. If it is, the application is allowed to run as-is. If
the contract is not a subset of the policy, the application is
treated as an application without a contract. We will discuss
in the next section how such applications are monitored for
compliance with the policy at run time.

Matching is one example of a policy enforcement technol-
ogy. It ensures that whenever an application is run, it com-
plies with the rules dictated by the system policy. If it can-
not make this assurance, the matching fails. Other types
of enforcement technologies can be used to give a similar
guarantee.

2.3 Variants of the development life cycle
The scenario in the previous section showed how an appli-



Figure 1: The application development life cycle

cation with SxC metadata would be produced and deployed
to a mobile device. There is however an important need to
also support the deployment of applications that are not de-
veloped with SxC in mind. This backwards compatibility is
a make-or-break feature for the system.

When an application without a contract arrives on the
mobile device, there is no possibility to check for policy com-
pliance through matching. No metadata is associated with
the application that can prove that it does not break the
system policy. A solution for this problem is to enforce the
system policy through run time checking.

One example of a run time policy enforcement technol-
ogy is inlining. During the inlining process, the application
is modified to intercept and monitor all the calls to SREs.
When the monitor notices that the application is about to
break the policy, the call to the SRE that causes the policy
to be broken is canceled.

The strength of run time checking is that it can be used to
integrate non-SxC aware applications into the SxC process.
A result of having this component in the system is that it is
usable as is, without having to update a plethora of existing
mobile applications.

A second variant of the development life cycle is where an
existing application is made SxC-aware. It can sometimes
be difficult to compose a contract for an application that
may have been written years ago by a number of different
developers. Instead of investing a lot of time (and money)
into finding out which rules apply to the legacy application,
an inlining-based alternative could be a solution.

The key idea is to use an inlining technique as described
in the first part of this section. However, instead of inlining
the application when it is loaded, the application is inlined
by the developer. After being inlined, the application can
be certified by a trusted third party.

There are a number of benefits of this approach, compared
to on-device inlining. A first advantage is that the parts of
the contract that can be manually verified by the trusted
third party do not have to be inlined into the application.
For instance, imagine that an existing application should
comply with the policy “An application cannot access the

SCOPE Session

SECURITY STATE

int bytesSent = 0;

BEFORE int sent = System.Net.Sockets.Socket.Send

(byte[] array)

PERFORM

array == null ->

bytesSent + array.Length <= 1000 ->

AFTER int sent = System.Net.Sockets.Socket.Send

(byte[] array)

PERFORM

true -> bytesSent += sent;

Figure 2: “A CONSPEC policy, limiting the network
data transfer”

network, and cannot write more than 1000 bytes to the hard
disk.”A third party can easily verify whether the application
will break the first part of the policy. If the application
contains no network-related code, it will not break this part
of the policy. The second part of the policy may be harder to
verify, if the application does contain some file-related code
but if it is unclear how many bytes are actually written to
the hard disk. In this case, the developer could inline the
application with a monitor that only enforces the second
part of the policy, but the application will nevertheless be
certified for the full policy.

Inlining large applications on a mobile device can be time
consuming. Going through the inlining process before de-
ploying the application eliminates this problem. It speeds
up the application loading process, which is a second advan-
tage.

A final advantage is that the developer can do a quality
assurance check on the inlined application. This is useful to
weed out subtle bugs and ensure that the inlined application
meets the expected quality standard of the developer.

3. POLICIES AND POLICY ENFORCEMENT
The previous sections have given an introduction to SxC

and how it can be used to securely execute mobile code.
This section will delve a bit deeper into the technical details
of the platform, starting with an informal definition of the
CONSPEC policy language. This is followed by an overview
of some of the different enforcement techniques.

3.1 Informal definition of CONSPEC
To express the different system policies and application

contracts, some kind of descriptive language is needed. One
such language is the CONSPEC policy and contract lan-
guage [4]. In this language, rules can be described on so-
called security-related events (SRE). In the case of the .NET
SxC implementation, these SREs correspond to security-
sensitive calls from an application into the .NET base class
library. Examples of these calls are methods that open files,
network connections or give access to sensitive data.

