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Abstract

Valuing customers is a central issue for any commercial activity.
The customer lifetime value (CLV) is the discounted value of the fu-
ture profits that this customer yields to the company. In order to
compute the CLV, one needs to predict the future number of transac-
tions a customer will make and the profit of these transactions. With
the Pareto/NBD model, the future number of transactions of a cus-
tomer can be predicted, and the CLV is then computed as a discounted
product between this number and the expected profit per transaction.
Usually, the number of transactions and the future profits per trans-
action are estimated separately. This study proposes an alternative.
We show that the dependence between the number of transactions and
their profitability can be used to increase the accuracy of the predic-
tion of the CLV. This is illustrated with a new empirical case from the
retail banking sector.
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1 Introduction

Valuing customers is a central issue of any commercial activity. The value of
an individual customer is important for the detection of the most valuable
ones, which deserve to be closely followed, and for the detection of the less
valuable ones, to which the company should pay less attention. At the ag-
gregated level, a marketing campaign targeting a group of customers can be
budgeted more efficiently when the value of this group is known. Customers
are an important asset, and as such, have to be precisely valuated.

Customer valuation has been discussed by several papers in the customer
relationship management literature, for example Dwyer [1997], Berger and
Nasr [1998], Rust et al. [2004] and Malthouse and Blattberg [2005]. The value
of a customer has long been defined with regard to the longevity of his/her
historical financial value. However, Reinartz and Kumar [2000] criticized this
method, since they demonstrated that a long life-cycle and the profitability
of a customer were not necessarily related. On the opposite, Rust et al.
[2004] emphasized that marketing strategy should focus on projected future
financial return using the total value of the customer base. Supporting this
idea, Gupta et al. [2004] showed that the earnings of a company, and hence
its value, are a function of the total Customer Lifetime Value (CLV). The
CLV is defined as the discounted value of the future profits yielded by a
customer to the company. The issue is to predict the future profits when
the timing and the profit of future transactions is not known, that is in a
non-contractual setting, as discussed in Mulhern [1999] and Bell et al. [2002].

The Pareto/NBD model, introduced by Schmittlein et al. [1987], is re-
ferred by several authors [e.g. Mulhern, 1999, Niraj et al., 2001, Jain and
Singh, 2002] as a powerful technique to predict the future activity of a cus-
tomer in a non-contractual relationship. For examples of implementation,
see Schmittlein and Peterson [1994], Reinartz and Kumar [2000] and Fader
et al. [2005a]. Since the Pareto/NBD model forecasts only the probability of
activity and the number of transactions of a customer, some adaptations are
to be made in order to incorporate the profit of the transactions and to esti-
mate the CLV. Herefore, the Gamma/Gamma submodel is used, as in Fader
et al. [2005a]. A key assumption, made by this Pareto/NBD-based model for
CLV prediction, is the independency between the number of transactions of a
customer and the related profit per transaction. We will propose a modified
model, not relying on this independence assumption.

The purpose of our paper is to propose a modified Pareto/NBD-based
approach for the CLV prediction. In our empirical study, using customer
stock exchange orders provided by a retail banker, we will show that the
newly proposed method has better forecasting performance than the tradi-
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tional Pareto/NBD model, and that it also outperforms a standard regression
approach.

Our paper is organized as follows: after an introduction of the concept of
customer lifetime value in Section 2, we present in Section 3 the Pareto/NBD
submodel previously used to predict the CLV. Section 4 proposes a modifi-
cation, which we call the Pareto/Dependent model. Section 5 presents then
the empirical application, where the predictive performance of the different
models is compared.

2 Customer Lifetime Value Definition and Prin-

ciples

Nowadays one can see a proliferation of valuation methods using both terms
of “Customer Lifetime Value” or “Customer Equity”. For an overview, see
Pfeifer et al. [2005]. This paper follows Gupta et al. [2004], defining the value
of a customer as the expected sum of discounted future earnings, where a
customer generates a profit margin for each period.

