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Chapter 7

Force Control

A fundamental requirement for the success of a ma-
nipulation task is the capability to handle the physical
contact between a robot and the environment. Pure mo-
tion control turns out to be inadequate because the un-
avoidable modelling errors and uncertainties may cause
a rise of the contact force ultimately leading to an un-
stable behavior during the interaction, especially in the
presence of rigid environments. Force feedback and force
control becomes mandatory to achieve a robust and ver-
satile behavior of a robotic system in poorly structured
environments as well as in the presence of humans. This
Chapter starts from the analysis of indirect force control
strategies, conceived to keep the contact forces limited
by ensuring a suitable compliant behavior to the end
effector, without requiring an accurate model of the en-
vironment. Then the problem of interaction tasks mod-
elling is analyzed, considering both the case of an in-
finitely stiff environment and the case of a compliant en-
vironment. For the specification of an interaction task,
natural constraints set by the task geometry and arti-
ficial constraints set by the control strategy are estab-
lished, with respect to suitable task frames. This formu-
lation is the essential premise to the synthesis of hybrid
force/motion control schemes.

7.1 Introduction

Research on robot force control has flourished in the
past three decades. Such a wide interest is motivated
by the general desire of providing robotic systems with
enhanced sensory capabilities. Robots using force, touch,
distance, visual feedback are expected to autonomously
operate in unstructured environments other than the
typical industrial shop floor.

Since the early work on telemanipulation, the use of
force feedback was conceived to assist the human oper-
ator in the remote handling of objects with a slave ma-

nipulator. More recently, cooperative robot systems have
been developed where two or more manipulators (viz. the
fingers of a dexterous robot hand) are to be controlled so
as to limit the exchanged forces and avoid squeezing of a
commonly held object. Force control plays a fundamen-
tal role also to achieve robust and versatile behavior of
robotic systems in open-ended environments, providing
intelligent response in unforeseen situations and enhanc-
ing human-robot interaction.

7.1.1 From motion control to interaction
control

Control of interaction between a robot manipulator and
the environment is crucial for the successful execution of
a number of practical tasks where the robot end effector
has to manipulate an object or perform some operation
on a surface. Typical examples in industrial settings in-
clude polishing, deburring, machining or assembly. A
complete classification of possible robot tasks, consider-
ing also non industrial applications, is practically infea-
sible in view of the large variety of cases that may occur,
nor would such a classification be really useful to find a
general strategy to control the interaction with the envi-
ronment.

During contact, the environment may set constraints
on the geometric paths that can be followed by the end
effector. This situation, corresponding to the contact
with a stiff surface, is generally referred to as constrained
motion. In other cases, the contact task is characterized
by a dynamic interaction between robot and environment
that can be inertial (as in pushing a block), dissipative
(as in sliding on a surface with friction) or elastic (as
in pushing against an elastically compliant wall). In all
these cases, the use of a pure motion control strategy for
controlling interaction is prone to failure, as explained
below.
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2 CHAPTER 7. FORCE CONTROL

Successful execution of an interaction task with the
environment by using motion control could be obtained
only if the task were accurately planned. This would in
turn require an accurate model of both the robot ma-
nipulator (kinematics and dynamics) and the environ-
ment (geometry and mechanical features). A manipula-
tor model may be known with sufficient precision, but
a detailed description of the environment is difficult to
obtain.

To understand the importance of task planning accu-
racy, it is sufficient to observe that to perform a mechan-
ical part mating with a positional approach, the relative
positioning of the parts should be guaranteed with an
accuracy of an order of magnitude greater than part me-
chanical tolerance. Once the absolute position of one
part is exactly known, the manipulator should guide the
motion of the other with the same accuracy.

In practice, the planning errors may give rise to a con-
tact force causing a deviation of the end effector from
the desired trajectory. On the other hand, the control
system reacts to reduce such deviation. This ultimately
leads to a build-up of the contact force until saturation
of the joint actuators is reached or breakage of the parts
in contact occurs.

The higher the environment stiffness and position con-
trol accuracy are, the easier a situation like the one just
described can occur. This drawback can be overcome if
a compliant behavior is ensured during the interaction.
This compliant behavior can be achieved either in a pas-
sive or in an active fashion.

Passive interaction control

In passive interaction control the trajectory of the robot
end-effector is modified by the interaction forces due to
the inherent compliance of the robot. The compliance
may be due to the structural compliance of the links,
joints and end effector, or to the compliance of the po-
sition servo. A mechanical device with passive compli-
ance, widely adopted in industrial applications, is the
Remote Center of Compliance (RCC) device [1], consist-
ing of a compliant end effector which is designed and op-
timized for peg-into-hole assembly operations. The pas-
sive approach to interaction control is very simple and
cheap, because it does not require force/torque sensors;
also, the pre-programmed trajectory of the end effector
must not be changed at execution time; moreover, the re-
sponse of a passive compliance mechanism is much faster
than the active repositioning by a computer control algo-
rithm. However, passive interaction control lacks flexibil-

ity, since for every robotic task a special purpose compli-
ant end effector has to be designed and mounted. Also,
it can only deal with small position and orientation de-
viations of the programmed trajectory. Finally, since no
forces are measured, it can not guarantee that high con-
tact forces will never occur.

Active interaction control

In active interaction control, the compliance of the
robotic system is mainly ensured by a purposely de-
signed control system. This approach usually requires
the measurement of the contact force and moment, which
are fed back to the controller and used to modify or
even generate on-line the desired trajectory of the robot
end-effector. Active interaction control may overcome
the above-mentioned disadvantages of passive interac-
tion control, but is usually slower, more expensive, and
more sophisticated. To obtain a reasonable task execu-
tion speed and disturbance rejection capability, active
interaction control has to be used in combination with
some degree of passive compliance [2]: feedback, by def-
inition, always comes after a motion and force error has
occurred, hence some passive compliance is needed in
order to keep the reaction forces below an acceptable
threshold.

Force measurements

For a general force controlled task, six force components
are required to provide complete contact force informa-
tion: three translational force components and three
torques. Often, a force/torque sensor is mounted at the
robot wrist [3], but other possibilities exist. For exam-
ple, force sensors can be placed on finger tips of robotic
hands [4]; also, external forces and moments can be es-
timated via shaft torque measurements of joint torque
sensors [5, 6]. However, the majority of the applications
of force control (including industrial applications) is con-
cerned with wrist force/torque sensors. In this case, the
weight and inertia of the tool mounted between the sen-
sor and the environment (i.e., the robot end effector) is
assumed to be negligible or suitably compensated from
the force/torque measurements. The force signals may
be obtained using strain measurements, which results in
a stiff sensor, or using deformation measurements (e.g.,
optically), resulting in a compliant sensor. The latter ap-
proach has an advantage if additional passive compliance
is desired.
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7.1.2 From indirect force control to hy-
brid force/motion control

Active interaction control strategies can be grouped in
two categories; those performing indirect force control
and those performing direct force control. The main dif-
ference between the two categories is that the former
achieve force control via motion control, without explicit
closure of a force feedback loop; the latter, instead, of-
fer the possibility of controlling the contact force to a
desired value, thanks to the closure of a force feedback
loop.

To the first category belongs impedance control (or
admittance control) [7, 8], where the deviation of the
end-effector motion from the desired motion, due to the
interaction with the environment, is related to the con-
tact force through a mechanical impedance/admittance
with adjustable parameters. A robot manipulator under
impedance (or admittance) control is described by an
equivalent mass-spring-damper system with adjustable
parameters. This relationship is an impedance if the
robot control reacts to the motion deviation by generat-
ing forces; viceversa, it corresponds to an admittance if
the robot control reacts to interaction forces by impos-
ing a deviation from the desired motion. Special cases of
impedance and admittance control are stiffness control
and compliance control [9] respectively, where only the
static relationship between the end-effector position and
orientation deviation from the desired motion and the
contact force and moment is considered. Notice that, in
the robot control literature, the terms impedance con-
trol and admittance control are often used to refer to
the same control scheme; the same happens for stiff-
ness and compliance control. Moreover, if only the re-
lationship between the contact force and moment and
the end-effector linear and angular velocity is of interest,
the corresponding control scheme is referred to damping
control [10]. Indirect force control schemes do not re-
quire, in principle, measurements of contact forces and
moments; the resulting impedance or admittance is typ-
ically nonlinear and coupled. However, if a force/torque
sensor is available, then force measurements can be used
in the control scheme to achieve a linear and decoupled
behavior.

Differently from indirect force control, direct force con-
trol requires an explicit model of the interaction task.
In fact, the user has to specify the desired motion and
the desired contact force and moment in a consistent
way with respect to the external constraints. A widely
adopted strategy belonging to this category is hybrid

force/motion control , which aims at controlling the mo-
tion along the unconstrained task directions and force
(and moment) along the constrained task directions. The
starting point is the observation that, for many robotic
tasks, it is possible to introduce an orthogonal refer-
ence frame, known as compliance frame [11] (or task
frame [12]) which allows to specify the task in terms of
natural and artificial constrains acting along and about
the three orthogonal axes of this frame. Based on this
decomposition, hybrid force/motion control allows simul-
taneous control of both the contact force and the end-
effector motion in two mutually independent subspaces.
Simple selection matrices acting on both desired and
feedback quantities serve this purpose for planar contact
surfaces [13], whereas suitable projection matrices must
be used for general contact tasks, which can be derived
also from the explicit constraint equations [14, 15, 16].
Several implementation of hybrid motion control schemes
are available, e.g, based on inverse dynamics control in
the operational space [17]), passivity-based control [18]
or outer force control loops closed around inner motion
loops typically available in industrial robots [2]. If an
accurate model of the environment is not available, the
force control action and the motion control action can
be superimposed, resulting in a parallel force/position
control scheme. In this approach, the force controller is
designed so as to dominate the motion controller; hence,
a position error would be tolerated along the constrained
task directions in order to ensure force regulation [19].

7.2 Indirect force control

To gain insight into the problems arising at the inter-
action between the end effector of a robot manipulator
and the environment, it is worth analyzing the effects of
a motion control strategy in the presence of a contact
force and moment. To this aim, assume that a refer-
ence frame Σe is attached to the end-effector, and let
pe denote the position vector of the origin and Re the
rotation matrix with respect to a fixed base frame. The
end-effector velocity is denoted by the (6×1) twist vector

ve = [ ṗT

e ωT
e ]

T
being ṗe the translational velocity and

ωe the angular velocity, and can be computed from the
(n × 1) joint velocity vector q̇ using the linear mapping

ve = J(q)q̇. (7.1)

Matrix J is the (6× n) end-effector geometric Jacobian.
For simplicity, the case of non-redundant non-singular
manipulators is considered; therefore, n = 6 and the
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Jacobian is a square and non-singular matrix. The force
fe and moment me applied by the end-effector to the
environment are the components of the wrench he =
[fT

e mT
e ]

T
.