Figure 2 contains a small example of a CONSPEC pol-



icy. The first line in the CONSPEC source sets the scope of
the contract or policy. The scope defines whether the CON-
SPEC rules act on a single application instance, on all the
instances of a specific application, or on every application
in the system. A session scope acts on single application
instances. Hence, the example of figure 2 that imposes a
1000-byte network limit means that every instance of an ap-
plication can send at most 1000 bytes. A second type of
scope is a global scope. Rules in such a global scope act
on all applications together. If we modify the example in
figure 2 to use a global scope instead of a session scope,
the meaning of the rules would become ”all applications on
the system combined may send up to 1000 bytes over the
network”. Finally, a third multi-session scope is supported.
This scope fits in between the global and session scopes. A
multi-session scope defines rules for all instances of the same
application.

The scope declaration is followed by the security state.
This security state contains a definition of all the variables
that will be used to store the CONSPEC state. In the exam-
ple of figure 2, this will be a variable that holds the number
of bytes that have already been sent. The ability for a CON-
SPEC policy to keep track of state is a critical difference be-
tween the SxC system and traditional security systems such
as code access security. Where CAS can only either allow
or deny a call to a specific library function, the SxC system
can allow such a call as long as a particular precondition is
met.

The security state is followed by one or more clauses. Each
clause represents a rule on a security-relevant event. These
rules can be evaluated before the SRE is called, after the
SRE is called, or when an exception occurs. A clause def-
inition consists of the ’BEFORE’, ’AFTER’ or ’EXCEP-
TIONAL’ keyword to indicate when the rule should be eval-
uated, the signature of the SRE on which the rule is defined,
and a list of guard/update blocks. The method signature
corresponds largely to something a C# programmer would
expect.

As the name implies, a guard/update block consists of
first a guard and then an update block. The guard is a
boolean expression that is evaluated when a rule is being
processed. If the guard evaluates to true, the corresponding
update block is executed. All state changes that should oc-
cur can be incorporated in this update block. When a guard
evaluates to true, the evaluation of the following guards (and
consequently the potential execution of their corresponding
update blocks) is skipped.

If none of the guards evaluates to true, this means the
policy does not allow the SRE. For example, in figure 2, if
the current state of the policy has bytesSent = 950, then a
call to the Send method with an array of length 55 will fail
all the guards.

3.2 Overview of enforcement technologies
A number of different enforcement technologies can be

used to make sure that an application complies with a de-
vice policy. Section 2.2 describes the most common scenario
of how a policy can be enforced upon an application, but
other options are available. The enforcement architecture is
pluggable, so new enforcement modules can be easily inte-
grated and used. This section gives an overview of the most
common enforcement technologies.

3.2.1 Digital signatures
One way to enforce a policy is to have a trusted third

party certify that an application complies to a given policy.
This trusted party would have a different public/private key
pair for every different policy it certifies. An application
developer would then send his application to this trusted
party for compliance certification with one of the trusted
party’s policies. When the application is found to comply
with the policy, it gets signed with the key corresponding to
that policy. The signature can be contained in the applica-
tion metadata, or can be embedded in the executable itself
(using the Authenticode mechanism).

Notice the subtle difference between the meaning of the
digital signature in the SxC system and in the standard Win-
dows CE security architecture. Both systems make use of
the exact same mechanism to verify the signature on an ap-
plication, but on the SxC system, the signature tells more
about the application than simply its origin. It certifies
that the application will not violate a specific policy. It cer-
tifies that this application will not harm the mobile device,
whereas a signature in the Windows CE security architec-
ture gives no precisely specified guarantees.

The upside of using this enforcement technology is that it
is relatively simple to implement and use. However, third
party certification can be costly, and requires trust in the
certifying party.

3.2.2 Matching
The operation of matching the application’s claim with

the platform policy is solved through language inclusion [1].
The contract and the policy are interpreted as automata
accepting sequences of SRE’s. Given two such automata
AutC (representing the contract) and AutP (representing
the policy), we have a match when the language accepted
by AutC (i.e. the execution traces of the application) is a
subset of the language accepted by AutP (i.e. the acceptable
traces for the policy).

For interesting classes of policies, the problem of language
inclusion is decidable.

