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Abstract

We derive explicit formulae for estimation in logistic regression models where some
of the covariates are missing. Our approach allows for modeling the distribution of
the missing covariates either as a multivariate normal or multivariate t-distribution.
A main advantage of this method is that it is fast and does not require the use of
iterative procedures. A model selection method is derived which allows to choose
amongst these distributions. In addition we consider versions of AIC that are based on
the EM algorithm and on multiple imputation methods that have a wide applicability
to model selection in likelihood models in general.
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1 Introduction

The problem of missing data is quite common in statistical analysis, affecting most scientific

fields. The main issue consists in the difficulty of dealing with the missingness. In the

literature, there are different approaches; the simplest (though most naive) method is that

of using the complete cases only by discarding all items with missing observations from

the dataset. Then two important problems arise: first of all, information is lost, since the

original sample size is reduced, which in some cases can be significantly high. Second, if the

missingness depends on the data the results may be biased, depending on the missingness

mechanism (Lipsitz et al., 1998; Little and Rubin, 2002).

The dataset considered for discussion is the European Values Study (EVS), obtained from

the study catalogue ZACAT, a social science data portal from the University of Cologne. The

EVS is carried out under the responsibility of the European Values Study Foundation and it

represents a large-scale, cross-national and longitudinal survey research program; its scope

is to explore important social value patterns in order to analyze similarities and differences

in Europe. Representative national samples were interviewed using uniformly structured

questionnaires to enable generalization and comparison in 33 European countries and were

drawn from the population of citizens over 18 years of age. The data are based on the third

wave analysis of 1999−2001. We focus on the data related to Belgium (Flemish, French and

Brussels communities) and take the following variables into account. The considered dataset

has 1603 observations and 6 variables. The outcome variable is binary where Y = 0 indicates

that the person is not satisfied with his/her job hours, while Y = 1 indicates satisfaction with

job hours; it is completely observed. Other variables are x1: the age when the education was

completed; x2: gender, using 1 for male and 2 for female; x3: job payment, using 1 if they are

paid and 2 if not; x4: education levels, using 1 for primary education, 2 for secondary and

3 for post-secondary; x5: socio-economic status, using 1 for upper-class, 2 for middle-class

and 3 for manual workers. Variable x1 contains missing values for 56 out of the 1603 cases,
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the other variables do not contain missing observations. An additional difficulty is that x1

seems to come from a distribution with heavier tails than the normal distribution.

There is an extensive literature on maximum likelihood estimation in the context of

missing observations. One of the most popular tools is the expectation-maximization (EM)

algorithm introduced by Dempster et al. (1977). The EM algorithm provides an efficient way

of estimation in incomplete data problems, because it relates maximum likelihood estimation

of the incomplete data to maximum likelihood estimation based on the complete data. This

is for example used in the method of weights (Ibrahim, 1990) that is used to fit logistic

regression models with missing covariates (see also Ibrahim et al., 1999a,b). The addition of

the Gibbs sampler and an adaptive rejection algorithm for sampling from the distribution

of the missing data given the observed data makes the estimation method computationally

intensive, since it requires (often many) iterations. Since our intention is to perform model

selection with missing covariate data, complexity and computation time are highly important

since possibly many models will be fit to the data.

In this paper we illustrate the use of the EM algorithm for model selection and we provide

alternatives to its use. First we look at the special case of logistic regression models. Here

it is possible to perform fast, non-iterative calculations. For more general situations, we

explain how to use model selection in combination with multiple imputation.

For logistic regression models with incomplete data Gao and Hui (1997), building further

on Blackhurst and Schluchter (1989), proposed a maximum likelihood estimation approach

where no iterations are needed. They assume that there is either a single normally distributed

covariate that contains missing values, or more than one missing covariate with a monotone

pattern. Since in data sets the covariates often might have heavier tailed distributions, we

extend this estimation approach to univariate and multivariate t-distributions. The method

does not require any iteration, which speeds up the estimation process. Then we turn to the

issue of model selection. While the obtained likelihood can be used for variable selection, we
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work out the case where the focus is mainly on the selection of the better distribution for

the missing covariates. We obtain a fast model selection method to choose between normal

and t-distributed errors with certain degrees of freedom. This fast method is restricted in its

application to the logistic regression models as described in Section 2. For model selection

in more general situations, we rely on the EM algorithm, see Section 3.1, or alternatively on

multiple imputation methods, see the extension in Section 6.2.

The paper is structured as follows. Section 2 deals with estimation for t-distributed

missing covariates, while Section 3 explains the construction of an AIC-type criterion to

select amongst these distributions. Simulation results and the analysis of a data example

are contained in Sections 4 and 5, respectively. In Section 6 we mention possible extensions

to other distributions and we give an AIC for general purpose model selection for multiply

imputed data.

2 Estimation with multiple missing covariates

We propose first an extension to the method of Gao and Hui (1997) by releasing the normality

assumption of the error term and allowing for a multivariate t-distribution when either one

or more covariates under monotone missingness contain missing values.

2.1 Multivariate t-distributed missing covariates

We introduce some notation. We consider a response variable Y that is binary and fully

observed, while some of the explanatory variables X1, . . . , Xp contain missing values. Let

X be the design matrix of regression variables, of dimension n × p, while Y represents

the vector of response values of length n; the vectors (Yi, Xi1, . . . , Xip) for i = 1, . . . , n are

independent. Because of the missing observations, the design matrix can be split in two

parts, X = (Xobs,Xmis); Xobs represents the part of the design matrix X with covariates
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that are completely observed and Xmis is the subset of X with explanatory variables which

have at least one value not observed, stressing that Xmis can be a matrix, containing more

than one variable. We assume that Xmis follows a monotone pattern, as defined by Little

and Rubin (2002), meaning that the missing variables are rearranged and ordered in a way

that the first ‘block’ has more observations than the second one, that, in turn, has more

observations than the following one, with the last ‘block’ the one with the fewest observed

values. In particular Xmis can be seen as a columnwise partitioned matrix of covariates,

where each ‘block’ contains either univariate or multivariate covariates, depending on the

monotone pattern. The missing covariates are modeled constructing J conditional regression

models, with a t-distribution for the error terms, where J denotes the number of ‘blocks’.

The models are built for the least observed missing X
(j)
mis in the jth block, given the more

observed X1,...,j−1
mis in blocks 1 to j − 1, and so on. In this way the conditional distribution

to construct depends on the missingness pattern of the explanatory variables. We want to

stress that the conditional models could be either univariate if the j-th ‘block’ is formed by

one variable or multivariate if the j-th ‘block’ contains more than one variable. We denote

by dj the number of variables in block j. If the ‘block’ is multivariate, the number of missing

values is the same for each variable of the ‘block’. The ith rows of Xobs and Xmis are denoted

by, respectively, Xobs,i and Xmis,i.

It is necessary to make assumptions on the missing-data mechanism because this is

crucial to understand the relationship between the missing and observed data values. A

missing-data indicator matrix R can be built from the missing variable, with (i, j)th element

Rij = 1 if Xij is observed and Rij = 0 if Xij is missing. The missing data indicator is an

important part of the model, depending on the missingness mechanism. In this paper we

focus on the ‘missing at random’ (MAR) assumption which assumes that the probability

of the missing-data indicator R depends only on the observed part of the data X, but not

on the missing part, following the definition introduced by Little and Rubin (2002). With
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this assumption and the additional assumption that the parameters indexing the model of

interest are distinct from those indexing the missingness model, the missing data mechanism

is said to be ignorable. This implies that it does not need to be modeled as part of the

parameter estimation process.