It is useful to consider the operational space formula-
tion of the dynamic model of the robot manipulator in
contact with the environment

Λ(q)v̇e + Γ(q, q̇)ve + η(q) = hc − he, (7.2)

where Λ(q) = (JH(q)−1JT)−1 is the (6 × 6) opera-
tional space inertia matrix, Γ(q, q̇) = J−TC(q, q̇)J−1 −
Λ(q)J̇J−1 is the wrench including centrifugal and Cori-
olis effects, η(q) = J−Tg(q) is the wrench of the grav-
itational effects; H(q), C(q, q̇) and g(q) are the corre-
sponding quantities defined in the joint space. Vector
hc = J−Tτ is the equivalent end-effector wrench corre-
sponding to the input joint torques τ .

7.2.1 Stiffness control

In the classical operational space formulation, the end-
effector position and orientation is described by a (6 ×

1) vector xe = [pT
e ϕT

e ]
T
, where ϕe is a set of Euler

angles extracted from Re. Hence, a desired end-effector
position and orientation can be assigned in terms of a
vector xd, corresponding to the position of the origin pd

and the rotation matrix Rd of a desired frame Σd. The
end-effector error can be denoted as ∆xde = xd−xe, and
the corresponding velocity error, assuming a constant xd,
can be expressed as ∆ẋde = −ẋe = −A−1(ϕe)ve, with

A(ϕe) =

[
I O

O T (ϕe)

]
,

where I is the (3 × 3) identity matrix, O is a (3 × 3)
null matrix and T is the (3 × 3) matrix of the mapping
ωe = T (ϕe)ϕ̇e, depending on the particular choice of
the Euler angles.

Consider the motion control law

hc = A−T(ϕe)KP ∆xde −KDve + η(q), (7.3)

corresponding to a simple PD + gravity compensation
control in the operational space, where KP and KD are
symmetric and positive definite (6 × 6) matrices.

In the absence of interaction with the environment
(i.e., when he = 0), the equilibrium ve = 0, ∆xde = 0

for the closed-loop system, corresponding to the desired
position and orientation for the end effector, is asymptot-
ically stable. The stability proof is based on the positive-
definite Lyapunov function

V =
1

2
vT

e Λ(q)ve +
1

2
∆xdeKP ∆xde,

whose time derivative along the trajectories of the closed-
loop system is the negative semi-definite function

V̇ = −vT

eKDve. (7.4)

In the presence of a constant wrench he, using a simi-
lar Lyapunov argument, a different asymptotically stable
equilibrium can be found, with a non null ∆xde. The
new equilibrium is the solution of the equation

A−T(ϕe)KP ∆xde − he = 0,

that can be written in the form

∆xde = K−1

P AT(ϕe)he, (7.5)

or, equivalently, as

he = A−T(ϕe)KP ∆xde. (7.6)

Equation (7.6) shows that in steady state the end effec-
tor, under a proportional control action on the position
and orientation error, behaves as a 6-DOF spring in re-
spect of the external force and moment he. Thus, matrix
KP plays the role of an active stiffness, meaning that
it is possible to act on the elements of KP so as to en-
sure a suitable elastic behavior of the end effector during
the interaction. Analogously, equation (7.5) represents
a compliance relationship, where matrix K−1

P plays the
role of an active compliance. This approach, consist-
ing in assigning a desired position and orientation and a
suitable static relationship between the deviation of the
end-effector position and orientation and the force ex-
erted on the environment, is known as stiffness control .

The selection of the stiffness/compliance parameters
is not easy, and strongly depends on the task to be ex-
ecuted. A higher value of the active stiffness means a
higher accuracy of the position control at expense of
higher interaction forces. Hence, if it is expected to meet
some physical constraint in a particular direction, the
end-effector stiffness in that direction should be made
low to ensure low interaction forces. Conversely, along
the directions where physical constraints are not ex-
pected, the end-effector stiffness should be made high
so as to follow closely the desired position. This allows
to resolve discrepancies between desired and achievable
positions due to the constraints imposed by the environ-
ment, without excessive contact forces and moments.

It must be pointed out, however, that a selective stiff-
ness behavior along different directions cannot be effec-
tively assigned in practice on the basis of equation (7.6).
This can easily be understood by using the classical
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definition of a mechanical stiffness for two bodies con-
nected by a 6-DOF spring, in terms of the linear map-
ping between the infinitesimal twist displacement of the
two bodies at an unloaded equilibrium and the elastic
wrench.

In the case of the active stiffness, the two bodies are
respectively the end effector, with the attached frame
Σe, and a virtual body attached to the desired frame
Σd. Hence, from (7.6), the following mapping can be
derived

he = A−T(ϕe)KPA
−1(ϕe)δxde, (7.7)

in the case of an infinitesimal twist displacement δxde

defined as

δxde =

[
δpde

δθde

]
=

[
∆ṗde

∆ωde

]
dt = −

[
ṗe

ωe

]
dt,

where ∆ṗde = ṗd − ṗe is the time derivative of the po-
sition error ∆pde = pd −pe and ∆ωde = ωd −ωe is the
angular velocity error. Equation (7.7) shows that the
actual stiffness matrix is A−T(ϕe)KPA

−1(ϕe), which
depends on the end-effector orientation through vector
ϕe, so that, in practice, the selection of the stiffness pa-
rameters is quite difficult.

This problem can be overcome by defining a geometri-
cally consistent active stiffness, with the same structure
and properties of ideal mechanical springs.

Mechanical springs

Consider two elastically coupled rigid bodies A and B
and two reference frames Σa and Σb, attached to A and
B respectively. Assuming that at equilibrium frames Σa

and Σb coincide, the compliant behavior near the equi-
librium can be described by the linear mapping

hb
b = Kδxb

ab =

[
Kt Kc

KT

c Ko

]
δxb

ab (7.8)

where hb
b is the elastic wrench applied to body B, ex-

pressed in frame B, in the presence of an infinitesimal
twist displacement δxb

ab of frame Σa with respect to
frame Σb, expressed in frame B. The elastic wrench
and the infinitesimal twist displacement in (7.8) can be
expressed equivalently also in frame Σa, since Σa and
Σb coincide at equilibrium. Therefore, hb

b = ha
b and

δxb
ab = δxa

ab; moreover, for the elastic wrench applied

to body A, ha
a = Ktδx

a
ba = −hb

b being δxa
ba = −δxb

ab.
This property of mapping (7.8) is known as port symme-
try .

In equation (7.8), K is the (6× 6) symmetric positive
semi-definite stiffness matrix. The (3 × 3) matrices Kt

and Ko, called respectively translational stiffness and
rotational stiffness, are also symmetric. It can be shown
that, if the (3 × 3) matrix Kc is symmetric, there is
maximum decoupling between rotation and translation.
In this case, the point corresponding to the coinciding
origins of frames Σa and Σb is called center of stiffness.
Similar definitions and results can be formulated for the
case of the compliance matrix C = K−1. In particular,
it is possibile to define a center of compliance in case the
off-diagonal blocks of the compliance matrix are sym-
metric. The centers of stiffness and compliance do not
necessarily coincide.

There are special cases in which no coupling exists be-
tween translation and rotation, i.e., a relative translation
of the bodies results in a wrench corresponding to a pure
force along an axis through the center of stiffness; also, a
relative rotation of the bodies results in a wrench that is
equivalent to a pure moment about an axis through the
centers of stiffness. In these cases, the center of stiffness
and compliance coincide. Mechanical systems with com-
pletely decoupled behavior are, e.g., the Remote Center
of Compliance (RCC) devices.

Since Kt is symmetric, there exists a rotation matrix
Rt with respect to frame Σa = Σb at equilibrium, such
that Kt = RtΓtR

T

t , and Γt is a diagonal matrix whose
diagonal elements are the principal translational stiff-
nessess in the directions corresponding to the columns
of rotation matrix Rt, known as principal axes of trans-
lational stiffness. Analogously, Ko can be expressed as
Ko = RoΓoR

T

o , where the diagonal elements of Γo are
the principal rotational stiffnesses about the axes corre-
sponding to the columns of rotation matrixRo, known as
principal axes of rotational stiffness. Moreover, assum-
ing that the origins of Σa and Σb at equilibrium coincide
with the center of stiffness, expression Kc = RcΓcR

T

c

can be found, where the diagonal elements of Γc are the
principal coupling stiffnesses along the directions cor-
responding to the columns of the rotation matrix Rc,
known as principal axes of coupling stiffness. In sum, a
(6 × 6) stiffness matrix can be specified, with respect to
a frame with the origin in the center of stiffness, in terms
of the principal stiffness parameters and principal axes.

Notice that the mechanical stiffness defined by (7.8)
describes the behavior of an ideal 6-DOF spring which
stores potential energy. The potential energy function of
an ideal stiffness depends only on the relative position
and orientation of the two attached bodies and is port
symmetric. A physical 6-DOF spring has a predominant
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behavior similar to the ideal one, but nevertheless it al-
ways has parasitic effects causing energy dissipation.

Geometrically consistent active stiffness

To achieve a geometrically consistent 6-DOF active stiff-
ness, a suitable definition of the proportional control ac-
tion in control law (7.3) is required. This control action
can be interpreted as the elastic wrench applied to the
end effector, in the presence of a finite displacement of
the desired frame Σd with respect to the end-effector
frame Σe. Hence, the properties of the ideal mechanical
stiffness for small displacement should be extended to
the case of finite displacements. Moreover, to guarantee
asymptotic stability in the sense of Lyapunov, a suitable
potential energy function must be defined.

For simplicity, it is assumed that the coupling stiffness
matrix is zero. Hence, the potential energy can be com-
puted as the sum of a translational potential energy and
a rotational potential energy.