3.2.3 Proof-carrying code
An alternative way to enforce a security policy is to stat-

ically verify that an application does not violate this policy.
On the one hand, static verification has the benefit that
there is no overhead at runtime. On the other hand, it often
needs guidance from a developer (e.g. by means of annota-
tions) and the techniques for performing the static verifica-
tion (such as theorem proving) can be too heavy for mobile
devices. Therefore, with proof-carrying code [15], the static
verification produces a proof that the application satisfies
a policy. In this way, the verification can be done by the
developer, or by an expert in the field. The application is
distributed together with the proof. Before allowing the ex-
ecution of an application, a proof-checker verifies that the
proof is correct for the application. Because proof-checking
is usually much more efficient than making the proof, this
step becomes feasible on mobile devices.

3.2.4 Inlining
A final enforcement technology is policy inlining. During

the inlining process, the SxC system goes through the appli-
cation code and looks for calls to SREs. When such a call is
found, the system inserts calls to a monitoring component



before and after the SRE. This monitoring component is a
programmatic representation of the policy. It keeps track
of the policy state and intervenes when an application is
about to break the policy. After the inlining process, the
application complies with a contract that is equivalent to
the system policy.

The biggest advantage of this technique is that it can be
used on applications that are deployed without a contract.
It can be used as a fall-back mechanism for when the other
approaches fail and it can also ensure backwards compat-
ibility. So, even in the case of contract-less applications,
the SxC framework can offer guarantees that the applica-
tion will not violate the system policy. A disadvantage is
that the application is modified during the inlining process,
which might lead to subtle bugs. Also, the monitoring of
the SREs comes with a performance hit. The performance
hit is strongly dependent on the complexity of the policy
being enforced. However, our preliminary experience with
the prototype implementation indicates that the decrease in
performance is small.

4. IMPLEMENTATION ON .NET
The SxC system presented in this paper has been im-

plemented on the .NET compact framework as part of the
S3MS project [12, 14]. A complementary Java version has
also been developed in the context of this project.

To further clarify the architecture and implementation of
the SxC system, three common scenarios are presented. In
the first scenario, the creation, management and distribu-
tion of policies is investigated. The second scenario zooms
in on the deployment and loading of an SxC application.
And finally, the third scenario explains how the execution
monitoring takes place. Figure 3 shows a detailed overview
of the architecture, and the important components for each
scenario.

4.1 Policy management and distribution
System policies can be written by anyone, but in prac-

tice it can be expected that only a few people will actually
write policies. Writing policies requires technical skills that
are beyond those of most users of mobile devices. It can
be anticipated that large companies or mobile phone opera-
tors will write policies centrally by their technical staff, and
then distribute them to their employees’ or customers’ mo-
bile devices. Policy writers can use the Policy Manager tool
to write and edit policies, to prepare the policy for deploy-
ment, and to deploy it to a mobile device.

Preparing the policy for deployment means that the pol-
icy is converted from a textual policy to different formats
that can easily be used by the on-device SxC framework.
Multiple formats - also called policy representations - for
one policy are possible, depending on which enforcement
technologies the policy writer would like to support. Differ-
ent enforcement technologies require different formats. For
instance, if the policy has to support matching, a graph rep-
resentation of the policy must be deployed to the mobile de-
vice. Likewise, if the policy writer wants to support inlining,
an executable version of the policy must be generated. Our
implementation supports multiple policy languages, includ-
ing the CONSPEC language discussed before, and a tempo-
ral logic based language 2D-LTL. Figure 4 shows how textual
representations of policies are compiled into different policy
representations.

Figure 4: Compilation of a policy package

When the policy is ready, and the different policy rep-
resentations are generated, it can be deployed to a mobile
device. The Policy Manager sends the policy and its rep-
resentations to the Persistent Policy Store. This store is a
container for all the policies that have been deployed on the
device. Policies are saved on secure data storage, and can
only be read by the Persistent Policy Store manager. The
Secure Storage Service prohibits all access to the policies to
other applications. If the device is equipped with a trusted
platform module (TPM), this prohibition is enforced by the
hardware.

4.2 Application deployment and loading
Applications that are deployed to a device can either be

aware of the SxC framework or not. If an application is SxC-
aware, it can be deployed with extra metadata that can be
used by the SxC framework. Examples of such metadata are:
a proof that the application complies with a specific policy,
a digital signature of a trusted third party, or other data
that is required for some policy enforcement technology.