We now introduce the estimation method. For a logistic regression model, and using

Bayes’ formula repeatedly, it is readily obtained that

logit P (Yi = 1|Xobs,i, X
1,...,J
mis,i ) =

J∑
j=2

log
f(X

(j)
mis,i|Xobs,i, X

1,...,j−1
mis,i , Yi = 1)

f(X
(j)
mis,i|Xobs,i, X

1,...,j−1
mis,i , Yi = 0)

+ log
f(X

(1)
mis,i|Xobs,i, Yi = 1)

f(X
(1)
mis,i|Xobs,i, Yi = 0)

+ logit P (Yi = 1|Xobs,i). (1)

We denote

logit P (Yi = 1|Xobs,i, Xmis,i) = α0 + Xobs,iα1 + Xmis,iα2, (2)

where α1 represents the parameters corresponding to the fully observed explanatory variables

and α2 stands for the parameters associated to the covariates with missing observations. For

the jth block, containing dj variables with one or more missing observation, we construct a

dj-variate model

X
(j)
mis,i = γ

(j)
0 + Yiγ

(j)
1 + Xobs,iγ

(j)
2 + X1,...,j−1

mis,i γ1,...,j−1
mis + εt,j (3)

with εt,j ∼ tdj
(ν,Σj) a dj-variate t-distribution with ν degrees of freedom and variance

matrix Σj. The coefficient matrix γ1,...,j−1
mis has dj columns and the number of rows is equal

to the number of variables in blocks 1 to j − 1, that is, to
∑j−1

k=1 dk. Further, we model

logit P (Yi = 1|Xobs,i) = β0 + Xobs,iβ1. (4)

For easier programming and representing the results in a compact way, we define a

matrix γmis containing all such coefficients γ1,...,j−1
mis . Its construction is easiest explained

through an example. Suppose that in total we have seven covariates with missing values
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where the monotone pattern defines the dimension of each ‘block’ by the following vector

d = (2, 3, 1, 1). This means that the first ‘block’ of Xmis has two variables, the second

has 3 and the other two have only one variable. Thus two ‘blocks’ are univariate, one

is bivariate and another is trivariate. The number of rows of the γmis matrix is equal

to
∑J

j=2 dj, reflecting that the first variable X1
mis is only regressed on Y and Xobs. The

number of columns is equal to
∑J−1

j=1 dj. Starting from a matrix filled with zeros, we insert

the parameter for the missing covariates. We insert the matrix (γ
(2)
mis)

t in the first d2 rows,

and first d1 columns. In our example this means inserting 6 parameters in rows (1,2,3) and

columns (1,2). Then, from the first row available, that is row d2 + 1, and from the first

column, we insert the matrix (γ
(3)
mis)

t. In our example 5 parameters are inserted in row (4)

and columns (1,2,3,4,5). This is repeatedly done for each block j = 1, . . . , J . We further

define Σ=blockdiag{Σ1, . . . ,ΣJ}, Σ̃=blockdiag{Σ2, . . . ,ΣJ} and likewise, for k = 0, 1, 2,

γk = (γ
(1)
k , . . . , γ

(J)
k )t, γ̃1 = (γ

(2)
1 , . . . , γ

(J)
1 )t, and finally ν =diagj=1,...,J{(ν + dj)/ν1dj

} and

ν̃ =diagj=2,...,J{(ν + dj)/ν1dj
}, with 1dj

a vector of all ones of length dj.

For a fully comprehension of the matrix building we add the final γmis and Σ̃;

γmis =




γmis
13 γmis

23 0 0 0 0

γmis
14 γmis

24 0 0 0 0

γmis
15 γmis

25 0 0 0 0

γmis
16 γmis

26 γmis
36 γmis

46 γmis
56 0

γmis
17 γmis

27 γmis
37 γmis

47 γmis
57 γmis

67




Σ̃ =




σ33 σmis
34 σmis

35 0 0

σ43 σmis
44 σmis

45 0 0

σ53 σmis
54 σmis

55 0 0

0 0 0 σmis
66 0

0 0 0 0 σmis
77




.

In Section 3, we discuss how to select the best degrees of freedom of the error distribution

for the data at hand. The main aim of this work is to exploit the properties of the multivariate

t-distribution. This distribution is appealing in statistical analysis, as an alternative choice

for the multivariate normal, particularly because its tails are heavier. It is often used from a

robustness point of view to take outlying observations into account. For more details on its

construction and implementation see Kotz and Nadarajah (2004). For particular application
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to missing data problems, we refer to Liu (1995) and Liu and Rubin (1995).

We then arrive at the following result.

Proposition 1. Consider a logistic regression model with a monotone pattern of missingness

resulting in J blocks of covariates with missing observations where the number of covariates

in each block is given by the vector d = (d1, . . . , dJ). When the variables from each of those

blocks are modelled conditionally on the observed variables and the variables in the previous

blocks by means of a tdj
(ν) distribution (for block j), the coefficients of the logistic regression

model (2) are approximated by

α0 ≈ β0 − γt
1νΣ−1(γ0 + γ1/2),

α1 ≈ β1 − γt
1νΣ−1γ2,

α2 ≈ γt
1νΣ−1 − γ̃t

1ν̃Σ̃
−1

γmis,

in terms of the coefficients of model (3) for Xmis given Xobs and Y , and of model (4) for Y

given Xobs.

Proof. From equations (1), (3) and the error distribution assumption, for j = 1, . . . , J

f(X(j)
mis,i|Xobs,i, X

1,...,j−1
mis,i , Yi) =

νν/2Γ
(

ν+dj

2

)

(π)dj/2Γ
(

ν
2

) |Σj |1/2

·
{

ν + (X(j)
mis,i − µi,j)

tΣ−1
j (X(j)

mis,i − µi,j)
}−(

ν+dj
2

)

with µi,j = γ
(j)
0 +γ

(j)
1 · I(Yi = 1)+Xobs,iγ

(j)
2 +X1,...,j−1

mis,i γ1,...,j−1
mis , and ν the degree of freedom

of the t-distribution. Considering a Taylor approximation around x = 0, log(ν + x) ≈
log(ν) +

(
x
ν

)
, the leading term of the approximation to logitP (Yi = 1|Xobs,i,Xmis,i) in

equation (1) can be written as,

−
J∑

j=1

(
ν + dj

2

)
1

ν

{
(X

(j)
mis,i − µ

[1]
i,j)

tΣ−1
j (X

(j)
mis,i − µ

[1]
i,j)

− (X
(j)
mis,i − µ

[0]
i,j)

tΣ−1
j (X

(j)
mis,i − µ

[0]
i,j)

}
+ β0 + Xobs,iβ1, (5)
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with, when Yi = 0, µ
[0]
i,j = γ

(j)
0 + Xobs,iγ

(j)
2 + X1,...,j−1

mis,i γ1,...,j−1
mis for j = 2, . . . , J and µ

[0]
i,1 =

γ
(1)
0 + Xobs,iγ

(1)
2 , and when Yi = 1, define µ

[1]
i,j = µ

[0]
i,j + γ

(j)
1 for j = 1, . . . , J . Equation (5)

can be simplified by using that

(X
(j)
mis,i − µ

[1]
i,j)

tΣ−1
j (X

(j)
mis,i − µ

[1]
i,j)

= (X
(j)
mis,i − µ

[0]
i,j)

tΣ−1
j (X

(j)
mis,i − µ

[0]
i,j)− 2(γ

(j)
1 )tΣ−1

j (X
(j)
mis,i − µ

[0]
i,j) + (γ

(j)
1 )tΣ−1

j γ
(j)
1 . (6)

Inserting equation (6) in equation (1) we obtain that

logitP (Yi = 1|Xobs,i,Xmis,i) ≈ β0 −
J∑

j=1

(
ν + dj

ν

)
(γ

(j)
1 )tΣ−1

j (γ
(j)
0 − 1

2
γ

(j)
1 )

+

{
β1 −

J∑
j=1

(
ν + dj

ν

)
(γ

(j)
1 )tΣ−1

j γ
(j)
2

}
Xobs,i (7)

+
J∑

j=1

(
ν + dj

ν

)
(γ

(j)
1 )tΣ−1

j X
(j)
mis,i −

J∑
j=2

(
ν + dj

ν

)
(γ

(j)
1 )tΣ−1

j γ1,...,j−1
mis,i X1,...,j−1

mis .