The translational potential energy can be defined as

Vt =
1

2
∆pT

deK
′
Pt∆pde (7.9)

with

K ′
Pt =

1

2
RdKPtR

T

d +
1

2
ReKPtR

T

e ,

where KPt is a (3 × 3) symmetric and positive definite
matrix. The use of K ′

Pt in lieu of KPt in (7.9) guar-
antees that the potential energy is port symmetric also
in the case of finite displacements. Matrices K ′

Pt and
KPt coincide at equilibrium (i.e., when Rd = Re) and
in the case of isotropic translational stiffness (i.e., when
KPt = kPtI).

The computation of the power V̇t yields

V̇t = ∆ṗe T

de f
e
∆t + ∆ωe T

de m
e
∆t

where ∆ṗe
de is the time derivative of the position dis-

placement ∆pe
de = RT

e (pd−pe), while ∆ωe
de = RT

e (ωd−
ωe). Vectors fe

∆ and µe
∆

are respectively the elastic force
and moment applied to the end effector in the presence
of the finite position displacement ∆pe

de. These vec-
tors have the following expressions when computed in
the base frame

f∆t = K ′
Pt∆pde m∆t = K ′′

Pt∆pde (7.10)

with

K ′′
Pt =

1

2
S(∆pde)RdKPtR

T

d ,

being S(·) the skew symmetric operator performing the

vector product. Vector h∆t = [fT

∆t mT
∆t ]

T
is the elas-

tic wrench applied to the end efector in the presence of a
finite position displacement ∆pde and a null orientation
displacement. The moment m∆t is null in the case of
isotropic translational stiffness.

To define the rotational potential energy, a suitable
definition of the orientation displacement between frames
Σd and Σe has to be adopted. A possible choice is the
vector part of the unit quaternion {ηde, ǫ

e
de} that can be

extracted from matrix Re
d = RT

eRd. Hence, the orienta-
tion potential energy has the form

Vo = 2ǫeT
deKPoǫ

e
de, (7.11)

where KPo is a (3 × 3) symmetric and positive definite
matrix. Function Vo is port symmetric because ǫe

de =
−ǫd

ed.

The computation of the power V̇o yields

V̇o = ∆ωe T

de m
e
∆o,

where
m∆o = K ′

Poǫde, (7.12)

with
K ′

Po = 2ET(ηde, ǫde)ReKPoR
T

e ,

being E(ηde, ǫde) = ηdeI −S(ǫde). The above equations
show that a finite orientation displacement ǫde = RT

e ǫ
e
de

produces an elastic wrench h∆o = [0T mT
∆o ]

T
which

is equivalent to a pure moment.
Hence, the total elastic wrench in the presence of a fi-

nite position and orientation displacement of the desired
frame Σd with respect to the end-effector frame Σe can
be defined in the base frame as

h∆ = h∆t + h∆o. (7.13)

where h∆t and h∆o are computed according to (7.10)
and (7.12) respectively.

Using (7.13) for the computation of the elastic wrench
in the case of an infinitesimal twist displacement δxe

de

near the equilibrium, and discarding the high-order in-
finitesimal terms yields the linear mapping

he
e = KP δx

e
de =

[
KPt O

O KPo

]
δxe

de. (7.14)

Therefore, KP represents the stiffness matrix of an ideal
spring with respect to a frame Σe (coinciding with Σd

at equilibrium) with the origin in the center of stiffness.
Moreover, it can be shown that, using definition (7.13),
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the physical/geometrical meaning of the principal stiff-
nesses and of the principal axes for matrices KPt and
KPo are preserved also in the case of large displace-
ments.

The above results imply that the active stiffness matrix
KP can be set in a geometrically consistent way with
respect to the task at hand.

Notice that geometrical consistency can be ensured
also with different definitions of the orientation error in
the potential orientation energy (7.11). For example, any
error based on the angle/axis representation of Rd

e (the
unit quaternion belongs to this category) can be adopted,
or, more generally, homogeneous matrices or exponential
coordinates (for the case of both position and orientation
errors). Also, the XYZ Euler angles extracted from ma-
trix Rd

e could be used; however, in this case, it can be
shown that the principal axes of rotational stiffness can-
not be set arbitrarily but must coincide with those of the
end-effector frame.

Compliance control with a geometrically consistent ac-
tive stiffness can be defined using the control law

hc = h∆ −KDve + η(q),

with h∆ in (7.13). The asymptotic stability about the
equilibrium in the case he = 0 can be proven using the
Lyapunov function

V =
1

2
vT

e Λ(q)ve + Vt + Vo,

with Vt and Vo given in (7.9) and (7.11) respectively,
whose time derivative along the trajectories of the closed-
loop system, in case frame Σd is motionless, has the same
expression as in (7.4). When he 6= 0, a different asymp-
totically stable equilibrium can be found, corresponding
to a non null displacement of the desired frame Σd with
respect to the end-effector frame Σe. The new equilib-
rium is the solution of the equation h∆ = he.

Stiffness control allows to keep the interaction force
and moment limited at the expense of the end-effector
position and orientation error, with a proper choice of
the stiffness matrix, without the need of a force/torqe
sensor. However, in the presence of disturbances (e.g.,
joint friction) which can be modelled as an equivalent
end-effector wrench, the adoption of low values for the
active stiffness may produce large deviations with respect
to the desired end-effector position and orientation, also
in the absence of interaction with the environment.

7.2.2 Impedance control

Compliance control is designed to achieve a desired static
behavior of the interaction. In fact, the dynamics of the
controlled system depends on that of the robot manipu-
lator, which is nonlinear and coupled. A more demand-
ing objective may be that of achieving a desired dynamic
behavior for the end effector, e.g., that of a second order
mechanical system with 6 degrees of freedom, character-
ized by a given mass, damping and stiffness, known as
mechanical impedance.

The starting point to pursue this goal may be the
acceleration resolved approach used for motion control,
which is aimed at decoupling and linearizing the nonlin-
ear robot dynamics at acceleration level, via an inverse
dynamics control law. In the presence of interaction with
the environment, the control law

hc = Λ(q)α+ Γ(q, q̇)q̇ + he (7.15)

cast into the dynamic model (7.2) results in

v̇e = α, (7.16)

where α is a properly designed control input with the
meaning of an acceleration referred to the base frame.

Considering the identity v̇e = R̄e
Tv̇e

e + ˙̄Re
Tve

e, with

R̄e =

[
Re O

O Re

]
,

the choice
α = R̄e

Tαe + ˙̄Re
Tve

e (7.17)

gives
v̇e

e = αe, (7.18)

where the control input αe has the meaning of an ac-
celeration referred to the end-effector frame Σe. Hence,
setting

αe = K−1

M (v̇e
d +KD∆ve

de + he
∆ − he

e), (7.19)

the following expression can be found for the closed-loop
system

KM∆v̇e
de +KD∆ve

de + he
∆ = he

e (7.20)

where KM and KD are (6 × 6) symmetric and positive
definite matrices, ∆v̇e

de = v̇e
d − v̇e

e, ∆ve
de = ve

d − ve
e, v̇

e
d

and ve
d are respectively the acceleration and the velocity

of a desired frame Σd and he
∆ is the elastic wrench (7.13);

all the quantities are referred to the end-effector frame
Σe.



8 CHAPTER 7. FORCE CONTROL

MANIPULATOR

& ENVIRONMENT

IMPEDANCE

CONTROL

INVERSE

DYNAMICS

KINEMATICS

DIRECT

pd, Rd

vd

v̇d

α τ

he

q

q̇

pe, Re

ve

Figure 7.1: Impedance control.

The above equation, describing the dynamic behavior
of the controlled end effector, can be interpreted as a
generalized mechanical impedance. The asymptotic sta-
bility of the equilibrium in the case he = 0 can be proven
considering the Lyapunov function

V =
1

2
∆ve T

de KM∆ve
de + Vt + Vo, (7.21)

where Vt and Vo are defined in (7.9) and (7.11) respec-
tively, whose time derivative along the trajectories of sys-
tem (7.20) is the negative semi-definite function

V̇ = −∆ve T

de KD∆ve
de.

When he 6= 0, a different asymptotically stable equilib-
rium can be found, corresponding to a non null displace-
ment of the desired frame Σd with respect to the end
effector frame Σe. The new equilibrium is the solution
of the equation he

∆ = he.
In case Σd is constant, equation (7.20) has the meaning

of a true 6-DOF mechanical impedance if KM is chosen
as

KM =

[
mI O

O M

]

where m is a mass and M is a (3×3) inertia tensor, and
KD is chosen as a block diagonal matrix with (3 × 3)
blocks. The physically equivalent system is a body of
mass m, inertia tensor M with respect to a frame Σe

attached to the body, subject to an external wrench he.
This body is connected to a virtual body attached to
frame Σd through a 6-DOF ideal spring with stiffness
matrixKP and is subject to viscous forces and moments
with damping KD. Function V in (7.21) represents the
total energy of the body, sum of the kinetic energy and
of the potential elastic energy.

A block diagram of the resulting impedance control is
sketched in Figure 7.1. The impedance control computes

the acceleration input as in (7.17) and (7.19) on the ba-
sis of the position and orientation feedback as well as
the force and moment measurements. Then, the inverse
dynamics control law computes the torques for the joint
actuators τ = JThc with hc in (7.15).

This control scheme, in the absence of interaction,
guarantees that end-effector frame Σe asymptotically fol-
lows the desired frame Σd. In the presence of contact
with the environment, a compliant dynamic behavior is
imposed to end effector, according to impedance equa-
tion (7.20), and the contact wrench is kept bounded at
the expense of a finite position and orientation displace-
ment between Σd and Σe. Differently from stiffness con-
trol, a force/torque sensor is required for the measure-
ment of the contact force and moment.

Implementation issues

The selection of good impedance parameters ensuring a
satisfactory behavior is not an easy task. In fact, the
dynamics of the closed loop system is different in free
space and during interaction. The control objectives are
different as well, since motion tracking and disturbance
rejection must be ensured in free space, while, during the
interaction, the main goal is that of achieving a suitable
compliant dynamic behavior for the end effector. Notice
also that the dynamics of the controlled system during
the interaction depends on the dynamics of the environ-
ment.

To gain insight into these problems, assume that the
interaction of the end effector with the environment can
be approximated by that derived from an ideal 6-DOF
spring connecting end-effector frame Σe to environment
frame Σo. Therefore, according to (7.8), the elastic
wrench exerted by the end effector on the environment,
in the presence of an infinitesimal twist displacement of
Σe with respect to Σo, can be computed as

he
e = Kδxe

eo, (7.22)

where Σe and Σo coincide at equilibrium. The above
model holds only in the presence of interaction, while
the contact wrench is null when the end effector moves
in free space.