When the Application Loader receives a request to exe-
cute an application, it sends the application to the Appli-
cation Deployer. The deployer will first check whether the
application was already verified before. In the architectural
model, this is achieved by checking whether the application
is present in the Certified Application Database. However,
this database is a pure conceptual component. In the actual
.NET implementation, the deployer checks whether the ap-
plication is signed with a key that is managed by the SxC
platform on the device. If an application is signed with this
key, it has been processed before and it is considered to be
compliant.

A non-compliant application is sent to the Compliance
Engine. The purpose of this engine is to verify that the
application adheres to the system policy, by trying every
supported verification or enforcement method. These meth-
ods are represented by the different Compliance Modules.
As soon as one of the compliance modules returns a result
that indicates that the application conforms with the system
policy, the compliance engine signs the application with the
SxC key and executes the program. During this verifica-
tion process, the actual contents of the executable may be
changed. This is for instance the case with inlining. Figure 5
contains a graphical representation of this process.

At deployment time of the policy, the policy writer can
choose which policy enforcement mechanisms will be sup-
ported by the policy. Three enforcement mechanisms have
been implemented in our prototype.

The first supported mechanism is the use of digital sig-
natures set by a third party that certify compliance. This



Figure 3: Detailed architecture overview

Figure 5: Verifying application/policy compliance

trusted party has a different public/private key pair for every
different policy it certifies. If a mobile device administrator
wishes to support a policy of this trusted third party, he
configures a digital signature compliance module that is ini-
tialized with the public key that corresponds to this policy.
When a signed application arrives on the device, this compli-
ance module will check the signature against the public key
of this third party. If the signature is valid, the application
is allowed to run.

The second supported mechanism is matching. At deploy-
ment time the target platform checks that the application
security claims stated in the contract match with the plat-
form policy. The matching procedure takes as input the
application’s contract and the mobile platform’s policy in a
suitable formal representation and then starts a depth first

search procedure over the initial state. When a suspect state
is reached we have two cases. First, when a suspect state
contains an error state of the complemented policy then we
report a security policy violation without further ado. Sec-
ond, when a suspect state does not contain an error state of
the complemented policy we start a new depth first search
from the suspect state to determine whether it is in a cycle,
i.e. it is reachable from itself. If it is we report availability
violation.[2, 17]

The third enforcement mechanism that is supported is
inlining for run time monitoring. We discuss it as part of
the third scenario.

4.3 Execution monitoring and runtime enforce-
ment



The runtime enforcement scenario only comes into play
when an application has been inlined. Other enforcement
technologies are not active during the execution of the pro-
gram, because they can guarantee that the application will
always comply with the policy before ever running the appli-
cation. Runtime enforcement takes another approach, and
lets applications execute without first formally proving (us-
ing either a mathematical proof, or a trust-based proof) that
it will not violate the system policy. Instead, the application
is instrumented with a monitoring library that can enforce
the policy while the application is running.

The inlining process [5, 6, 7, 13, 16] is discussed as a sep-
arate scenario, because it is the only enforcement technique
that provides backwards compatibility. This technique can
be used on applications that are deployed without a con-
tract or any other SxC-related metadata. Figure 6 gives an
overview of this process.

The centerpiece of the execution monitoring implementa-
tion is the monitoring library - also called the Policy De-
cision Point (PDP). This is the component where the pol-
icy logic is located. It interprets the current state and the
requested action, and makes a decision to either allow or
disallow the action. Calls from the application are received
by the Execution Monitor and passed to the PDP. The PDP
then requests the current state from the Policy State Service
and may optionally request a number of system-specific set-
tings from the System Information Service. The PDP can
then execute the policy logic, update the state, and possibly
disallow the call to the SRE. Figure 6 depicts this process.

Figure 6: Execution monitoring

When an application arrives on a mobile device, and none
of the compliance modules succeeds in verifying that the
application does not violate the policy, the application is
sent to the inlining module. The inlining module is also
a compliance module, but it is always the last compliance
module in the list. This is because the inlining process will
never fail, but it does have some disadvantages that other
enforcement techniques do not have.

In our implementation, only the Execution Monitor is in-
lined. The Policy Decision Point is kept as a separate com-
ponent that is called by the Execution Monitor. The inliner
opens the executable file, and scans through it looking for
security-related calls into the base class library. These calls
correspond in our system with CONSPEC SREs. When such
a call is found, the inliner inserts new instructions around
this call. These instructions call into the policy decision
point, which keeps track of the policy state. When, during

runtime, the policy decision point notices that an applica-
tion is going to break the policy, it intervenes and aborts the
security-related call.