Equating the corresponding coefficients of equation (7) to those of equation (2) proves the

stated result.

The special case of a single variable with missing observations and a univariate t-distribution

for the error terms, is a direct extension of the univariate normal results.

Corollary 1. For the logistic regression model with a single univariate t1(ν)-distributed

covariate with missing observations, the coefficients of the logistic regression model (2) are

approximated by

α0 ≈ β0 −
(

ν + 1

ν

)
1

σ2
εt

(γ0γ1 + γ2
1/2),

α1 ≈ β1 −
(

ν + 1

ν

)
1

σ2
εt

γ1γ2,

α2 ≈
(

ν + 1

ν

)
γ1

σ2
εt

,

in terms of the coefficients of model (3) with d1 = 1 for Xmis given Xobs and Y , and of

model (4) for Y given Xobs.
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The fit of the model with missing covariates consists of three steps: (i) the missing

covariates Xmis are fitted using a complete cases linear regression model, (ii) formula (4) is

fitted using a classical logistic regression model, and (iii) the estimates γ̂ and β̂ obtained

from the two steps above are combined to obtain the α̂ values corresponding to model (2).

The limiting case with degrees of freedom ν tending to infinity results in a multivariate

normal distribution for the covariates with missing values. For that case we obtain the

following result, see also Gao and Hui (1997) for the case of all dj = 1.

Proposition 2. For the logistic regression model with multivariate normal missing covariates

for each block as defined by the missingness pattern, the coefficients of the logistic regression

model (2) are equal to

α0 = β0 − γt
1Σ

−1(2γ0 + γ1),

α1 = β1 − γt
1Σ

−1γ2,

α2 = γt
1Σ

−1 − γ̃t
1Σ̃

−1
γmis,

in terms of the coefficients γ for the model for Xmis given Xobs and Y , and of model (4) for

Y given Xobs.

3 Selection of the distribution

Section 2 focussed on the estimation of the parameters of interest when missing covariates

are present in a logistic regression context. Because of the random nature of the missing

covariates Xmis, modeling them is an important issue; in fact, choosing the right distribution

will help to get better results in the estimation process (see also the simulation study). For

this reason a natural and direct question arises about the possibility to choose, given differ-

ent distributions, the one that is modeling the data in a better way. Another problem arises

because model selection, with the usual criteria which are mostly likelihood-based, fails in
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a missing data context. Probably the most well-known criterion is the Akaike information

criterion (AIC) (Akaike, 1973), which essentially is a penalized log-likelihood function. The

criterion gives a balance between the goodness-of-fit, represented by the log-likelihood, and

the complexity of the model, represented by the penalty term. In incomplete data prob-

lems, however, the log-likelihood is not available. In the context of incomplete data different

variations of the AIC criterion have been proposed; Shimodaira (1994) proposed the se-

lection method through the predictive divergence for indirect observation models (PDIO);

Cavanaugh and Shumway (1998) suggested a variation of the former criterion using the

likelihood of the incomplete data as goodness of fit of the criterion (AICcd). Hens et al.

(2006) considered a modification of the AIC by weighting the complete cases by their inverse

selection probabilities, dealing with the missingness mechanism as a nuisance. All the last

three methods focussed on the missing response variable. Claeskens and Consentino (2008)

proposed a variation of the AIC for missing covariates; the criterion is based on the EM

algorithm and the method of weights of Ibrahim (1990) in order to get information on the

model fitting minimizing the EM algorithm itself. In this section we exploit first the com-

plete utilization of the criteria proposed by Claeskens and Consentino (2008) for deciding

the ‘best’ distribution for describing the missing covariates. Second, we propose a different

approach for the same purpose, using the estimation method described in Section 2, with

the advantage of having fast computational speed.

Define f(Y , X,θ) the joint density function for the full set of data (Y ,X), with θ the

unknown parameter vector. The joint distribution of (Y i, X i) is specified by the conditional

distribution of (Y i|X i) and the marginal distribution of (X i). The complete data density

can be modeled as

fθ = f(Y , X,θ) = f(Y |X; β)f(X; α) (8)

where θ = (β, α), and the two parameter vectors β and α are distinct. The distribution of

Y i given X i can be modeled using the class of generalized linear models which belongs to
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the class of the exponential family. If the missing covariates are continuous we can model

the marginal distribution of X i using a normal distribution or a Student’s t-distribution for

robust statistical reasons (see Liu, 1995; Liu and Rubin, 1995).

3.1 Model selection via the EM algorithm’s Q function

Claeskens and Consentino (2008) derived a version of Akaike’s (1973) information criterion

that is suitable for use with missing covariate information. Starting from the Kullback-

Leibler distance, used for measuring the distance between the true data generating density

and fθ, the model density used for describing the data (Y ,X), they derive a new criterion

AIC = −2 Q(θ̂|θ̂) + 2 pθ, (9)

with Q(θ|θ(k)) =
∑n

i=1

∫
wi log f(yi, xi; θ) dxmis,i, wi = f(xmis,i|xobs,i, yi; θ

(k)) and pθ =

length(θ). The model with the smallest value is selected. The Q function is an estima-

tor of the Kullback-Leibler distance and represents the goodness-of-fit part in the criterion.

The classical AIC can not be used because the density fθ can not be evaluated at Y ,X,

due to the presence of missing covariate data. The weights are defined via the density func-

tion (or probability mass function for categorial covariates) of the covariates with missing

observations, given the observed data. Because of the factorization in (8), the Q function is

written as a sum of two terms

Q(θ|θ(k)) = Q(1)(β|θ(k)) + Q(2)(α|θ(k)). (10)

In Claeskens and Consentino (2008) the main attention was restricted to the use of the

Q(1) function only, leading to their TIC1 and AIC1. The reason for this was due to the

problem of a direct comparison for the second component for different models, since not all

considered models contained all covariates with missing observations.

In this paper the ‘full’ function Q is used for the model selection purpose; in this way

both the part on the regression relationship between the response Y given the covariates
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X and the part with the specification of the model for the missing covariates are included,

hence the criteria take the complexity of the missingness modeling into account. The idea

is to also use the Q(2) function for model selection, but in a different way than the classical

one, by using that function for deciding which distribution describes the missing covariates

in a better way. This particular regression is done by regressing the missing covariates, used

as response variables, on the fully observed variables, used as covariates. The first choice for

describing continuous variables is the normal distribution, which is mathematical tractable.

A valid alternative, though, is the Student t-distribution, allowing for robust statistical

inference. Specifying two or more different density functions for the missing covariates leads

to the question to decide which one is more feasible. The Q(2) function is able to provide an

answer. To make a decision on the ‘best’ distribution f(X; α) for the missing covariates, a

criterion such as AIC can provide guidance, possibly accompanied by a sensitivity analysis.

The “full” AIC and TIC are particularly useful in the situation that one has decided upon

a structure of the regression model and wishes to compare different models for Xmis|Xobs.

Due to the presence of incomplete data the estimation of the ‘full’ Q function is carried

out using the EM algorithm and the method of weights of Ibrahim (1990). For continuous

missing covariates a Monte Carlo EM algorithm is used for evaluating Q, using the Gibbs

sampler along with the adaptive rejection algorithm of Gilks and Wild (1992), in order to

sample from f(xmis,i|xobs,i, yi; θ
(k)). The proposed information criteria do not depend on

the particular way of computation and alternatives may be used. The criteria use the EM

algorithm without additional computational effort.

Note that an AIC based on the Q function in (10) is able to deal with standard variable

selection questions as well, in addition to the application to distribution selection as we apply

it to in this paper.

However, its main and not negligible disadvantage is that the estimation of the Q function

is computationally intensive and can be quite time consuming, especially in a bivariate (or

12



higher dimensional) situation. This motivated us to explore an alternative and fast method

for distribution selection.