The disturbances acting on the robot manipulator and
the unmodelled dynamics (e.g. joint friction, modelling
errors, etc.) may be taken into account by introducing
an additive term on the right-hand side of the dynamic
model of the robot manipulator (7.2), corresponding to
an equivalent disturbance wrench acting on the end ef-
fector. This term produces an additive acceleration dis-
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turbance γe on the right-hand side of equation (7.18).
Therefore, using control law (7.19), the following closed-
loop impedance equation can be found

KM∆v̇e
de +KD∆ve

de + he
∆ = he

e +KMγ
e. (7.23)

The tuning procedure for the impedance parameters
can be set up starting from the linearized model that
can be computed from (7.23) in the case of infinitesimal
displacements, i.e.:

KMδẍ
e
de+KDδẋ

e
de+(KP +K)δxe

de = Kδxe
do+KMγ

e,
(7.24)

where (7.22) and the equality δxe
eo = −δxe

de +δxe
do have

been used. The above equation is valid both for the
constrained motion (K 6= O) and for the free motion
(K = O).

It is evident that suitable dynamics of the position
and orientation errors can be set by suitably choosing
matrix gains KM , KD and KP . This task is easier in
the hypothesis that all matrices are diagonal, resulting
in a decoupled behavior for the six components of the
infinitesimal twist displacement. In this case, the tran-
sient behavior of each component can be set, e.g., by
assigning the natural frequency and damping ratio with
the relations

ωn =

√
kP + k

kM

, ζ =
1

2

kD√
kM (kP + k)

.

Hence, if the gains are chosen so that a given natural
frequency and damping ratio are ensured during the in-
teraction (i.e., for k 6= 0), a smaller natural frequency
with a higher damping ratio will be obtained when the
end effector moves in free space (i.e., for k = 0). As for
the steady-state performance, the end-effector error for
the generic component is

δxde =
k

(kP + k)
δxdo +

kM

kP + k
γ

and the corresponding interaction force is

h =
kP k

kP + k
δxdo −

kMk

kP + k
γ.

The above relations show that, during interaction, the
contact force can be made small at the expense of a
large position error in steady state, as long as the ac-
tive stiffness kP is set low with respect to the stiffness of
the environment k, and vice versa. However, both the
contact force and the position error depend also on the
external disturbance γ; in particular, the lower kP , the
higher the influence of γ on both δxde and h. Moreover,
a low active stiffness kP may result in a large position
error also in the absence of interaction (i.e., when k = 0).
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Figure 7.2: Impedance control with inner motion control
loop (admittance control).

Admittance control

A solution to this drawback can be devised by separating
motion control from impedance control as follows. The
motion control action is purposefully made stiff so as to
enhance disturbance rejection but, rather than ensuring
tracking of the desired end-effector position and orien-
tation, it ensures tracking of a reference position and
orientation resulting from the impedance control action.
In other words, the desired position and orientation, to-
gether with the measured contact wrench, are input to
the impedance equation which, via a suitable integra-
tion, generates the position and orientation to be used
as a reference for the motion control.

To implement this solution, it is worth introducing a
reference frame other than the desired frame Σd. This
frame is referred to as the compliant frame Σc, and is
specified by the quantities pc, Rc, vc and v̇c that are
computed from pd, Rd, vd and v̇d and the measured
wrench hc, by integrating the equation

KM∆v̇c
dc +KD∆vc

dc + hc
∆ = hc, (7.25)

where hc
∆ is the elastic wrench in the presence of a fi-

nite displacement between the desired frame Σd and the
compliant frame Σc. Then, a motion control strategy,
based on inverse dynamics, is designed so that the end
effector frame Σe is taken to coincide with the compliant
frame Σc. To guarantee stability of the overall system,
the bandwidth of the motion controller should be higher
than the bandwidth of the impedance controller.

A block diagram of the resulting scheme is sketched
in Figure 7.2. It is evident that, in the absence of in-
teraction, the compliant frame Σc coincides with desired
frame Σd and the dynamics of the position and orienta-
tion error, as well as the disturbance rejection capabili-
ties, depend only on the gains of the inner motion control
loop. On the other other hand, the dynamic behavior in
the presence of interaction is imposed by the gains of
impedance equation (7.25).
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The control scheme of Figure 7.2 is also known as ad-
mittance control because, in equation (7.25), the mea-
sured force (input) is used to compute the motion of
the compliant frame (output), given the motion of the
desired frame; a mapping with a force as input and a
position or velocity as output corresponds to a mechani-
cal admittance. Viceversa, equation (7.20), mapping the
end-effector displacement (input) from the desired mo-
tion trajectory into the contact wrench (output), has the
meaning of a mechanical impedance.

Simplified schemes

The inverse dynamics control is model based and requires
modification of the current industrial robot controllers,
that are usually equipped with independent PI joint ve-
locity controllers with very high bandwidth. These con-
trollers are able to decouple the robot dynamics to a large
extent, especially in case of slow motion, and to mitigate
the effects of the external forces on the manipulator mo-
tion, if the environment is sufficiently compliant. Hence,
the closed loop dynamics of the controlled robot can be
approximated by

q̇ = q̇r

in joint space, or equivalently

v̇e = vr (7.26)

in the operational space, where q̇r and vr are the control
signals for the inner velocity motion loop generated by
a suitably designed outer control loop. These control
signals are related by

q̇r = J−1(q)vr.

Velocity vr can be computed as

ve
r = ve

d −K−1

D (he
∆ − he

e)

where the control input has been referred to the end-
effector frame, KD is a (6 × 6) positive definite matrix
and h∆ is the elastic wrench (7.13) with stiffness matrix
KP . The resulting closed-loop equation is

KD∆ve
de + he

∆ = he
e

corresponding to a compliant behavior of the end effector
characterized by a damping KD and a stiffness KP . In
caseKP = O, the resulting scheme is known as damping
control .

Alternatively, an admittance type control scheme can
be adopted, where the motion of a compliant frame Σc

can be computed as the solution of the differential equa-
tion

KD∆vc
dc + hc

∆ = hc
e

in terms of position pc, orientation Rc and velocity twist
vc, where the inputs are the motion variables of the de-
sired frame Σd and the contact wrench hc

e. The motion
variables of Σc are then input to an inner position and ve-
locity controller. In case KD = O, the resulting scheme
is known as compliance control .

7.3 Interaction tasks

Indirect force control does not require explicit knowl-
edge of the environment, although, to achieve a satis-
factory dynamic behavior, the control parameters have
to be tuned for a particular task. On the other hand, a
model of the interaction task is required for the synthesis
of direct force control algorithms.

An interaction task is characterized by complex con-
tact situations between the manipulator and the envi-
ronment. To guarantee a proper task execution, it is
necessary to have an analytical description of the inter-
action force and moment, which is very demanding from
a modelling viewpoint.

A real contact situation is a naturally distributed phe-
nomenon in which the local characteristics of the contact
surfaces as well as the global dynamics of the manipula-
tor and environment are involved. In detail:

• the environment imposes kinematic constraints on
the end-effector motion, due to one or more contacts
of different type, and a reaction wrench arises when
the end effector tends to violate the constraints (e.g.,
the case of a robot sliding a rigid tool on a friction-
less rigid surface);

• the end effector, while being subject to kinematic
constraints, may also exert a dynamic wrench on
the environment, in the presence of environment dy-
namics (e.g., the case of a robot turning a crank,
when the crank dynamics is relevant, or a robot
pushing against a compliant surface);

• local deformation of the contact surfaces may occur
during the interaction, producing distributed con-
tact areas (e.g., the case of a soft contact surface of
the tool or of the environment);

• the contact wrench may depend on the structural
compliance of the robot, due to the finite stiffness
of the joints and links of the manipulator, as well as
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of the wrist force/torque sensor or of the tool (e.g.
an end effector mounted on a RCC device);

• static and dynamic friction may occur in the case of
non ideally smooth contact surfaces.

The design of the interaction control and the perfor-
mance analysis are usually carried out under simplifying
assumptions. The following two cases are considered:

1. the robot and the environment are perfectly rigid
and the constraints imposed by the environment are
purely kinematic.

2. the robot is perfectly rigid, all the compliance in
the system is localized in the environment and the
contact wrench is approximated by an elastic model.

In both cases, frictionless contact is assumed. It is ob-
vious that these situations are only ideal. However, the
robustness of the control should be able to cope with
situations where some of the ideal assumptions are re-
laxed. In that case the control laws may be adapted to
deal with non-ideal characteristics.

7.3.1 Rigid environment

The kinematic constraints imposed by the environment
can be represented by a set of equations that the vari-
ables describing the end-effector position and orienta-
tion must satisfy; since these variables depend on the
joint variables through the direct kinematic equations,
the constraint equations can also be expressed in the
joint space as

φ(q) = 0. (7.27)

Vector φ is a (m × 1) function, with m < n, where n is
the number of joints of the manipulator, assumed to be
nonredundant; without loss of generality, it is assumed
n = 6. The constraints of the form (7.27), involving only
the generalized coordinates of the system, are known as
holonomic constraints. The case of time-varying con-
straints of the form φ(q, t) = 0 is not considered here but
can be analyzed in a similar way. Moreover, only bilat-
eral constraints expressed by equalities of the form (7.27)
are of concern; this means that the end-effector always
keeps contact with the environment. The analysis pre-
sented here is known as kinetostatic analysis.

It is assumed that vector equation (7.27) is twice differ-
entiable and that its m components are linearly indepen-
dent at least locally in a neighborhood of the operating
point. Hence, differentiation of (7.27) yields

Jφ(q)q̇ = 0, (7.28)

where Jφ(q) = ∂φ/∂q is the (m × 6) Jacobian of φ(q)
that, by virtue of the above assumption, is of rank m at
least locally in a neighborhood of the operating point.