The CLV is a function of all the transactions an individual customer
will make in the future. Strictly speaking, all future transactions should be
considered. Nevertheless, in order to compare our predictions with actual
data, we will work with a finite horizon h. Consequently, the CLV of the
customer i for the horizon h is

CLVi,h =
h∑

k=1

CFi,k

(1 + d)k
, (2.1)

where d is the discount rate, assumed to be constant. Hence it is the sum of
discounted net cash flows, where CFi,k is the net cash flow (i.e. the total gains
less the total costs) due to the activity of customer i during the time period
k.1 The CLV of a customer is obviously changing over time. Nevertheless, we
will not introduce this time dependency in the notation, since in our empirical
study the moment of prediction of the CLV is identical for all customers.

This paper studies the prediction of CLVi,h given the past purchases in-
formation. The optimal prediction, in the least square sense, is

ĈLVi,h = E[CLVi,h|Past Purchase Information]. (2.2)

For a recent review on CLV modeling, see Gupta et al. [2006]. Most papers
predicting the CLV [e.g. Schmittlein and Peterson, 1994, Venkatesan and

1For simplicity purposes, we consider time periods of equal length and the discount is
computed as if all cash flows were obtained end-of-period.
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Kumar, 2004, Fader et al., 2005a] are using a two step scheme. First they
forecast the future number of transactions of each individual. For instance
Fader et al. [2005a], studying the sales of a CD retailer, first predict the future
number of CD purchases. Then, the individual average profit per transaction
is estimated. These values are estimated at the customer level and, if the
product of the future number of transactions and the profit per transaction is
discounted and summed up, it yields an approximation of the CLV for each
customer. Section 3 reviews this approach. Section 4 modifies this approach,
motivated by the empirical evidence that the number of transactions and the
average profit per transaction are not independent of each other.

3 Customer Lifetime Value Prediction

This Section will describe the common approach for predicting the CLV. First
the number of transactions in the future is predicted using the Pareto/NBD
submodel (described in the next subsection). Next, another submodel pro-
vides an estimate of the average profit per transaction. The CLV is then
computed as a discounted product of the future number of transactions
and the average profit per transaction. Such an approach is what we call
a Pareto/NBD-based model.

3.1 Pareto/NBD Submodel Description

We will describe the Pareto/NBD submodel as proposed by Schmittlein et al.
[1987]. Based on the past observations, the parameters of the Pareto/NBD
submodel are estimated. Then, one is able to forecast the future activity of
a customer. All predictions are made at the same point in time, i.e. the
present time or “now”.

Three past purchasing behavior measures are required for every customer.
The first purchasing information is the cohort Ti. This is the time between
the entry of the individual i as a customer of the company until now. If
we denote xi,k, the number of transactions the customer i has made after k
time units, then this customer has made xi,Ti

transactions until the present
time. The latter value is called the frequency and is the second purchas-
ing variable required by the Pareto/NBD submodel. We use the shorthand
notation xi ≡ xi,Ti

throughout the paper. Note that the total number of
transactions from the beginning of the relationship between the customer
and the company until “now” is xi + 1, because the first transaction occurs
at the moment of entry. The third and last purchasing information required
by the Pareto/NBD submodel is the time between the entry date and the
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last purchase date. This value is called the recency and is denoted ti. The
more recent is the last purchase, the higher ti will be, and 0 < ti ≤ Ti. The
purchasing information on customer i contains thus three observed values:
Ti, xi and ti respectively the cohort, the frequency and the recency, for each
1 ≤ i ≤ n, where n is the total sample size.