3.2 Non-iterative distribution selection

The purpose of this section is to use the method introduced in Section 2 for estimating

the parameters and employ the corresponding maximized likelihood for model selection pur-

poses. The log-likelihood function is based on the logistic regression model in (1). Since the

conditional model of Y given Xobs will be the same for different distribution specifications

of Xmis given Xobs, we can ignore this part. Hence, for selecting the distribution we can

restrict attention to the use of the model for Xmis given Y and Xobs, still assuming the

missingness at random assumption. The corresponding AIC is

AIC = −2 log f(Xmis|Xobs, Y ) + 2 pγ, (11)

with pγ the number of parameters in the model. The smallest obtained value of this AIC

indicates the best distribution for modeling the data. The simulation study shows that this

approach works well to identify an error distribution for Xmis.

Note that the complete data density f(X, Y ) as in (8) can be used to build an AIC

for broader use. Indeed, using the likelihood obtained from model (1) AIC can be used for

variable selection as well.

4 Numerical results: simulation study

An extensive simulation study is performed in order to assess the validity of the method

introduced in the former sections. Two different scenarios are taken into account: the first

scenario is based on the presence of a univariate missing covariate, while the second one is

dealing with the multivariate covariates setting, focussing, particularly, on the presence of

bivariate missing covariates. The missing covariates in both scenarios are continuous.
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4.1 Estimation with a univariate missing covariate

We simulate a logistic regression model as in (2). The vector of covariates for the ith

observation is given by (1, xi1, . . . , xi5), with corresponding coefficients αt = (α0, . . . , α5).

The true values chosen for the coefficients are αt = (1, 0, 0,−1,−1, 1). In this scenario only

the first covariate vector X1 = (x11, . . . , xn1)
t contains missing values, while all the other

variables are fully observed. The fully observed covariates are generated independently

from a standard normal distribution. The missing covariate is generated under the MAR

assumption as Xmis = γ0+Y γ1+Xobsγ2+ε. The true coefficients are γt = (1, 0, 0,−1, 2,−1)

in the univariate missing covariate setting. Data are simulated using, for the error terms,

either a normal distribution or a t-distribution, with one of four different degrees of freedom

df= (5, 7, 15, 50). Furthermore, in order to test which distribution fits the data in a better

way, the missing covariate xi1 is generated in two ways, using a normal distribution and a

t-distribution with the same degree of freedom as above and depending only on the fully

observed variables (xi2, . . . , xi5). Independent standard normal errors ui are generated, and

a data value xi1 is set to be missing, or in other words, R1i = 0 when a1(xi2 − x2.) + . . . +

a4(xi5− x5.) + a5(Yi−Y ) + ui ≤ zα and R1i = 1 otherwise, from which the distribution of R

conditional on Xobs and Y can be deduced. We used the following notation: xk. is the sample

mean of xk, Y is the sample mean of Yi, and zα is the α-quantile of N(0, (
∑5

i=1 a2
i +1)) with α

the chosen percentage of missingness. The coefficient vector is set equal to a = (2, 4, 3, 1, 3).

We used four different sample sizes n = 50, 100, 200 and 500 and three different percentages

of missingness 5%, 15% and 30%. For each setting we run N = 2000 simulations. Since the

simulation study is quite extensive, we selected relevant parts of the output to discuss.

In Table 1 partial results of the simulation are displayed; namely those for sample size

equal to 100 and 30% of missingness. From this table we can extract some useful comments.

First of all, independently of the simulated data, the averaged estimates are close to the true

values. Estimates obtained with a t-distribution are very close to the true parameter and
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Table 1: Estimation with one covariate with 30% missingness and four fully observed covari-

ates. The table shows the simulated mean values of the estimates and the mean squared error

(in parenthesis) for n = 100, and 2000 simulation runs. The true value of the parameters is

α = (1, 0, 0,−1,−1, 1).

Simulated Fitted
α0 α1 α2 α3 α4 α5

data data

Normal

Normal
1.108 −0.000 0.014 −1.099 −1.119 1.100

(0.228) (0.093) (0.090) (0.246) (0.509) (0.231)

t50
1.111 −0.001 0.014 −1.101 −1.122 1.102

(0.267) (0.124) (0.091) (0.285) (0.653) (0.267)

t15
1.114 −0.001 0.014 −1.105 −1.125 1.105

(0.323) (0.159) (0.093) (0.341) (0.859) (0.320)

t7
1.121 −0.001 0.014 −1.111 −1.130 1.110

(0.449) (0.228) (0.096) (0.467) (1.329) (0.440)

t5
1.126 −0.001 0.014 −1.117 −1.135 1.115

(0.581) (0.293) (0.099) (0.598) (1.823) (0.566)

CC
1.146 −0.002 0.022 −1.140 −1.158 1.145

(0.373) (0.125) (0.141) (0.412) (0.743) (0.348)

t50

Normal
1.092 0.005 −0.005 −1.121 −1.122 1.113

(0.230) (0.095) (0.093) (0.241) (0.529) (0.250)

t50
1.094 0.005 −0.005 −1.123 −1.126 1.116

(0.271) (0.127) (0.094) (0.280) (0.681) (0.290)

t15
1.097 0.006 −0.005 −1.126 −1.132 1.121

(0.329) (0.164) (0.095) (0.338) (0.903) (0.349)

t7
1.103 0.007 −0.005 −1.132 −1.142 1.129

(0.462) (0.238) (0.099) (0.470) (1.408) (0.482)

t5
1.107 0.008 −0.005 −1.137 −1.151 1.136

(0.600) (0.307) (0.102) (0.608) (1.938) (0.621)

CC
1.118 0.007 −0.001 −1.154 −1.158 1.167

(0.364) (0.130) (0.139) (0.394) (0.790) (0.386)

t7

Normal
1.108 0.000 −0.005 −1.098 −1.102 1.105

(0.193) (0.068) (0.089) (0.205) (0.418) (0.207)

t50
1.111 0.001 −0.005 −1.101 −1.106 1.108

(0.224) (0.094) (0.090) (0.236) (0.538) (0.239)

t15
1.115 0.001 −0.005 −1.104 −1.111 1.113

(0.274) (0.126) (0.092) (0.286) (0.727) (0.290)

t7
1.122 0.002 −0.005 −1.111 −1.120 1.121

(0.388) (0.192) (0.096) (0.400) (1.166) (0.407)

t5
1.128 0.003 −0.005 −1.116 −1.128 1.127

(0.509) (0.254) (0.100) (0.520) (1.631) (0.530)

CC
1.150 0.001 −0.002 −1.144 −1.144 1.154

(0.345) (0.094) (0.142) (0.366) (0.607) (0.323)

to the one estimated under normality, meaning that the linear approximation used in the

construction of the coefficients (see the proof of Proposition 1) is working properly. Higher

order approximations might improve the estimation results.
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The estimated values when fitted with normal and t50 distributions are very similar,

due to the propriety that increasing the degree of freedom in a t-distribution will make the

distribution tend to a normal one; but even when the normality assumption is released and

the degree of freedom ν is small, the estimation is working in a good way. The complete

case estimates are slightly larger than the ones fitted under normal and t-distributions, while

the mean squared error is slighter higher than normal and t50 estimates. The smallest mean

squared error is usually observed when using a normal distribution for fitting the data, with

the t50 very close. The main point, nevertheless, is that the missingness needs to be taken

into account, and that the t-distribution may give more robust results than the normal

distribution when the data are heavier tailed.

As stated before, the method was applied with different sample sizes and percentages of

missingness. In order to avoid too many tables, a brief summary is presented. When n = 50

the results both for the estimates and the mean squared errors are not that good, especially

for the complete case methods, while the estimates under normal and t distribution are less

biased; this is due to the fact that the sample size is too small. In fact, just increasing the

sample size to 100 (see Table 1) yields significant improvement. When the sample size grows

to either 200 or 500 the results are very good for all the distributions used for fitting the

missing covariate, both for bias and mean squared error, independently of the percentage of

missingness.