In the absence of friction, the generalized interaction
forces are represented by a reaction wrench that tends
to violate the constraints. This end-effector wrench pro-
duces reaction torques at the joints that can be computed
using the principle of virtual work as

τ e = JT

φ (q)λ,

where λ is a (m × 1) vector of multipliers. The end-
effector wrench corresponding to τ e can be computed
as

he = J−T(q)τ e = Sf (q)λ, (7.29)

where
Sf = J−T(q)JT

φ (q). (7.30)

From (7.29) it follows that the end-effector wrench he

belongs to the m dimensional vector space spanned by
the columns of the (6 × m) matrix Sf . The inverse of
the linear transformation (7.29) is computed as

λ = S
†
f (q)he (7.31)

where S†
f denotes a weighted pseudo-inverse of matrix

Sf , i.e.,

S
†
f = (ST

fWSf )−1ST

fW (7.32)

with W a suitable weighting matrix.
Notice that, while the range space of matrix Sf

in (7.30) is uniquely defined by the geometry of the con-
tact, matrix Sf itself is not unique; also, the constraint
equations (7.27), the corresponding Jacobian Jφ as well

as the pseudo-inverse S†
f and vector λ are not uniquely

defined.
In general, the physical units of measure of the el-

ements of λ are not homogeneous and the columns of
matrix Sf , as well as of matrix S†

f , do not necessar-
ily represent homogeneous entities. This may produce
invariance problems in the transformation (7.31) if he

represents a measured wrench that is subject to distur-
bances and, as a result, may have components outside
the range space of Sf . If a physical unit or a reference
frame is changed, matrix Sf undergoes a transforma-
tion; however, the result of (7.31) with the transformed
pseudo-inverse, in general, depends on the adopted phys-
ical units or on the reference frame! The reason is that
the pseudo-inverse is the weighted least-squares solution
of a minimization problem based on the norm of vector
he −Sf (q)λ, and the invariance can be guaranteed only
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if a physically consistent norm of this vector is used. In
the ideal case that he is in the range space of Sf , there is
a unique solution for λ in (7.31), regardless the weight-
ing matrix, and hence the invariance problem does not
show up.

A possible solution consists in choosing Sf so that its
columns represent linearly independent wrenches. This
implies that (7.29) gives he as a linear combination of
wrenches and λ is a dimensionless vector. A physi-
cally consistent norm on the wrench space can be defined
based on the quadratic form hT

eK
−1he, which has the

meaning of an elastic energy if K is a positive definite
matrix corresponding to a stiffness. Hence, the choice
W = K−1 can be made for the weighting matrix of the
pseudo-inverse.

Notice that, for a given Sf , the constraint Jacobian

can be computed from (7.30) as Jφ(q) = ST

f J(q); more-
over, the constraint equations can be derived by inte-
grating (7.28).

Using (7.1) and (7.30), equality (7.28) can be rewritten
in the form

Jφ(q)J−1(q)J(q)q̇ = ST

f ve = 0, (7.33)

which, by virtue of (7.29), is equivalent to

hT

e ve = 0. (7.34)

Equation (7.34) represents the kinetostatic relationship,
known as reciprocity , between the ideal reaction wrench
he (belonging to the so-called force controlled subspace)
and the end-effector twist that obeys the constraints
(belonging to the so-called velocity controlled subspace).
The concept of reciprocity, expressing the physical fact
that, in the hypothesis of rigid and frictionless contact,
the wrench does not cause any work against the twist,
is often confused with the concept of “orthogonality”,
which makes no sense in this case because twists and
wrenches belong to different spaces.

Equations (7.33) and (7.34) imply that the velocity
controlled subspace is the reciprocal complement of the
m-dimensional force controlled subspace, identified by
the range of matrix Sf . Hence, the dimension of the
velocity controlled subspace is 6 − m and a (6 × 6 − m)
matrix Sv can be defined, whose columns span the ve-
locity controlled subspace, i.e.,

ve = Sv(q)ν, (7.35)

where ν is a suitable ((6 − m) × 1) vector. From (7.33)
and (7.35) the following equality holds

ST

f (q)Sv(q) = O; (7.36)

moreover, the inverse of the linear transformation (7.35)
can be computed as

ν = S†
v(q)ve, (7.37)

where S†
v denotes a suitable weighted pseudo-inverse of

matrix Sv, computed as in (7.32).
Notice that, as for the case of Sf , although the range

space of matrix Sv is uniquely defined, the choice of ma-
trix Sv itself is not unique. Moreover, the columns of Sv

are not necessarily twists and the scalar ν may have non
homogeneous physical dimensions. However, in order to
avoid invariance problems analogous to that considered
for the case of Sf , it is convenient to select the columns of
Sv as twists so that vector ν is dimensionless; moreover,
the weighting matrix used to compute the pseudo-inverse
in (7.37) can be set asW = M , beingM a (6×6) inertia
matrix; this corresponds to define a norm in the space of
twists based on the kinetic energy. It is worth observing
that the transformation matrices of twists and wrenches,
corresponding to a change of reference frame, are differ-
ent; however, if twists are defined with angular velocity
on top and translational velocity on bottom, then their
transformation matrix is the same as for wrenches.

Matrix Sv may also have an interpretation in terms of
Jacobians, as for Sf in (7.30). Due to the presence of
m independent holonomic constraints (7.27), the config-
uration of the robot in contact with the environment can
be described in terms of a ((6−m)×1) vector r of inde-
pendent variables. From the implicit function theorem,
this vector can be defined as

r = ψ(q), (7.38)

where ψ(q) is any ((6−m)× 1) twice differentiable vec-
tor function such that the m components of φ(q) and
the n − m components of ψ(q) are linearly independent
at least locally in a neighborhood of the operating point.
This means that mapping (7.38), together with the con-
straint equations (7.27), is locally invertible, with inverse
defined as

q = ρ(r), (7.39)

where ρ(r) is a (6×1) twice differentiable vector function.
Equation (7.39) explicitly provides all the joint vectors
which satisfy the constraint equations (7.27). Moreover,
the joint velocity vectors that satisfy (7.28) can be com-
puted as

q̇ = Jρ(r)ṙ,

where Jρ(r) = ∂ρ/∂r is a (6×6−m) full rank Jacobian
matrix. Therefore, the following equality holds

Jφ(q)Jρ(r) = O,
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which can be interpreted as a reciprocity condition be-
tween the subspace of the reaction torques spanned by
the columns of matrix JT

φ and the subspace of the con-
strained joint velocities spanned by the columns of ma-
trix Jρ.

Rewriting the above equation as

Jφ(q)J(q)−1J(q)Jρ(r) = O,

and taking into account (7.30) and (7.36) matrix Sv can
be expressed as

Sv = J(q)Jρ(r), (7.40)

which, by virtue of (7.38) and (7.39), can be equivalently
expressed as a function of either q or r.

The matrices Sf , Sv and their pseudo-inverse S†
f and

S†
v are known as selection matrices. They play a fun-

damental role for the task specification, i.e., the specifi-
cation of the desired end-effector motion and interaction
forces and moments, as well as for the control synthesis.

7.3.2 Compliant environment

In many applications, the interaction wrench between
the end effector and a compliant environment can be ap-
proximated by the ideal elastic model of the form (7.22).
However, since the stiffness matrixK is positive definite,
this model describes a fully constrained case, when the
environment deformation coincides with the infinitesimal
twist displacement of the end effector. In general, how-
ever, the end-effector motion is only partially constrained
by the environment and this situation can be modelled
by introducing a suitable positive semi-definite stiffness
matrix.

The stiffness matrix describing the partially con-
strained interaction between the end-effector and the en-
vironment can be computed by modelling the environ-
ment as a couple of rigid bodies, S and O, connected
through an ideal 6-DOF spring of compliance C = K−1.
Body S is attached to a frame Σs and is in contact with
the end effector; body O is attached to a frame Σo which,
at equilibrium, coincides with frame Σs. The environ-
ment deformation about the equilibrium, in the presence
of a wrench hs, is represented by the infinitesimal twist
displacement δxso between frames Σs and Σo that can
be computed as

δxso = Chs. (7.41)

All the quantities hereafter are referred to frame Σs but
the superscript s is omitted for brevity.

For the considered contact situation, the end-effector
twist does not completely belong to the ideal velocity
subspace, corresponding to a rigid environment, because
the environment can deform. Therefore, the infinitesimal
twist displacement of the end-effector frame Σe with re-
spect to Σo can be decomposed as

δxeo = δxv + δxf , (7.42)

where δxv is the end-effector infinitesimal twist displace-
ment in the velocity controlled subspace, defined as the
6−m reciprocal complement of the force controlled sub-
space, while δxf is the end-effector infinitesimal twist
displacement corresponding to the environment deforma-
tion. Hence:

δxv = P vδxeo (7.43)

δxf = (I − P v)δxeo = (I − P v)δxso, (7.44)

where P v = SvS
†
v and Sv and S†

v are defined as in the
rigid environment case. Matrix P v is a projection matrix
that filters out all the end-effector twists (and infinitesi-
mal twist displacements) that are not in the range space
of Sv, while I − P v is a projection matrix that filters
out all the end-effector twists (and infinitesimal twist
displacements) that are in the range space of Sv. The
twists P vv are denoted as twists of freedom while the
twists (I − P v)v are denoted as twists of constraint .

In the hypothesis of frictionless contact, the interac-
tion wrench between the end effector and the environ-
ment is restricted to a force controlled subspace defined
by the m-dimensional range space of a matrix Sf , as for
the rigid environment case, i.e.,

he = Sfλ = hs, (7.45)

where λ is a (m × 1) dimensionless vector. Pre-
multiplying both sides of (7.42) by ST

f and using (7.41),
(7.43), (7.44) and (7.45), yields

ST

f δxeo = ST

fCSfλ,

where the identity ST

f P v = O has been exploited.
Therefore, the following elastic model can be found

he = Sfλ = K ′δxeo, (7.46)

where K ′ = Sf (ST

fCSf )−1ST

f is the positive semi-
definite stiffness matrix corresponding to the partially
constrained interaction.

If the compliance matrix C is adopted as a weight-
ing matrix for the computation of S†

f , then K ′ can be
expressed as

K ′ = P fK, (7.47)
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where P f = SfS
†
f is a projection matrix that filters out

all the end-effector wrenches that are not in the range
space of Sf .

The compliance matrix for the partially constrained
interaction cannot be computed as the inverse of K ′,
since this matrix is of rank m < 6. However, using (7.44),
(7.41) and (7.45), the following equality can be found

δxf = C ′he,

where matrix
C ′ = (I − P v)C, (7.48)

of rank 6 − m, is positive semi-definite. If the stiffness
matrix K is adopted as a weighting matrix for the com-
putation of S†

v, then matrix C ′ has the noticeable ex-
pression C ′ = C − Sv(ST

vKSv)−1ST

v , showing that C ′

is symmetric.