In the context of the Pareto/NBD submodel, a customer is said to be
active as long as this customer is making transactions. Once inactive, a cus-
tomer will not make any transactions anymore. There are five assumptions
to be made about the purchase event process and the time that a customer
stays active. First, while active, a customer i makes purchases according to
a Poisson process with rate λi. We will denote this assumption as (A1). Let
the (unobserved) time at which the customer i becomes inactive be denoted
by τi. If the customer i is still active at Ti (so τi > Ti), the number of
purchases xi in (0, Ti[ has the Poisson distribution

P [xi|λi, τi > Ti] = e−λiTi
(λiTi)

xi

xi!
. (3.1)

The second hypothesis (A2) is that each customer remains active during a
time being exponentially distributed with death rate µi

f(τi|µi) = µie
−µiτi . (3.2)

Since the parameters λi and µi can be different among customers, the
Pareto/NBD submodel makes three assumptions on the heterogeneity across
customers. The assumption (A3) is that the purchasing rate λi for the differ-
ent customers is distributed according to a Gamma distribution across the
population of customers.

g(λi|r, α) =
αr

Γ(r)
λr−1

i e−αλi ; r, α > 0, (3.3)

with E[λi|r, α] = r/α. The fourth assumption (A4) is that the death rates µi

are distributed according to a different Gamma distribution across customers,

g(µi|s, β) =
βs

Γ(s)
µs−1

i e−βµi ; s, β > 0, (3.4)

with E[µi|s, β] = s/β. Finally, the purchasing rates λi and the death rate µi

are considered as distributed independently of each other (A5). The popu-
lation parameters r, α, s and β are unknown and need to be estimated.

In this paper, the population parameters r, α, s and β are estimated by
Maximum Likelihood (MLE). In Fader and Hardie [2005] the likelihood for
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an individual i with purchase history (xi, ti, Ti), Li = L(r, α, s, β|xi, ti, Ti), is
shown to be equal to

Li =
Γ(r + xi)α

rβs

Γ(r)

{
1

(α + Ti)r+xi(β + Ti)s
+

(
s

r + s + xi

)
A0

}
, (3.5)

with, for α ≥ β, 2

A0 =
F (ai, b; ci; z(ti))

(α + ti)r+s+xi
− F (ai, b; ci; z(Ti))

(α + Ti)r+s+xi
, (3.6)

where,

ai = r + xi + s; b = s + 1; ci = r + xi + s + 1; z(y) =
α− β

α + y
, (3.7)

and F is the Gaussian hypergeometric function3, which is a power series of
the form

F (a, b; c; z) =
∞∑

j=0

(a)j(b)j

(c)j

zj

j!
,

where (a)j is the Pochhammer’s symbol, which denotes the ascending fac-
torial, a × (a + 1) . . . × (a + j − 1). An alternative to the MLE is to use
the method-of-moments, but Reinartz and Kumar [2003] showed that the
method-of-moments yields similar results.

Once the parameters are estimated, one can estimate the probability for a
customer to be alive, and predict the future number of transactions this cus-
tomer will make. The estimated conditional probability, P [τi > Ti|xi, ti, Ti],
for the customer i of being active at the present moment, given the frequency,
recency and cohort of this customer is

p̂i =
1

1 + ŝ
r̂+xi+ŝ

[(
α̂+Ti

α̂+ti

)r̂+xi
(

β̂+Ti

α̂+ti

)ŝ

F (â, b̂; ĉ; ẑ(ti))−
(

β̂+Ti

α̂+Ti

)ŝ

F (â, b̂; ĉ; ẑ(Ti))

] .

(3.8)
The submodel also provides the (unconditional) expected value of the number
of transactions a customer will make over time,

E[xi,k] =
r̂β̂

α̂(ŝ− 1)


1−

(
β̂

β̂ + k

)ŝ−1

 . (3.9)

2For α < β the function is slightly different. See Fader and Hardie [2005] for more
details.