4.2 AIC distribution selection with a univariate missing covariate

Table 2 displays the result of the distribution selection. We use the Akaike information

criterion to investigate which distribution is modeling the data better. The results are quite

good, already for the smallest sample size, and improving with sample size. Especially for

the larger sample sizes, the AIC is selecting, with higher frequency, the model fitted with

the true distribution and this is valid with all the considered percentages of missingness.
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Table 2: Distribution selection by AIC when there is one covariate with missing observations

and four fully observed covariates. The table shows the simulated percentage of times that

the AIC selected a certain model, for different true models, percentages of missingness and

sample sizes, for 2000 simulation runs.

Sample Simulated Distribution Distribution

Size data selection selection

missingness= 5% missingness= 30%

Norm t50 t15 t7 t5 Norm t50 t15 t7 t5

50

Norm 0.065 0.697 0.112 0.078 0.048 0.000 0.780 0.096 0.059 0.065

t50 0.052 0.681 0.127 0.078 0.061 0.000 0.748 0.101 0.073 0.078

t15 0.034 0.589 0.147 0.117 0.113 0.000 0.673 0.108 0.093 0.126

t7 0.016 0.432 0.162 0.162 0.228 0.000 0.542 0.126 0.120 0.211

t5 0.008 0.331 0.144 0.155 0.362 0.000 0.438 0.118 0.128 0.316

100

Norm 0.468 0.314 0.141 0.065 0.013 0.351 0.434 0.126 0.061 0.027

t50 0.401 0.317 0.182 0.078 0.021 0.296 0.429 0.150 0.082 0.042

t15 0.255 0.295 0.227 0.146 0.076 0.199 0.378 0.205 0.124 0.095

t7 0.105 0.165 0.218 0.249 0.261 0.096 0.249 0.186 0.216 0.252

t5 0.050 0.106 0.144 0.261 0.440 0.050 0.168 0.151 0.224 0.406

200

Norm 0.595 0.222 0.160 0.021 0.002 0.566 0.237 0.157 0.035 0.004

t50 0.478 0.251 0.215 0.051 0.004 0.463 0.254 0.208 0.068 0.007

t15 0.234 0.233 0.330 0.163 0.041 0.264 0.231 0.284 0.171 0.050

t7 0.060 0.094 0.230 0.358 0.257 0.089 0.117 0.226 0.311 0.257

t5 0.007 0.029 0.124 0.287 0.552 0.024 0.055 0.145 0.265 0.512

500

Norm 0.631 0.259 0.108 0.002 0.000 0.608 0.251 0.135 0.006 0.000

t50 0.436 0.333 0.221 0.010 0.000 0.450 0.286 0.240 0.024 0.000

t15 0.103 0.222 0.534 0.139 0.002 0.141 0.209 0.484 0.158 0.007

t7 0.004 0.015 0.213 0.558 0.209 0.011 0.029 0.239 0.489 0.231

t5 0.000 0.000 0.029 0.287 0.683 0.000 0.003 0.052 0.312 0.631

For instance, in the setting n = 500 and 5% missingness, when the data are simulated from

a normal distribution, the criterion selects 63% of times the normal model for fitting, in

addition to 26% the t50 distribution, which is hard to distinguish from the normal. If the

data are simulated from a t5 distribution, then, according to the AIC, we should model

the data using a t5 or t7 (which are hard to distinguish) in 91.7% of times. When the

sample size is small, fitting the data with either normal or t50 seems quite a reasonable

decision. Furthermore, when the percentage of missingness increases, there is reduction in

performance for the smallest sample size due to the difficulty of dealing with missing data,
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Table 3: Estimation with one covariate with 30% missingness and four fully observed co-

variates. The table shows the simulated mean values of the estimates and the mean squared

error (in parenthesis) for n = 100, and 2000 simulation runs. For each simulation run, the

estimates have been computed in the model selected by the AIC. The true value of the

parameters is α = (1, 0, 0,−1,−1, 1).

Simulated
α0 α1 α2 α3 α4 α5

data

Normal
1.112 −0.001 0.014 −1.102 −1.121 1.103

(0.290) (0.135) (0.092) (0.307) (0.736) (0.291)

t50
1.097 0.004 −0.005 −1.126 −1.125 1.116

(0.313) (0.150) (0.095) (0.320) (0.841) (0.331)

t15
1.094 0.009 −0.008 −1.121 −1.146 1.136

(0.299) (0.149) (0.096) (0.320) (0.892) (0.356)

t7
1.116 0.004 −0.005 −1.105 −1.123 1.120

(0.346) (0.168) (0.096) (0.359) (1.027) (0.366)

t5
1.096 0.023 0.010 −1.098 −1.181 1.149

(0.379) (0.186) (0.099) (0.396) (1.173) (0.426)

CC
1.133 0.006 0.007 −1.145 −1.163 1.162

(0.350) (0.108) (0.142) (0.382) (0.692) (0.349)

while the method remains to perform well for the larger sample sizes.

For comparison we also computed the values shown in Table 3 where we show the average

of the estimates and their mean squared errors over the simulation runs where we now each

time compute the estimate in the model that is selected by AIC. This gives us a table that

should be compared to Table 1. For the frequencies of the selected models we refer to

Table 2. We observe that the mean squared error values over the 2000 simulation runs are

still comparable to those of Table 1, showing that the model selection method behaves well

and is not inflating the variances.
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4.3 Estimation with multiple missing covariates

We consider the same simulation settings as described in Section 4.1, with the difference

that now Xmis contains two components. In this scenario the first two covariates vectors

(xi1, xi2) contain missing values, while all the other variables are fully observed. The two

covariates with missing observations are generated under the MAR assumption as X
(1)
mis =

γ0,1 + Y γ1,1 + Xobsγ2,1 + ε1 and X
(2)
mis = γ0,2 + Y γ1,2 + Xobsγ2,2 + X

(1)
misγ

(1)
mis + ε2. The true

coefficients are αt = (1, 0, 0,−1,−1, 1), γt
k = (1, 0, 0,−1, 2) for k = 1, 2 and γ

(1)
mis = −2. Data

are simulated using, for the error terms, either a normal distribution or a t-distribution,

with one of four different degrees of freedom df= (5, 7, 15, 50). The covariates with missing

observations (xi1, xi2) are generated using either a multivariate normal distribution N2(0,Σ),

with Σ = σ2I2 a 2 × 2 covariance matrix or a multivariate t-distribution with the same

degree of freedom as above and depending only on the fully observed variables (xi3, . . . , xi5)

and Y , and for xi2 also on xi1. Independent standard normal errors uik are generated,

and a data value xik is set to be missing, that is, R1i = 1 when a1(xi3 − x3.) + . . . +

a3(xi5 − x5.) + a4(Yi − Y ) + ui ≤ zα and, conditional on xi1 being missing, R2i = 1 when

a1(xi3 − x3.) + . . . + a3(xi5 − x5.) + a4(Yi − Y ) + ui ≤ zα with (a1 . . . , a4) = (2, 4, 3, 1), and

zα is the α-quantile of N(0, (
∑4

i=1 a2
i + 1)) with α the chosen percentage of missingness.

We used four different sample sizes n = 50, 100, 200 and 500; and three different choices

of percentages of missingness (5%, 5%), (15%, 5%) and (30%, 5%). For each setting we run

N = 2000 simulations. Since the simulation study is, again, quite extensive, we selected

relevant parts of the output to discuss.

Table 4 displays partial results of the simulation, for the multivariate missing covariates,

namely those for sample size equal to 50 and 15% and 5% of missingness for respectively

X1 and X2. First, when the data are fitted using the complete case method (CC), the

result are biased and inefficient, independent of the simulated data. The estimates fitted

under normal and t-distribution a slightly biased, even though the estimates for the missing
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Table 4: Estimation with two covariates with 15% and 5% missingness and three fully

observed covariates. The table shows the simulated mean values of the estimates and the

mean squared error (in parenthesis) for n = 50, and 2000 simulation runs. The true value

equals α = (1, 0, 0,−1,−1, 1).