7.3.3 Task specification

An interaction task can be assigned in terms of a desired
end-effector wrench hd and twist vd. In order to be
consistent with the constraints, these vectors must lie in
the force and velocity controlled subspaces respectively.
This can be guaranteed by specifying vectors λd and νd

and computing hd and vd as

hd = Sfλd, vd = Svνd,

where Sf and Sv have to be suitably defined on the basis
of the geometry of the task, and so that invariance with
respect to the choice of the reference frame and change
of physical units is guaranteed.

Many robotic tasks have a set of orthogonal reference
frames in which the task specification is very easy and in-
tuitive. Such frames are called task frames or compliance
frames. An interaction task can be specified by assigning
a desired force/torque or a desired linear/angular veloc-
ity along/about each of the frame axes. The desired
quantities are known as artificial constraints because
they are imposed by the controller; these constraints, in
the case of rigid contact, are complementary to those im-
posed by the environment, known as natural constraints.

Some examples of task frame definition and task spec-
ification are given below.

Peg-in-hole

The goal of this task is to push the peg into the hole while
avoiding wedging and jamming. The peg has two degrees
of motion freedom, hence the dimension of the velocity

Figure 7.3: Insertion of a cylindrical peg in a hole.

controlled subspace is 6−m = 2, while the dimension of
the force controlled subspace is m = 4. The task frame
can be chosen as in the Figure 7.3 and the task can be
achieved by assigning the following desired forces and
torques:

• zero forces along the xt and yt axes;

• zero torques about xt and yt axes.

and the following desired velocities:

• a non-zero linear velocity along the zt axis;

• an arbitrary angular velocity about the zt axis;

The task continues until a “large” reaction force in the zt

direction is measured, indicating that the peg has hit the
bottom of the hole, not represented in the figure. Hence,
matrices Sf and Sv can be chosen as

Sf =





1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0




, Sv =





0 0
0 0
1 0
0 0
0 0
0 1




,

where the columns of Sf have the dimensions of wrenches
and those of Sv have the dimensions of twists, defined
in the task frame, and they transform accordingly when
changing the reference frame. The task frame can be
chosen either attached to the end effector or to the envi-
ronment.

Turning a crank

The goal of this task is turning a crank with idle handle.
The handle has two degrees of motion freedom, corre-
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q̇

Figure 7.4: Turning a crank with idle handle.

sponding to the rotation about the zt axis and to the ro-
tation about the rotation axis of the crank. Hence the di-
mension of the velocity controlled subspace is 6−m = 2,
while the dimension of the force controlled subspace is
m = 4. The task frame can be assumed as in the Fig-
ure 7.4, attached to the crank. The task can be achieved
by assigning the following desired forces and torques:

• zero forces along the xt and zt axes;

• zero torques about xt and yt axes.

and the following desired velocities:

• a non-zero linear velocity along the yt axis;

• an arbitrary angular velocity about the zt axis.

Hence, matrices Sf and Sv can be chosen as

Sf =





1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




, Sv =





0 0
1 0
0 0
0 0
0 0
0 1




,

referred to the task frame. In this case, the task frame
is fixed with respect to the crank, but in motion with
respect both the end-effector frame (fixed to the handle)
and to the base frame of the robot. Hence, matrices
Sf and Sv are time-variant when referred either to the
end-effector frame or to the base frame.

Sliding a block on a planar elastic surface

The goal of this task is to slide a prismatic block over
a planar surface along the xt axis, while pushing with a
given force against the elastic planar surface. The object

has three degrees of motion freedom, hence the dimen-
sion of the velocity controlled subspace is 6 − m = 3
while the dimension of the force controlled subspace is
m = 3. The task frame can be chosen attached to the
environment, as in the Figure 7.5, and the task can be
achieved by assigning the following desired velocities:

• a non-zero velocity along the xt axis;

• a zero velocity along the yt axis;

• a zero angular velocity about the zt axis;

and the following desired forces and torques:

• a non-zero force along the zt axis;

• zero torques about the xt and yt axes.

Hence, matrices Sf and Sv can be chosen as

Sf =





0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0




, Sv =





1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1




.

The elements of the (6 × 6) stiffness matrix K ′, corre-
sponding to the partially constrained interaction of the
end effector with the environment, are all zero except
those of the (3 × 3) principal minor K ′

m formed by the
rows 3, 4, 5 and the columns 3, 4, 5 of K ′, that can be
computed as

K ′
m =




c3,3 c3,4 c3,5

c4,3 c4,4 c4,5

c5,3 c5,4 c5,5




−1

,

where ci,j = cj,i are the elements of the compliance ma-
trix C.

General contact model

The task frame concept has proven to be very useful for
the specification of a variety of practical robotic tasks.
However, it only applies to task geometries with lim-
ited complexity, for which separate control modes can be
assigned independently to three pure translational and
three pure rotational directions along the axes of a sin-
gle frame. For more complex situations, as in the case of
multiple-point contact, a task frame may not exist and
more complex contact models have to be adopted. A pos-
sible solution is represented by the virtual contact manip-
ulator model, where each individual contact is modelled
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Figure 7.5: Sliding of a prismatic object on a planar
elastic surface.

by a virtual kinematic chain between the manipulated
object and the environment, giving the manipulated ob-
ject (instantaneously) the same motion freedom as the
contact. The velocities and force kinematics of the par-
allel manipulator, formed by the virtual manipulators of
all individual contacts, can be derived using the standard
kinematics procedures of real manipulators and allow to
construct bases for the twist and wrench spaces of the
total motion constraint.

A more general approach, known as constraint-based
task spesification opens up new applications involv-
ing complex geometries and/or use of multiple sensors
(force/torque, distance, visual sensors) for controlling
different directions in space simultaneously. The concept
of task frame is extended to that of multiple features
frames. Each of the feature frames makes it possible
to model part of the task geometry using translational
and rotational directions along the axes of a frame; also,
part of the constraints is specified in each of the fea-
ture frames. The total model and the total set of con-
straints are achieved by collecting the partial task and
constraints descriptions, each expressed in the individual
feature frames.

7.3.4 Sensor-based contact model esti-
mation

The task specification relies on the definition of the ve-
locity controlled subspace and of the force controlled sub-
space assuming that an accurate model of the contact is
available all the time. On the other hand, in most prac-
tical implementations, the selection matrices Sf and Sv

are not exactly known, however many interaction con-
trol strategies turn out to be rather robust against mod-
elling errors. As a matter of fact, to cope reliably with
these situations is exactly why force control is used! The

Figure 7.6: Estimation of orientation error. Top:
velocity-based approach. Bottom: force-based approach.

robustness of the force controller increases if matrices
Sf and Sv can be continuously updated, using motion
and/or force measurements, during the task execution.

In detail, a nominal model is assumed to be available;
when the contact situation evolves differently from what
the model predicts, the measured and predicted motion
and force will begin to deviate. These small incompati-
bilities can be measured and can then be used to adapt
the model online, using algorithms derived from classi-
cal state-space “prediction-correction” estimators as, for
example, the Kalman Filter.

Figure 7.6 reports an example of error between nomi-
nal and measured motion and force variables, typical of a
two-dimensional contour following task. The orientation
of the contact normal changes if the environment is not
planar. Hence an angular error θ appears between the
nominal contact normal, aligned to the yt axis of the task
frame (the frame with axes xt and yt), and the real con-
tact normal, aligned to the yr axis of the real task frame
(the frame with axes xr and yr). This angle can be esti-
mated with either velocity and force measurements only:

• Velocity-based approach: the executed linear veloc-
ity v, which is tangent to the real contour (aligned
to the xr-axis), does not completely lie along the
xt-axis, but has a small component vyt along the
yt-axis. The orientation error θ can then be approx-
imated by θ = tan−1(vyt/vxt).



7.4. HYBRID FORCE/MOTION CONTROL 17

• Force-based approach: the measured (ideal) contact
force f does not completely lie along the nomi-
nal normal direction, aligned to yt-axis, but has a
small component fxt along the xt-axis. The orien-
tation error θ can then be approximated by θ =
tan−1(fxt/fyt).

The velocity-based approach is disturbed by mechan-
ical compliance in the system; the force-based approach
is disturbed by contact friction.

7.4 Hybrid force/motion control

The aim of hybrid force/motion control is to split up si-
multaneous control of both end-effector motion and con-
tact forces into two separate and decoupled subproblems.
In the following, the main control approaches in the hy-
brid framework are presented for the cases of both rigid
and compliant environment.

7.4.1 Acceleration resolved approach

As for the case of motion control, the acceleration re-
solved approach is aimed at decoupling and linearizing
the nonlinear robot dynamics at acceleration level, via an
inverse dynamics control law. In the presence of inter-
action with the environment, a complete decoupling be-
tween force and velocity controlled subspaces is sought.
The basic idea is that of designing a model-based inner
control loop to compensate for the nonlinear dynamics of
the robot manipulator and decouple the force and veloc-
ity subspaces; hence an outer control loop is designed to
ensure disturbance rejection and tracking of the desired
end-effector force and motion.

Rigid environment

In the case of a rigid environment, the external wrench
can be written in the form he = Sfλ. The force mul-
tiplier λ can be eliminated from equation (7.2) by solv-
ing (7.2) for v̇e and substituting it into the time deriva-
tive of the last equality (7.33). This yields:

λ = Λf (q)
(
ST

f Λ−1(q)(hc − µ(q, q̇)) + Ṡ
T

f ve

)
, (7.49)

where Λf (q) = (ST

f Λ−1Sf )−1 and µ(q, q̇) = Γq̇ + η.
Therefore the constraint dynamics can be rewritten in
the form

Λ(q)v̇e + SfΛf (q)Ṡ
T

f ve = P (q)(hc − µ(q, q̇)), (7.50)

where P = I − SfΛfS
T

f Λ−1. Notice that PSf = O,
hence the (6 × 6) matrix P is a projection matrix that
filters out all the end-effector wrenches lying in the range
of Sf . These correspond to wrenches that tend to violate
the constraints.

Equation (7.49) reveals that the force multiplier vec-
tor λ instantaneously depends also on the applied input
wrench hc. Hence, by suitably choosing hc, it is pos-
sible to directly control the m independent components
of the end-effector wrench that tend to violate the con-
straints; these components can be computed from the m
force multipliers through equation (7.29). On the other
hand, equation (7.50) represents a set of 6 second order
differential equations whose solution, if initialized on the
constraints, automatically satisfy equation (7.27) at all
times.