3The standard reference for the Gaussian hypergeometric function is Abramowitz and
Stegun [1972].
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However, for the prediction of the CLV of an individual customer i, one
would rather need to estimate E[xi,Ti+k|xi, Ti, ti]. That is the conditional
expectation of the number of transactions a customer i makes until the end
of time period Ti+k, given the recency, frequency and cohort of this customer.
As shown in Fader and Hardie [2005], an estimate of this quantity is

x̂i,Ti+k = xi+
Γ(r̂ + xi)α̂

r̂β̂ ŝ

Γ(r̂)(α̂ + Ti)r̂+xi(β̂ + Ti)ŝL̂i

(r̂ + xi)(β̂ + Ti)

(α̂ + Ti)(ŝ− 1)
[1−(

β̂ + Ti

β̂ + Ti + k
)ŝ−1],

(3.10)
where L̂i = L(r̂, α̂, ŝ, β̂|xi, ti, Ti) is the estimated likelihood of equation (3.5)
and Γ(.) denotes the standard Gamma function. The expected number of
transactions during the kth future time period is then x̂i,Ti+k − x̂i,Ti+k−1.

An easier method for implementation has been proposed by Fader et al.
[2005b], the Beta-geometric/NBD submodel, assuming a beta-geometric dis-
tribution instead of a Pareto distribution. Changing only slightly the assump-
tions of the Pareto/NBD submodel, this method can even be implemented in
Excel. Nevertheless, in this paper, we will use the traditional Pareto/NBD
owing to its usage in the reference literature.

3.2 The Gamma/Gamma Submodel

Until now, the profit of a transaction, needed to predict the CLV, was not in-
troduced in the model yet. For this purpose, the Gamma/Gamma submodel
of Fader et al. [2005a] can be taken. This submodel estimates the average
profit per transaction of a customer. The profit of a transaction is then de-
fined as the net cash flow it yields. We denote zi,1, . . . , zi,xi

, the profit of each
observed transaction made by the customer i, and mi,k the average profit
of the transactions of the customer i from the beginning of the customer
relationship with the company until time k. Note that when k = Ti,

m̃i ≡ mi,Ti
=

xi∑

l=1

zi,l/xi.

This is the monetary value, the average profit per transaction of a customer
until now.

An assumption made in Fader et al. [2005a] (denoted A6) is that, for
each individual i, the profit per transaction is independent of the number
of transactions. Moreover, it is assumed in the Gamma/Gamma submodel
that the expected profit per transaction does not vary over time and we
denote it by mi. The monetary value m̃i is then a sample estimate of mi. A
further assumption (A7) is that the zi,l are Gamma distributed with shape
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parameter pxi and scale parameter 1/νi. The last assumption (A8) is that
the values of νi are again Gamma distributed across the population with
shape parameter q and scale parameter 1/γ. It leads to the total likelihood
of the Gamma/Gamma submodel, depending on three unknown parameters

L(p, q, γ) =
n∏

i=1

(
Γ(pxi + q)

Γ(pxi)Γ(q)

γqm̃pxi−1
i xpxi

i

(γ + m̃ixi)pxi+q

)
. (3.11)

Finally, once these parameters have been estimated by MLE, the conditional
expectation of the average profit per transaction for a customer i is estimated
as

m̂i =

(
q̂ − 1

p̂xi + q̂ − 1

)
γ̂p̂

q̂ − 1
+

(
p̂xi

p̂xi + q̂ − 1

)
m̃i. (3.12)

This is a weighted average of the estimated population mean of the profit
(γ̂p̂)/(q̂ − 1), and m̃i. For more details on the Gamma/Gamma submodel,
we refer to Fader et al. [2005a].

3.3 Description of the Pareto/Independent Model

Most papers, such as Schmittlein and Peterson [1994], Venkatesan and Ku-
mar [2004] or Fader et al. [2005a], apply the same principle to predict the
CLV. Once the number of transactions in a future time period k is estimated
using (3.10), they multiply this value by the expected average profit per
transaction given by (3.12). It follows that the CLV is estimated as

ĈLVi,h =
h∑

k=1

(x̂i,Ti+k − x̂i,Ti+k−1)m̂i

(1 + d)k
. (3.13)

This prediction requires the recency (ti via equation 3.10), the frequency (xi

via equation 3.10) and the monetary value (mi,Ti
via equation 3.12). It fits

within the well-known RFM (recency, frequency and monetary) framework.
During our empirical study, when predicting the value of the CLV, we will

first apply the method described in this section. This model is referred to as
the Pareto/Independent model. In the following, we mitigate the assumption
that the average profit per transaction can be estimated independently of the
number of transactions. The resulting modified approach will be referred to
as the Pareto/Dependent model and is outlined in the next section.
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4 A Modified Pareto/NBD Approach for CLV