Simulated Fitted
α0 α1 α2 α3 α4 α5

data data

Normal

Normal
1.256 −0.020 −0.001 −1.270 −1.266 1.270

(0.927) (1.037) (0.033) (0.577) (0.946) (2.164)

t50
1.277 −0.026 −0.001 −1.285 −1.284 1.294

(1.244) (1.632) (0.049) (0.602) (1.264) (3.333)

t15
1.304 −0.032 −0.001 −1.304 −1.308 1.323

(1.741) (2.265) (0.067) (0.638) (1.762) (5.178)

t7
1.358 −0.042 −0.001 −1.343 −1.355 1.382

(3.085) (3.648) (0.109) (0.723) (3.102) (10.207)

t5
1.407 −0.050 −0.001 −1.379 −1.399 1.436

(4.719) (5.030) (0.150) (0.818) (4.731) (16.368)

CC
2.251 3.956 2.016 −5.315 0.511 0.323

(240.730) (35201.180) (8535.211) (24912.710) (15856.910) (10220.380)

t50

Normal
1.217 −0.019 −0.003 −1.242 −1.264 1.249

(0.833) (1.042) (0.034) (0.499) (0.922) (2.160)

t50
1.234 −0.023 −0.003 −1.258 −1.282 1.269

(1.150) (1.644) (0.049) (0.527) (1.233) (3.369)

t15
1.256 −0.028 −0.004 −1.279 −1.305 1.295

(1.654) (2.293) (0.068) (0.567) (1.730) (5.299)

t7
1.301 −0.037 −0.006 −1.319 −1.352 1.347

(3.031) (3.719) (0.109) (0.663) (3.085) (10.584)

t5
1.342 −0.045 −0.007 −1.356 −1.394 1.394

(4.723) (5.152) (0.151) (0.769) (4.749) (17.096)

CC
2.579 −0.236 −0.164 −2.835 −2.882 2.774

(383.546) (540.275) (83.913) (471.495) (698.678) (1389.983)

t7

Normal
1.217 −0.015 −0.001 −1.250 −1.267 1.284

(0.691) (0.784) (0.024) (0.511) (0.865) (1.765)

t50
1.235 −0.020 −0.002 −1.266 −1.285 1.305

(0.922) (1.250) (0.036) (0.539) (1.118) (2.674)

t15
1.258 −0.023 −0.002 −1.286 −1.310 1.333

(1.299) (1.773) (0.052) (0.580) (1.527) (4.160)

t7
1.304 −0.030 −0.002 −1.327 −1.359 1.389

(2.335) (2.930) (0.086) (0.679) (2.643) (8.257)

t5
1.346 −0.036 −0.002 −1.364 −1.404 1.440

(3.611) (4.093) (0.122) (0.787) (4.010) (13.318)

CC
6.230 −4.613 −2.419 −3.856 −9.392 8.087

(14735.990) (25129.420) (7089.444) (2229.608) (75593.980) (28524.250)

covariates are close to the true values. The mean squared errors are small under normal

and t50 distributions, while under complete cases we obtain very high values. Increasing the

sample size to 100 or more leads to a significant improvement. The estimation method seems
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to perform in a good way even when the degrees of freedom of the t-distribution is small.

However, for purposes of distribution selection, this accuracy of the estimated coefficients is

already sufficient, see Section 4.4 for the corresponding simulation results.

Table 5: Estimation with two covariates with 30% and 5% missingness and three fully

observed covariates. The table shows the simulated mean values of the estimates and the

mean squared error (in parenthesis) for n = 50, and 2000 simulation runs. The true value

equals α = (1, 0, 0,−1,−1, 1).

Simulated Fitted
α0 α1 α2 α3 α4 α5

data data

Normal

Normal
1.263 −0.012 −0.004 −1.267 −1.257 1.276

(1.029) (1.371) (0.034) (0.558) (0.999) (2.574)

t50
1.285 −0.016 −0.005 −1.286 −1.277 1.298

(1.490) (2.324) (0.049) (0.592) (1.453) (4.306)

t15
1.312 −0.019 −0.005 −1.309 −1.301 1.324

(2.158) (3.230) (0.068) (0.639) (2.109) (6.826)

t7
1.366 −0.025 −0.006 −1.354 −1.347 1.376

(3.978) (5.223) (0.109) (0.753) (3.896) (13.747)

t5
1.415 −0.030 −0.007 −1.396 −1.390 1.423

(6.211) (7.225) (0.151) (0.882) (6.087) (22.285)

CC
20.124 −3.572 −0.335 −19.565 −20.342 21.890

(163715.500) (38681.030) (1404.872) (78111.100) (166855.600) (200484.700)

t50

Normal
1.251 −0.036 −0.002 −1.243 −1.279 1.273

(1.013) (1.308) (0.034) (0.548) (1.120) (2.631)

t50
1.278 −0.047 −0.003 −1.262 −1.304 1.306

(1.498) (2.217) (0.049) (0.585) (1.592) (4.403)

t15
1.310 −0.057 −0.003 −1.284 −1.335 1.345

(2.201) (3.089) (0.069) (0.636) (2.282) (6.982)

t7
1.374 −0.075 −0.004 −1.329 −1.395 1.422

(4.118) (5.011) (0.111) (0.758) (4.160) (14.062)

t5
1.433 −0.090 −0.005 −1.370 −1.451 1.493

(6.471) (6.946) (0.154) (0.895) (6.465) (22.796)

t7

Normal
1.235 −0.020 −0.003 −1.246 −1.277 1.291

(0.815) (1.027) (0.024) (0.514) (1.000) (2.124)

t50
1.258 −0.026 −0.003 −1.266 −1.302 1.315

(1.184) (1.753) (0.035) (0.556) (1.396) (3.484)

t15
1.286 −0.031 −0.004 −1.291 −1.332 1.345

(1.731) (2.474) (0.051) (0.616) (1.981) (5.507)

t7
1.341 −0.039 −0.005 −1.341 −1.392 1.404

(3.238) (4.074) (0.085) (0.763) (3.585) (11.114)

t5
1.391 −0.045 −0.006 −1.386 −1.446 1.458

(5.103) (5.694) (0.119) (0.930) (5.563) (18.077)

CC
6.767 2.086 0.948 −7.786 −6.991 5.652

(6285.348) (4290.447) (986.993) (6762.889) (8500.068) (7838.147)

Table 5 confirms the results, with a worsening for the complete cases method when the
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Table 6: Estimation with two covariates with missingness and four fully observed covariates.

The table shows the simulated mean values of the estimates and the mean squared error (in

parenthesis) for n = 50, and 2000 simulation runs. For each simulation run, the estimates

have been computed in the model selected by the AIC. The true value of the parameters is

α = (1, 0, 0,−1,−1, 1).

Simulated
α0 α1 α2 α3 α4 α5

data

15% and 5% missingness for x1, x2

Normal
1.293 −0.032 −0.001 −1.294 −1.298 1.316

(1.579) (2.019) (0.059) (0.622) (1.603) (4.601)

t50
1.258 −0.036 −0.003 −1.269 −1.308 1.305

(1.557) (2.115) (0.059) (0.553) (1.632) (4.871)

t15
1.228 0.037 −0.004 −1.280 −1.258 1.221

(1.438) (1.968) (0.057) (0.586) (1.456) (4.563)

t7
1.262 −0.024 −0.002 −1.294 −1.313 1.338

(1.545) (2.040) (0.057) (0.603) (1.757) (5.079)

t5
1.307 −0.037 0.001 −1.310 −1.360 1.382

(1.867) (2.049) (0.062) (0.611) (2.059) (5.998)

CC
3.353 −0.481 −0.245 −3.450 −3.699 3.664

(3429.5) (12380.6) (3179.4) (5711.2) (19066.5) (8906.8)

30% and 5% missingness for x1, x2

Normal
1.305 −0.021 −0.004 −1.299 −1.295 1.323

(2.115) (3.030) (0.060) (0.624) (2.065) (6.654)

t50
1.314 −0.064 −0.001 −1.278 −1.342 1.356

(2.247) (3.002) (0.062) (0.630) (2.358) (7.014)

t15
1.262 0.030 −0.004 −1.285 −1.266 1.257

(2.115) (2.796) (0.062) (0.640) (2.273) (6.772)

t7
1.293 −0.030 −0.003 −1.299 −1.339 1.353

(2.249) (2.907) (0.053) (0.671) (2.552) (7.166)

t5
1.317 −0.011 −0.003 −1.317 −1.364 1.358

(2.239) (2.701) (0.059) (0.650) (2.465) (7.131)

CC
∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞

percentage of missingness is increased. For example the estimates, when data are simu-

lated from a t50 are very large (not shown). Again increasing the sample size leads to an

improvement for the estimates and the mean squared error.