The reduced dynamics of the constrained system is
described by 6 − m second order equations that are ob-
tained by pre-multiplying both sides of (7.50) by matrix
ST

v and substituting the acceleration v̇e with

v̇e = Svν̇ + Ṡvν.

The resulting equations are

Λv(q)ν̇ = ST

v (hc − µ(q, q̇) − Λ(q)Ṡvν), (7.51)

where Λv = ST

v ΛSv and identities (7.36) and ST

v P =
Sv have been used. Moreover, expression (7.49) can be
rewritten as

λ = Λf (q)ST

f Λ−1(q)(hc − µ(q, q̇) − Λ(q)Ṡvν
)
,

where the identity Ṡ
T

f Sv = −ST

f Ṡv has been exploited.
An inverse dynamics inner control loop can be de-

signed choosing the control wrench hc as

hc = Λ(q)Svαv + Sffλ + µ(q, q̇) + Λ(q)Ṡvν, (7.52)

where αv and fλ are properly designed control inputs.
Substituting (7.52) into equations (7.51) and (7.49)

yields

ν̇ = αν

λ = fλ,

showing that control law (7.52) allows complete decou-
pling between force and velocity controlled subspaces.

It is worth noticing that, for the implementation of
control law (7.52), constraint equations (7.27) as well as
equation (7.38) defining the vector of the configuration
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variables for the constrained system are not required,
provided that matrices Sf and Sv are known or esti-
mated online. In these cases, the task can easily be as-
signed by specifying a desired force, in terms of vector
λd(t), and a desired velocity, in terms of vector νd(t);
moreover, a force/velocity control is implemented.

The desired force λd(t) can be achieved by setting

fλ = λd(t), (7.53)

but this choice is very sensitive to disturbance forces,
since it contains no force feedback. Alternative choices
are

fλ = λd(t) +KPλ(λd(t) − λ(t)), (7.54)

or

fλ = λd(t) +KIλ

∫ t

0

(λd(τ) − λ(τ))dτ , (7.55)

whereKPλ andKIλ are suitable positive definite matrix
gains. The proportional feedback is able to reduce the
force error due to disturbance forces, while the integral
action is able to compensate for constant bias distur-
bances.

The implementation of force feedback requires the
computation of the force multiplier λ from the measure-
ment of the end-effector wrench he, that can be achieved
using (7.31).

Velocity control is achieved by setting

αν = ν̇d(t)+KPν(νd(t)−ν(t))+KIν

∫ t

0

(νd(τ)−ν(τ))dτ ,

(7.56)
where KPν and KIν are suitable matrix gains. It
is straightforward to show that asymptotic tracking
of νd(t) and ν̇d(t) is ensured with exponential conver-
gence for any choice of positive definite matrices KPν

and KIν .
The computation of vector ν from the available mea-

surements can be achieved using (7.37), where the end-
effector twist is computed from joint position and veloc-
ity measurements through (7.1).

Equations (7.54) or (7.55) and (7.56) represent the
outer control loop ensuring force/velocity control and dis-
turbance rejection.

When equations (7.27) and (7.38) are known, matri-
ces Sf and Sv can be computed according to (7.30) and
(7.40) and a force/position control can be designed spec-
ifying a desired force λd(t), and a desired position rd(t).

Force control can be designed as above, while position
control can be achieved by setting

αν = r̈d(t) +KDr(ṙd(t) − ν(t)) +KPr(rd(t) − r(t)).

Asymptotic tracking of rd(t), ṙd(t) and r̈d(t) is ensured
with exponential convergence for any choice of positive
definite matrices KDr and KPr. Vector r required for
position feedback can be computed from joint position
measurements via (7.38).

Compliant environment

In the case of a compliant environment, according to
decomposition (7.42) of the end-effector displacement,
the end-effector twist can be decomposed as

ve = Svν +C ′Sf λ̇, (7.57)

where the first term is a twist of freedom, the second term
is a twist of constraint, vector ν is defined as in (7.40), C ′

is defined in (7.48). Assuming a constant contact geom-

etry and compliance, i.e., Ṡv = O, Ċ
′
= O and Ṡf = O,

a similar decomposition holds in terms of acceleration

v̇e = Svν̇ +C ′Sf λ̈. (7.58)

Inverse dynamics control law (7.15) can be adopted,
resulting in closed-loop equation (7.16) where α is prop-
erly designed control input.

In view of acceleration decomposition (7.58), the
choice

α = Svαν +C ′Sffλ, (7.59)

allows decoupling force control from velocity control. In
fact, substituting (7.58) and (7.59) in (7.16) and pre-
multiplying both sides of the resulting equation once by
S†

v and once by ST

f , the following decoupled equations
can be derived

ν̇ = αν (7.60)

λ̈ = fλ. (7.61)

Hence, choosing αν according to (7.56) as for the rigid
environment case, asymptotic tracking of a desired ve-
locity νd(t) and acceleration ν̇d(t) is ensured, with expo-
nential convergence. The control input fλ can be chosen
as

fλ = λ̈d(t) +KDλ(λ̇d(t) − λ̇(t)) +KPλ(λd(t) − λ(t)),
(7.62)

ensuring asymptotic tracking of a desired force trajec-
tory (λd(t), λ̇d(t), λ̈d(t)) with exponential convergence
for any choice of positive definite matrices KDλ and
KPλ.

Differently from the rigid environment case, feedback
of λ̇ is required for the implementation of force control
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law (7.62). This quantity could be computed from end-
effector wrench measurements he as

λ̇ = S
†
f ḣe.

However, since the wrench measurement signal is often
noisy, the feedback of λ̇ is often replaced by

λ̇ = S
†
fK

′J(q)q̇, (7.63)

where joint velocities are measured using tachometers or
computed from joint positions via numerical differenti-
ation and K ′ is the positive semi-definite stiffness ma-
trix (7.47) describing the partially constrained interac-
tion. For the computation of (7.63), only the knowledge
(or the estimate) of K ′ is required, and not that of the
full stiffness matrix K. Also, the implementation of con-
trol law (7.59) requires the knowledge (or the estimate)
of the compliance matrix C ′ of the partially constrained
interaction and not that of the full compliance matrix C.

If the contact geometry is known, but only an estimate
of the stiffness/compliance of the environment is avail-
able, control law (7.59), with (7.62), may still guarantee
the convergence of the force error, if a constant desired
force λd is assigned. In this case, control law (7.59) has
the form

α = Svαν + Ĉ
′
Sffλ,

where Ĉ
′
= (I−P v)Ĉ and Ĉ is an estimate of the com-

pliance matrix. Hence, equality (7.60) still holds, while,
in lieu of (7.61), the following equality can be found

λ̈ = Lffλ

where Lf = (ST

fCSf )−1ST

f ĈSf is a non-singular ma-
trix. Thus, the force and velocity controlled subspaces
remain decoupled and velocity control law (7.56) does
not need to be modified. On the other hand, if the
the feedback of the time derivative of λ is computed

using (7.63), only an estimate
˙̂
λ can be obtained. Us-

ing (7.63), (7.57) and (7.46), the following equality can
be found

˙̂
λ = L−1

f λ̇.

Therefore, computing force control law fλ as in (7.62)

with a constant λd,
˙̂
λ in lieu of λ̇ and KDλ = KDλI,

the dynamics of the closed-loop system is

λ̈+ KDλλ̇+LfKPλλ = LfKPλλd,

showing that exponential asymptotic stability of the
equilibrium λ = λd can be ensured, also in the pres-
ence of the uncertain matrix Lf , with a suitable choice
of the gains KDλ and KPλ.

7.4.2 Passivity-based approach

The passivity-based approach exploits the passivity
properties of the dynamic model of the manipulator,
which hold also for the constrained dynamic model (7.2).
It can be easily shown that the choice of matrix C(q, q̇)
that guarantees the skew-symmetry of matrix Ḣ(q) −
2C(q, q̇) in the joint space, makes also matrix Λ̇(q) −
2Γ(q, q̇) skew-symmetric. This fundamental property of
Lagrangian systems is at the base of passivity-based con-
trol algorithms.

Rigid environment

The control wrench hc can be chosen as

hc = Λ(q)Svν̇r + Γ′(q, q̇)νr + (S†
v)TKν(νr − ν)

+ η(q) + Sffλ, (7.64)

where Γ′(q, q̇) = ΓSv+ΛṠv,Kν is a suitable symmetric
and positive definite matrix, νr and fλ are control inputs
properly designed.

Substituting (7.64) into equation (7.2) yields

Λ(q)Svṡν + Γ′(q, q̇)sν + (S†
v)TKνsν +Sf (fλ −λ) = 0

(7.65)
with ṡν = ν̇r − ν̇ and sν = νr − ν, showing that the
closed-loop system remains nonlinear and coupled.

Pre-multiplying both sides of (7.65) by matrix Sv, the
following expression for the reduced order dynamics is
achieved

Λv(q)ṡν + Γv(q, q̇)sν +Kνsν = 0, (7.66)

with Γv = ST

v Γ(q, q̇)Sv + ST

v Λ(q)Ṡv; it can be easily
shown that the skew-symmetry of matrix Λ̇(q)−2Γ(q, q̇)
implies that matrix Λ̇v(q)−2Γv(q, q̇) is skew symmetric
as well.

On the other hand, pre-multiplying both sides of (7.65)
by matrix ST

f Λ−1(q), the following expression for the
force dynamics can be found

fλ − λ = −Λf (q)ST

f Λ−1(q)(Γ′(q, q̇) − (S†
v)TKν)sν ,

(7.67)
showing that the force multiplier λ instantaneously de-
pends on the control input fλ but also on the error sν

in the velocity controlled subspace.
The asymptotic stability of reduced order sys-

tem (7.66) can be ensured with the choices

ν̇r = ν̇d + α∆ν (7.68)

νr = νd + α∆xν , (7.69)
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where α is a positive gain, ν̇d and νd are the desired
acceleration and velocity respectively, ∆ν = νd − ν and

∆xν =

∫ t

0

∆ν(τ)dτ .