Prediction

In the empirical application we will discuss in Section 5, we will show that
the independence assumption (A6) between the number of transactions and
the average profit per transaction is questionable. In Fader et al. [2005a],
the authors found an average value of .06 for the correlation between m̃i and
xi in their empirical application. They accept the independence hypothesis
nevertheless, arguing that this value is very small. The new approach takes
into account a possible dependency between the number of transactions and
the average profit per transaction. This dependency will be designed at the
customer level, accounting for the heterogeneity in the population. Moreover,
we do not require a constant expected profit per transaction over time. The
resulting model will be referred to as the Pareto/Dependent model.

Let us assume that the number of transactions and the average profit per
transaction of a customer i are related by the model

log(
mi,k

E[mi,k]
) = ri log(

xi,k

E[xi,k]
) + εi. (4.1)

Here ri is a coefficient of dependence for which an estimation method will
be provided in the next paragraph. Equation (4.1) links the deviation of the
observed from the expected average profit per transaction, with the same
deviation for the number of transactions. Here, the expected values are
provided by the Pareto/NBD submodel for the number of transactions and
by the Gamma/Gamma submodel for the monetary values, using equation
(3.9) and the quantity (γ̂p̂)/(q̂ − 1) respectively.

The idea is that the monetary value of a customer depends on the number
of transactions he/she is making. This dependency can be different across
customers. Customers having a high number of future transactions may have
a high monetary value, but the opposite could also happen. Therefore we
model the dependency coefficient ri as a function of explicative variables,
for which we take the cohort, recency and the probability of being an active
customer. The latter variable is relevant because the more likely a customer
is expected to remain active, the more likely this customer will have positive
dependency between the average profit per transaction and its number of
transactions. Hence,

ri = α1p̂i + α2Ti + α3ti + α0. (4.2)
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Taking (4.1) for k = Ti and inserting (4.2) yields

log(
m̃i

E[mi,k]
) =α1p̂i log(

xi

E[xi,k]
) + α2Ti log(

xi

E[xi,k]
)

+ α3ti log(
xi

E[xi,k]
) + α0 log(

xi

E[xi,k]
) + εi,

(4.3)

for 1 ≤ i ≤ n. Estimating this regression equation yields estimates for the
parameter α0, α1, α2 and α3, and hence also an estimate for the ri.

The average profit per transaction in the period [0, Ti + k] can then be
estimated as well. From equation (4.1) it follows that

log(
mi,Ti+k

E[mi,k]
)− log(

m̃i

E[mi,k]
) = ri log(

xi,Ti+k

E[xi,Ti+k]
)− ri log(

xi

E[xi,Ti
]
).

This yields as prediction of mi,Ti+k,

m̂i,Ti+k = m̃i

(
x̂i,Ti+k/E[xi,Ti+k]

xi/E[xi,Ti
]

)r̂i

, (4.4)

with xi the observed number of transactions in the past (frequency), Ti the
cohort of customer i and x̂i,Ti+k, given by (3.10), as prediction for xi,Ti+k.
One can see that m̂i,Ti+k is now a function of the time period k. Then,
by (2.1), the CLV of customer i, computed for an horizon of h periods, is
estimated under the Pareto/Dependent model by

ĈLVi,h =
h∑

k=1

x̂i,Ti+km̂i,Ti+k − x̂i,Ti+k−1m̂i,Ti+k−1

(1 + d)k
. (4.5)