In Table 6 we show the average of the estimates and their mean squared errors over

the simulation runs where we now each time compute the estimate in the model that is

selected by AIC. These numbers are to be compared with those in Tables 4 and 5. For the

frequencies of the selected models we refer to Table 7. Here again we can observe that the
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model selection method behaves well and is not inflating the variances.

4.4 AIC distribution selection with multivariate missing covari-

ates

Table 7: Distribution selection by AIC when two covariates with missing observations are

modeled and four fully observed covariates. The table shows the simulated percentage of

times that the AIC selected a certain model, for different true models, percentages of miss-

ingness and sample sizes, over 2000 simulation runs.

Sample Simulated Distribution Distribution

Size data selection selection

missingness= (5%, 5%) missingness= (30%, 5%)

Norm t50 t15 t7 t5 Norm t50 t15 t7 t5

50

Norm 0.026 0.760 0.121 0.064 0.028 0.000 0.789 0.101 0.070 0.040

t50 0.019 0.772 0.114 0.058 0.037 0.000 0.779 0.102 0.067 0.051

t15 0.014 0.692 0.151 0.090 0.052 0.000 0.710 0.128 0.092 0.070

t7 0.006 0.523 0.186 0.158 0.126 0.000 0.604 0.162 0.119 0.115

t5 0.002 0.394 0.194 0.203 0.208 0.000 0.490 0.171 0.153 0.186

100

Norm 0.461 0.374 0.118 0.044 0.002 0.331 0.472 0.133 0.054 0.010

t50 0.394 0.383 0.160 0.050 0.014 0.299 0.470 0.148 0.062 0.020

t15 0.244 0.385 0.243 0.108 0.019 0.199 0.447 0.215 0.111 0.028

t7 0.095 0.254 0.287 0.256 0.108 0.080 0.318 0.257 0.228 0.117

t5 0.030 0.150 0.247 0.318 0.254 0.034 0.217 0.236 0.270 0.243

200

Norm 0.594 0.267 0.129 0.011 0.000 0.570 0.279 0.132 0.019 0.000

t50 0.496 0.301 0.181 0.020 0.001 0.483 0.290 0.188 0.037 0.002

t15 0.265 0.310 0.340 0.082 0.004 0.272 0.295 0.335 0.087 0.010

t7 0.060 0.123 0.364 0.369 0.084 0.070 0.153 0.362 0.316 0.097

t5 0.013 0.040 0.205 0.443 0.299 0.020 0.072 0.234 0.399 0.276

500

Norm 0.678 0.270 0.051 0.000 0.000 0.675 0.250 0.073 0.001 0.000

t50 0.485 0.381 0.132 0.002 0.000 0.508 0.323 0.166 0.002 0.000

t15 0.144 0.338 0.486 0.032 0.000 0.197 0.322 0.429 0.051 0.001

t7 0.002 0.029 0.429 0.514 0.025 0.006 0.066 0.415 0.471 0.040

t5 0.000 0.002 0.073 0.608 0.318 0.000 0.005 0.110 0.566 0.318

Table 7 contains the results for the distribution selection in a multivariate context. We

use the AIC to decide on the best distribution of the missing covariates. The results are

comparable to the case with one missing covariate. When the sample size is 50 and data are

simulated using normal, t50 or t15 distributions, the t50-distribution fits the missing covariates
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in a better way, while for data coming from either t7 or t5, there is not a clear choice. When

the sample size grows, there is a significant improvement in the association between simulated

and fitted data, numerically showing that the method is able to catch the best model for the

data. For example, with n = 500 and there is 5% missingness for both incompletely observed

variables, when the data are simulated from a t5 distribution, 60.8% of the models are fitted

using a t7 and almost 32% using t5 (which are hard to distinguish). On the contrary, if data

come from a t50-distribution 38.1% of the model are fitted using a t50 and 48.5% using a

normal distribution (which are again quite similar and hard to distinguish). Furthermore,

when the percentage of missingness increases, there is some reduction in performance in each

setting due to the difficulty of dealing with missing data, even though the performance of the

criterion remains valid. We conclude that as a distribution selection method, the AIC based

on the non-iterative method performs well and is able to distinguish normal data from low-

degree t-distributed data in the presence of (multiple) covariates with missing observations.

This is valid even for small sample sizes. The linear approximation that is used to obtain

the results for the t-distributions seems sufficient for distribution selection purposes.

5 Data analysis

The European Values Study (EVS) represents a large-scale, cross-national and longitudinal

survey research program, we focus on the data related to Belgium. The outcome variable is a

binary variable on people between the ages 18 and 65, where Y = 0 indicates if the person is

not satisfied with his/her job hours, while Y = 1 indicates their satisfaction with job hours.

The surveyed people consider the satisfaction with job hours as an important aspect of their

general work satisfaction. Other variables are x1: the age when the education was completed;

x2: gender, x3: job payment, x4: education level, x5: socio-economic status. The original

dataset contains 1912 observations, while the considered dataset has 1603 observations,

corresponding to the subset with completely observed values on Y and variables x2–x5.
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Variable x1 contains missing values for 56 out of the 1603 cases; the missingness mechanism

assumed is ‘missing at random’ (MAR). Since the response variable is binary, we model

the data with a logistic regression, using equation (2), without removing cases with missing

observations on variable x1.

We performed the Jarque-Bera test for normality on variable x1. The test is a goodness-

of-fit measure of departure from normality, based on the sample kurtosis and skewness. The

observed value of the test statistic is 179.11 on two degrees of freedom, resulting in a p-

value of 2.2·10−16, indicating a clear rejection of the null hypothesis of normality. While the

median of age at the completion of education is 19, with a third quartile at 22, there are

observed values of x1 as large as 35. We use the model selection method AIC to investigate

whether a t-distribution would give a better fit than a normal distribution.

As a comparison, we also applied the iterative method using the EM algorithm (see

Section 3). Table 8 shows the results for the AIC obtained with the two different methods,

for degrees of freedom equal to (5, 15, 50). For both methods, the smallest value of the

AIC corresponds to fitting a t5-distribution, which can be considered as the most suitable

distribution for fitting the distribution of x1, the covariate with missing observations. We

want to stress that the two methods lead to the same conclusion regarding the choice of x1’s

distribution, but with hugely different computation times needed. The non-iterative methods

returns results immediately, while the Q-function method employs much more time. For

fitting the missing covariate’s distribution with the normal distribution, the method employs

about 22 minutes, while for a t-distribution, the time needed to fit just a single model varies

between 14 hours to almost 22 hours for fitting the missing covariate’s distribution as a t5.

Clearly, the non-iterative method is much more convenient for deciding how to fit the missing

covariate’s distribution.

After the distribution for the missing covariate is chosen, we can fit the data. The

complete cases estimates are α̂ = (0.123,−0.036, 0.127,−0.076, 0.094, 0.227, 0.0473, 0.144).
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Table 8: Results of distribution selection for the ESV data. The table displays, for each

method, the four results depending on the distribution of the covariate with missing values,

as well as the corresponding computation times.