The stability proof is based on the positive definite Lya-
punov function

V =
1

2
sT

ν Λv(q)sν + α∆xT

νKν∆xν ,

whose time-derivative along the trajectories of equa-
tion (7.66)

V̇ = −∆νTKν∆ν − α2∆xT

νKν∆xν

is a definite semi-negative function. Hence, ∆ν = 0,
∆xν = 0 and sν = 0 asymptotically. Therefore, track-
ing of the desired velocity νd(t) is ensured. Moreover, the
right-hand side of equation (7.67) remains bounded and
vanishes asymptotically. Hence, tracking of the desired
force λd(t) can be ensured setting fλ as for the acceler-
ation resolved approach, according to the choices (7.53),
(7.54), or (7.55).

Notice that position control can be achieved if a de-
sired position rd(t) is assigned for vector r in (7.38),
provided that matrices Sf and Sv are computed accord-
ing to (7.30) and (7.40), and vectors ν̇d = r̈d, νd = ṙd

and ∆xν = rd − r are used in (7.68) and (7.69).

Compliant environment

The control wrench hc can be chosen as

hc = Λ(q)v̇r + Γ(q, q̇)vr +Ks(vr − ve) + he + η(q),
(7.70)

where Ks is a suitable symmetric and positive definite
matrix while vr and its time derivative v̇r are chosen as

vr = vd + α∆x

v̇r = v̇d + α∆v,

with α positive gain, vd and its time derivative v̇d are
properly designed control inputs, ∆v = vd − ve and

∆x =

∫ t

0

∆vdτ .

Substituting (7.70) into equation (7.2) yields

Λ(q)ṡ+ Γ(q, q̇)s+Kss = 0 (7.71)

with ṡ = v̇r − v̇e and s = vr − ve.

The asymptotic stability of system (7.71) can be en-
sured setting:

vd = Svνd +C ′Sf λ̇d,

where νd(t) is a desired velocity trajectory and λd(t) is
the desired force trajectory. The stability proof is based
on the positive definite Lyapunov function

V =
1

2
sTΛ(q)s+ α∆xTKs∆x,

whose time-derivative along the trajectories of equa-
tion (7.71)

V̇ = −∆vTKs∆v − α2∆xTKs∆x

is a negative definite function. Hence, ∆v = 0 and
∆x = 0, asymptotically. In the case of constant con-
tact geometry and stiffness, the following equalities hold

∆v = Sv(νd − ν) +C ′Sf (λ̇d − λ̇)

∆x = Sv

∫ t

0

(νd − ν)dτ +C ′Sf (λd − λ),

showing that both the velocity and force tracking errors,
belonging to reciprocal subspaces, converge asymptoti-
cally to zero.

7.4.3 Velocity resolved approach

The acceleration resolved approach, as well as the
passivity-based approach, require modification of the
current industrial robot controllers. As for the case of
impedance control, if the contact is sufficiently compli-
ant, the closed loop dynamics of a motion controlled
robot can be approximated by equation (7.26), corre-
sponding to a velocity resolved control.

To achieve force and velocity control, according to the
end-effector twist decomposition (7.57), the control input
vr can be chosen as

vr = Svvν +C ′Sffλ, (7.72)

with

vν = νd(t) +KIν

∫ t

0

(νd(τ) − ν(τ))dτ , (7.73)

and
fλ = λ̇d(t) +KPλ(λd(t) − λ(t)), (7.74)

whereKIν andKPλ are suitable symmetric and positive
definite matrix gains. Decoupling between velocity and
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force controlled subspaces and exponential asymptotic
stability of the closed loop system can be proven as for
the acceleration resolved approach. Also, since the force
error has second-order dynamics, an integral action can
be added to (7.74) to improve the disturbance rejection
capabilities, i.e.:

fλ = λ̇d(t)+KPλ(λd(t)−λ(t))+KIλ

∫ t

0

(λd(τ)−λ(τ))dτ ,

(7.75)
and the exponential asymptotic stability is guaranteed
if matrices KPλ and KIλ are symmetric and positive
definite.

In case an estimate Ĉ of the stiffness matrix of the
environment is used in (7.72), as for the acceleration
resolved approach, the exponential convergence of λ
to a constant λd can be still ensured, for both (7.74)
and (7.75).

In some applications, besides the stiffness matrix, also
the geometry of the environment is uncertain. In these
cases, a force/motion control law similar to (7.72) can
be implemented, without using the selection matrices Sv

and Sf to separate the force controlled subspace from the
velocity controlled subspace. The motion control law can
be set as in (7.73), but using full velocity feedback. Also,
the force control law can be set as in (7.75), but using full
force and moment feedback. That is, both motion con-
trol and force control are applied in all directions of the
6D space. The resulting control, known as force control
with feedforward motion or parallel force/position control
guarantees force regulation at the expenses of position
errors along the constrained task directions, thanks to
the dominance of the force controller over the position
controller ensured by the presence of the integral action
on the force error.

7.5 Conclusion and further read-

ings

This Chapter has summarized the main approaches to
force control in a unifying perspective. However, there
are many aspects that have not been considered and that
must be carefully taken into account when dealing with
interaction robotic tasks. The two major paradigms of
force control (impedance and hybrid force/motion con-
trol) are based on several simplifying assumptions that
are only partially satisfied in practical implementations.
As a matter of fact, the performance of a force controlled
robotic system depends on the interaction with a chang-

ing environment which is very difficult to model and iden-
tify correctly. A general contact situation is far from to
be completely predictable, not only quantitatively, but
also qualitatively: the contact configuration can change
abruptly, or be of a differen type than expected. Hence,
the standard performance indices used to evaluate a con-
trol system, i.e., stability, bandwidth, accuracy, robust-
ness, cannot be defined considering the robotic system
alone, as for the case of robot motion control, but must
be always referred to the particular contact situation at
hand. Also, a classification of all these different situa-
tions is not easy, especially in the case of dynamics envi-
ronments and when the task involves multiple contacts
acting in parallel.

Due to the inherent complexity of the force control
problem, a large number of research papers on this topic
have been published in the past three decades. A state-
of-the-art of the first decade is provided in [20], whereas
the progress of the second decade is surveyed in [21]
and [22]. More recently, two monographs on force con-
trol [23, 24] have appeared. In the following, a list of
references is provided, where more details on the argu-
ments presented in the Chapter, as well as topics not
covered here, can be found.

7.5.1 Indirect force control

The concept of generalized spring and damping for force
control in joint coordinates was originally proposed in [3]
and the implementation discussed in [10]. Stiffness con-
trol in Cartesian coordinates was proposed in [9]. De-
vices based on the remote center of compliance were dis-
cussed in [25] for successful mating of rigid parts. The
original idea of a mechanical impedance model used for
controlling the interaction between manipulator and en-
vironment is presented in [7], and a similar formulation
is given in [8]. Stability of impedance control was ana-
lyzed in [26] and the problems of interaction with a stiff
environment was considered in [27].

Adaptive impedance control algorithms [29, 28] have
been proposed to overcome uncertainties in the dynamic
parameters of the robot manipulator, while robust con-
trol schemes can be found in [30]. Impedance control
has also been used in the hybrid force/motion control
framework [31].

A reference work on modelling six-DOF (spatial) stiff-
ness is [32] while the properties of spatial compliance
have been analyzed in detail in [33, 34, 35]; a six-DOF
variable compliant wrist was proposed in [36], while sev-
eral studies concerning the construction of programmed
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compliances, optimized for specific tasks have been pro-
posed [37, 38]. The energy-based approach to derive
a spatial impedance was introduced in [39], using rota-
tion matrices; various 6-DOF impedance control schemes
based on different representations of end-effector orienta-
tion, including the unit quaternion, can be found in [40].
The quaternion-based formulation is extended to the case
of non block-diagonal stiffness matrix in [41]. A rigor-
ous treatment of spatial impedance control in a passivity
framework can be found in [42].

7.5.2 Task specification

The concepts of natural and artificial constraints and of
compliance frame were introduced in [11]. These ideas
have been systematically developed in [12, 43] within
the ”task frame formalism”. Theoretical issues on reci-
procity of generalized force and velocity directions are
discussed in [44, 45], while invariance in computing gen-
eralized inverse in robotics is addressed in [46]. The issue
of partially constrained tasks is considered in [47], where
the models of positive semi-definite stiffness and compli-
ance matrices are developed. The problem of estimating
geometric uncertainties is considered in [48, 49], as well
as the issue of linking constraint-based task specification
with real-time task execution control. This approach is
generalized in [50], where a systematic constraint-based
methodology to specify complex tasks is presented.

7.5.3 Hybrid force/motion control

Early works on force control can be found in [10]. The
original hybrid force/positon control concept was intro-
duced in [13], based on the natural and artificial con-
straint task formulation [11]. The explicit inclusion of
the manipulator dynamic model was presented in [17],
and a systematic approach to modelling the interac-
tion with a dynamic environment was developed in [51].
The constrained formulation with inverse dynamic con-
trollers is treated in [14, 52] in the Cartesian space as
well as in [15] joint space. The constrained approach
was also used in [16] with a controller based on lin-
earized equations. The invariance problems pointed out
in [45] were correctly addressed, among other papers,
in [44, 53]. Transposition of model-based schemes from
unconstrained motion control to constrained cases was
accomplished for adaptive control in [54, 55, 18] and
in [56] for robust control.

Approaches designed to cope with uncertainties on the
environment geometry are the force control with feed-

forward motion scheme proposed in [2] and the parallel
force/position control [19], based on the concept of dom-
inance of force control on motion control, thanks to the
use of an integral action on the force error. A parallel
force/position regulator was developed in [57]. The in-
tegral action for removing steady-state force errors has
traditionally been used; its stability was proven in [58],
while robustness with respect to force measurement de-
lays was investigated in [59, 60].

It has been generally recognized that force control may
cause unstable behavior during contact with environ-
ment. Dynamic models for explaining this phenomenon
were introduced in [61] and experimental investigations
can be found in [62] and [63]. Moreover, control schemes
are usually derived on the assumption that the manip-
ulator end effector is in contact with the environment
and this contact is not lost. Impact phenomena may oc-
cur which deserve careful consideration, and there is a
need for global analysis of control schemes including the
transition from non-contact into contact and vice-versa,
e.g. [64, 65, 66].
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J. Katupitiya, S. Demey, T. Lefebvre: Estimation first-
order geometric parameters and monitoring contact
transitions during force-controlled compliant motions,
Int. J. of Robotics Research 18(12), 1161 – 1184 (1999)

[49] T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyedral
contact formation identification for auntonomous com-
pliant motion, IEEE Trans. on Robotics and Automa-
tion 19, 26 – 41 (2007)

[50] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré,
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