5 Empirical Application

Our first empirical application uses a new data set, provided by a Belgium
retail banker, and described in Section 5.1. In Section 5.2 we empirically show
that there is a significant correlation between the number of transactions and
the profit per transaction for this data set. As a second empirical application,
we study the prediction for the CLV of the CDNOW data set, which has
been used in Fader et al. [2005a] and serves as a benchmark data set. The
accuracy of the prediction of the CLV on these data sets, using different
models, is compared. In Section 5.4, it will turn out that for the retail
banker data set, the newly proposed Pareto/Dependent model performs best.
For the CDNOW data set, where the correlation between the number of
transactions and the average profit per transaction is less important, all
methods considered perform comparably
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5.1 Description of the Retail Banker Data Set

The retail banker data set is provided by a Belgian financial service institu-
tion. The data set contains the customers stock exchange transactions data
from January 2000 till December 2005. The customers considered were in-
habitants of Belgium with no professional activity in the brokerage business.
The total number of transactions was 11068877, made by 460566 customers.

These customers could have purchased (or sold) stocks, bonds, mutual
funds, derivatives etc.4 The profit of a transaction is computed, by a business
rule, as a margin of 1% of the amount exchanged at the transaction. When
computing the CLV, we will work with monthly time periods. The discount
rate is taken as the weighted average cost of capital disclosed in the 2004
financial statement of the Belgian financial service institution, 8.92% yearly,
giving a monthly discount rate of d = 0.7146%.

On the total base of customers, we select for the CLV prediction those
who made their first transaction between January 2001 and December 2003.
The CLV prediction will be made at January 1st, 2004. The remaining two
years of data are kept out-of-sample for the model assessment. We consider
eight groups of customers for the purpose of comparison. Each group (later
called cohort) is composed of customers who started their relationship (date
of first purchase) during the same quarter. For instance, the first cohort is
composed of the customers who made their first transaction during the first
quarter of 2001, between January 1st, 2001 and March 31st, 2001. The last
cohort is composed of customers who made their first transaction during the
last quarter of 2002.5 The customers belonging to different cohorts began
their relationship with the company at different market conditions. Table 1
reports the number of customers belonging to each cohort, yielding a total
of n = 11266 customers.

5.2 Dependency between the Number of Transactions
and their Average Profit

For verifying the assumption (A6), we measure the correlation, at the cus-
tomer level, between the number of transactions and the average profit per
transaction. Even if, at the aggregate level of all customers, the correlation

4We did not consider the automated pension plan transactions as stock exchange trans-
actions. It was considered as an insurance product, to be discarded from the study.

5For the parameter estimation step, we discard the most extreme percentile of the
customer base, i.e. customers with the 1% largest value of xi×m̃i. These “high spending”
customers are closely followed by branch agents and a global model for CLV prediction is
less appropriated for them.

10



Table 1: Number of observations for each cohort. T01Q1 is the cohort of the
first quarter of 2001, T02Q1 is the cohort of the first quarter of 2002, etc.

T01Q1 T01Q2 T01Q3 T01Q4 T02Q1 T02Q2 T02Q3 T02Q4 TOTAL
2955 1406 1114 1086 1330 1223 1287 865 11266

between the number of transactions and the average profit per transaction
would be 0, or slightly positive as observed in Fader et al. [2005a], one still
needs to check if this remains true at the individual level. If the number of
transactions a customer i makes in a period and the profit of these trans-
actions are correlated with a coefficient ρi, then, if an important group of
customers has its ρi significantly different of 0, we will reject the indepen-
dence assumption (A6).

To test hypothesis (A6), we first split the database per period of one year,
then per period of two months. For each period of two months and for each
customer i, the average profit per transaction and the number of transactions
is observed. Let dxi,s be the number of transactions made by the customer
i during the two months period indexed by s and z̄i,s =

∑
l∈s zi,l/dxi,s, the

related average profit per transaction. Next, for each individual i and each
year y, we have an estimate of the correlation between these two values in
year y with ρ̂i,y computed from 6 bimonthly observations dxi,s and z̄i,s. The
correlation ρ̂i,y is an imperfect estimate of ρi, and we test for assumption
(A6) within the framework of the random effects model

ρ̂i,y = ρi + εi,y (5.1)

where ρi ∼ N(µρ, σρ) and εi,y ∼ N(0, σε) is the error term resulting from sam-
pling and estimation error. For the independency assumption to be accepted,
both µρ and σρ need to be equal to zero.