Method Missing Covariate AIC Goodness penalty Timing

Models of fit term

Q(2)

Q-function

Normal 7658.384 3820.192 9 21’42”

t50 7580.776 3781.388 9 13h59’00”

t15 7471.422 3726.711 9 17h55’45”

t5 7403.142 3692.571 9 21h39’55”

LogLik

Non iterative

Normal 7389.142 3685.571 9 < 1”

t50 7317.908 3649.954 9 < 1”

t15 7220.962 3601.481 9 < 1”

t5 7125.912 3553.956 9 < 1”

The results for the α parameters, with the missing covariate fitted with a t5 distribution are:

(1.072,−0.079, 0.084,−0.051, 0.290, 0.640, 0.056, 0.098). The parameters can be interpreted

as follows; taking the exponential of the α parameters we obtain the odds ratio: (2.921,

0.924, 1.088, 0.950, 1.336, 1.896, 1.057, 1.103). The odds ratio of age when the education

was completed is 0.924, showing that the higher is the age for completing the education the

less is the satisfaction with job hours. The odds ratio for sex is 1.088, showing a better

satisfaction for male, while for the job payment a better satisfaction for the job hours is

higher for people that do not get paid. Furthermore, the higher is the education and socio-

economic status levels, the better is the satisfaction of the job hours. For each parameter

we estimate the 90% confidence interval, see Table 9, using 1000 bootstrap replications.

26



Table 9: Parameter estimates and 90% bootstrap confidence interval of the parameters of

interest based on 1000 bootstrap replications.

Parameters Estimates Confidence interval

intercept 1.072 (−0.332, 2.535)

x1 age −0.079 (−0.150, −0.008)

x2 gender 0.084 (−0.098, 0.257)

x3 job payment −0.051 (−0.234, 0.124)

x4 education, secondary 0.290 (−0.103, 0.667)

x4 education, post-secondary 0.640 (−0.074, 1.304)

x5 status, middle class 0.056 (−0.195, 0.305)

x5 status, manual worker 0.098 (−0.163, 0.349)

6 Discussion and extensions

The distribution selection method in this paper works particularly well for the logistic re-

gression model. While the results for the multivariate normal distribution to model the

missing covariates as function of the observed variables led to exact expressions, those of the

multivariate t-distributions were first order approximations. This approximation has been

numerically shown to be precise enough to lead to accurate distribution selection results. A

major advantage of the proposed method is that it leads to fast results (in contrast to the

application of the EM algorithm). For estimation purposes, the approximation works better

for larger degrees of freedom. Higher order approximations could be tried if this approach is

needed for estimation with a small degree of freedom. Another strategy for estimation with

a low degree of freedom t-distribution could be to first select the distribution with the fast

method, and once decided on the distribution and its degrees of freedom, then only for that

model apply an alternative estimation method.

R code to perform calculations as presented in this paper is available from the website

http://www.econ.kuleuven.be/gerda.claeskens/public/papers/AICmissing.html.
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6.1 Application to other distributions

For other types of distributions, a similar line of arguments can be constructed, though

the particular type of simplification to get expressions for the coefficients no longer applies.

As an example we give the case of a Poisson distributed outcome variable Y where we

model log E(Y |Xobs,Xmis) = α0 + Xobsα1 + Xmisα2, where again the covariates Xmis

contain one or more missing observations and Y and Xobs are fully observed. Writing

log E(Y |Xobs) = β0 + Xobsβ1 and modelling Xmis = γ0 + Y γ1 + Xobsγ2 + ε, with ε having

some multivariate distribution to be selected, leads to

log E(Y |Xobs,Xmis) = log {∑∞
k=0 kf(Xmis|Y = k, Xobs)P (Y = k|Xobs)}

− log {∑∞
k=0 f(Xmis|Y = k, Xobs)P (Y = k|Xobs)} .

(12)

For the case of a multivariate normal distribution for Xmis, this further gives for the first

term in (12)

log

{
A

∞∑

k=0

k

k!
exp(ak2 + bk)

}
,

with a = −1
2
k2γt

1Σ
−1γ1; b = γt

1Σ
−1(Xmis − γ0 −Xobsγ2) + β0 + Xobsβ1,

A = φq(Xmis,µ = γ0 + Xobsγ2,Σ) exp{− exp(β0 + Xobsβ1)},

and φq(x,µ,Σ) the density of a q-variate normal with mean µ and variance Σ. A similar

calculation results for the second term in (12). Since this expression is highly non-linear in

Xobs and Xmis, numerical optimization methods need to be used to find (approximations

for) the coefficients α0, α1,α2. A similar non-linearity issue arises for other distribution

specifications to model Xmis, for example for categorical covariates with missing values.

While the same reasoning could be applied, numerical methods would need to be used to

identify approximate values for the coefficients.
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6.2 Model selection via AIC for multiply imputed data

We discussed a handling of general model selection for missing data via the EM algorithm

(see Section 3.1) and by means of a non-iterative method for the specific setting of logistic

regression models with a monotone pattern of missingness (Section 3.2). We here extend the

model selection mechanism to handle imputation methods, which are generally applicable.

The general philosophy is to impute for missing values and to analyze the resulting imputed

sets of data via standard analysis methods. It is well-known that to account for imputation

variability, multiple imputations should be used. For model selection this creates a new

problem. It is straightforward to apply any traditional variable selection criterion to the

separate imputed sets of data. But how should they be combined? Yang et al. (2005)

work in a Bayesian setting and average the posterior probabilities over the imputed data

sets. Schomaker et al. (2007) compute an “averaged” dataset that consists of the average of

each data value after imputation, to which the classical AIC can be applied. An alternative

suggestion is to compute the classical AIC for each imputed dataset and then compute the

average of the AIC values to select the best model. Consentino and Claeskens (2009) derive

an expression for the AIC through the connection with hypothesis testing, that is valid in

combination with multiple imputation. This is the construction of the AIC that we describe

below.

Multiple imputation for a model S leads to m different datasets, each with its own max-

imized log likelihood function. Denote by S0 the smallest model under consideration. Meng

and Rubin (1992) combine m separate likelihood ratio values (one for each imputed dataset)

into one single test statistic with an approximate F -distribution. This idea of combining test

statistics over different imputed datasets, builds on an earlier combined testing procedure

using Wald statistics, see Li et al. (1991). We denote by LS,j the log-likelihood ratio statistic

for testing model S0 versus model S, for the jth imputed set of data, with j = 1, . . . , m. The

average of these test statistics is L̄S,• = 1
m

∑m
j=1 LS,j. The parameter estimator in model S
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for the jth imputed data set is denoted by θ̂
(j)
S , and the average of the m estimators by θ̄S. A

‘log likelihood ratio’ value L̃S,j(θ̄S) can also be defined for each of the m imputed data sets,

where instead of using the estimator θ̂
(j)
S we fill in the average parameter value θ̄S. Their

average is denoted by L̃S,• = 1
m

∑m
j=1 L̃S,j. Also, denote the number of parameters in model

S by |S|, and the difference in numbers of parameters of the two models by pS = |S| − |S0|.
Using Meng and Rubin (1992), the test statistic for testing model S0 versus model S is

DS

pS

=
L̃S,•

pS{1 + m+1
pS(m−1)

(L̄S,• − L̃S,•)}
, (13)

with an approximate F distribution with degrees of freedom pS and ν where

ν =





4 + (t− 4){1 + (1− 2t−1)D−1}2 if t = pS(m− 1) > 4

t(1 + p−1
S )(1 + D−1)2/2 otherwise,

with D = m+1
pS(m−1)

(L̄S,• − L̃S,•). Consentino and Claeskens (2009) define the AIC difference

for model S compared to model S0 as

aic(S, S0) = −DS + 2 pS. (14)

Note that there is a constant 2 absorbed in the notation for the log likelihood ratio statis-

tics. Model selection proceeds by computing these AIC differences for all models S under

consideration. The model with the smallest AIC difference is considered the best one.

Criterion (14) is generally applicable for use with multiple imputation for likelihood

models. In particular, it may be applied with imputations obtained via the method of

multiple imputation via chained equations (Raghunathan et al., 2001). This technique draws

values from (Bayesian) predictive distributions, allowing for other models than the logistic

one.
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