5. CONCLUSION
We have argued that the classic security architecture of

Windows CE is not well adapted to protect users from ma-
licious roaming applications. In particular, the digital sig-
natures used in Windows CE do not offer any guarantee of
what the code will actually do. We have introduced the no-
tion of security-by-contract and shown that this is superior
to the Windows CE security architecture. The SxC archi-
tecture can be used to secure untrusted roaming code, and
protect users from malicious applications. By defining se-
curity contracts for applications during their development,
and by matching these contracts with device policies dur-
ing deployment, compliance with the policy can be verified
without incurring run time overhead. Legacy applications,
or applications with contracts that do not match, can be ex-
ecuted under the supervision of an execution monitor that
will prevent the monitored application from violating the
policy.

6. REFERENCES
[1] E. M. Clarke and O. Grumberg and D. A. Peled

Model Checking, The MIT Press, 2000.

[2] F. Massacci and I. Siahaan Matching Midlet’s Security
Claims with a Platform Security Policy using
Automata Modulo Theory NORDSEC, 2007.

[3] R. Sekar and V.N. Venkatakrishnan and S. Basu and
S. Bhatkar and D.C. DuVarney Model-carrying code:
a practical approach for safe execution of untrusted
applications In Proceedings of the 19th ACM
symposium on Operating systems principles
(SOSP-03), pages 15–28, 2003.

[4] I. Aktug and K. Naliuka. ConSpec – a formal language
for policy specification. In Proceedings of the First
International Workshop on Run Time Enforcement
for Mobile and Distributed Systems (REM2007),
September 2007 (accepted).

[5] U. Erlingsson. The inlined reference monitor approach
to security policy enforcement. PhD thesis, Cornell
University, 2004. Adviser-Fred B. Schneider.

[6] U. Erlingsson and F. B. Schneider. Irm enforcement of
java stack inspection. In SP ’00: Proceedings of the
2000 IEEE Symposium on Security and Privacy, page
246, Washington, DC, USA, 2000. IEEE Computer
Society.

[7] K. W. Hamlen, G. Morrisett, and F. B. Schneider.
Certified in-lined reference monitoring on .net. In
PLAS ’06: Proceedings of the 2006 workshop on
Programming languages and analysis for security,
pages 7–16, New York, NY, USA, 2006. ACM Press.

[8] MSDN. Windows mobile 5.0 application security.
http://msdn2.microsoft.com/en-us/library/

ms839681.aspx, May 2005.

[9] MSDN. Code Access Security. http://msdn2.
microsoft.com/en-us/library/930b76w0.aspx, 2007.

[10] G. C. Necula. Proof-carrying code. In POPL ’97:
Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,



pages 106–119, New York, NY, USA, 1997. ACM
Press.

[11] B. Ray. Symbian signing is no protection from
spyware. http://www.theregister.co.uk/2007/05/
23/symbian_signed_spyware/, May 2007.

[12] S3MS. Security of software and services for mobile
systems. http://www.s3ms.org/, 2007.

[13] D. Vanoverberghe, F. Piessens. Security enforcement
aware software development, Elsevier Information &
Software Technology, to appear in 2008.

[14] Lieven Desmet, Wouter Joosen, Fabio Massacci,
Katsiaryna Naliuka, Pieter Philippaerts, Frank
Piessens and Dries Vanoverberghe. A flexible security
architecture to support third-party applications on
mobile devices. CSAW ’07: Proceedings of the 2007
ACM workshop on Computer security architecture,
pages 19–28, 2007.

[15] G. C. Necula and P. Lee. The design and
implementation of a certifying compiler. In
Proceedings of the 1998 ACM SIGPLAN Conference
on Prgramming Language Design and Implementation
(PLDI), pages 333–344, 1998.

[16] L. Bauer, J. Ligatti, and D. Walker. Composing
security policies with Polymer. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
305–314, June 2005.

[17] N. Dragoni, F. Massacci, K. Naliuka, R. Sebastiani,
I. Siahaan, T. Quillinan, I. Matteucci, and
C. Schaefer. S3ms deliverable d2.1.4- methodologies
and tools for contract matching, April 2007.