Using the procedure GLM of SAS 9.1.3 for random effects estimation,
we compute for each customer i the estimated ρ̂i. Figure 1 presents the
histogram of the ρ̂i. One can observe that there is a large heterogeneity
among customers. The estimated mean of their correlations is 0.28, being
significantly different from 0 (p < 0.0001), and an estimated σρ of 0.28, again
being significantly different from zero with a p smaller than .0001. We thus
reject the independence assumption (A6) between the number of transactions
a customer i makes and the profit these transactions yield.
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Figure 1: Histogram of the estimated correlations between the number of
transactions an individual customer is making and the profit of these trans-
actions. One estimated correlation corresponds to one customer.

5.3 Estimation of the Models

5.3.1 Pareto/NBD-Based Models

For the retail banker data set, the parameter estimation6 is made for all the
customers who made their first transaction between January 2001 and De-
cember 2003. Then, predictions are made for the CLV of all these customers
with h = 24 months, hence from January 2004 till December 2005. The
actual data required for the computation of the true CLV for this horizon
are also at our disposal, but kept out-of-sample for the model comparison.

The parameter estimates of the Pareto/NBD submodel, obtained by max-
imum likelihood are r̂ = 0.41, α̂ = 0.94, ŝ = 0.20 and β̂ = 1.10. For
the Gamma/Gamma submodel described in Section 3.3, we have p̂ = 0.05,
q̂ = 229.15 and γ̂ = 3.30× 105. For equation (4.3) of the Pareto/Dependent
model, the estimated coefficients are α̂1 = 1.25, α̂2 = 0.06, α̂3 = −0.07 and
α̂0 = −1.15, all being highly significant. Figure 2 displays the histogram of
the estimated dependency coefficients r̂i. One can see that this distribution
is similar to the one of Figure 1, supporting the fact that there is non-zero
correlations between the number of transactions and the related profit, which

6In the following, all models are implemented in Matlab 7.2. The implementation of
the Pareto/NBD submodel is made on the basis of Fader et al. [2005c], available from
http://brucehardie.com/notes/008/.
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Figure 2: Histogram of the estimated dependency coefficient for the every
customer in the retail banker data set as obtained from model (4.2).

motivated our new approach.
For the parameter estimation of the CDNOW data set, we obtain identical

parameter estimates as Fader et al. [2005a]. For the Pareto/Dependent model
of Section 4, the coefficients are α̂1 = 0.100, α̂2 = 0.002, α̂3 = −0.003 and
α̂0 = −0.127. As expected, the effects here are smaller than for the retail
banker data set, since a relationship between the number of transactions and
the profit per transaction was not reported in Fader et al. [2005a]. However,
the full regression of the dependency coefficient of equation (4.3) is overall
significant.

Observing the coefficients of the regression of the dependency coefficient,
one can see that the signs are the same for both data sets. The probability of
activity and the cohort of a customer have a positive effect on the dependency
coefficient. On the opposite, the recency of a customer has a negative effect
on the dependency coefficient. We can conclude that the active and “old”
customers will increase (decrease) their profit per transaction when increasing
(decreasing) their number of transactions. Whereas, for the same probability
of activity and cohort, the customers who made more recent purchases will
decrease (increase) their profit per transaction when increasing (decreasing)
their number of transactions.
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5.3.2 Linear Regression

In order to compare the Pareto/NBD-based models with a simple baseline
model, we also apply a linear regression formulated as

CLVi = θwi + εi, (5.2)

where wi is a regression vector containing an intercept, the recency ti, the
cohort Ti and the past profit yielded by the customer i being xi×m̃i. For esti-
mating model (5.2) we need the values of wi, but also those of the CLV which
are unknown in general. Therefore we split the sample of three years7 in two
parts, according to the time dimension. The first part (about 22 months)
is used for measuring the values of wi, and the second (about 14 months)
for measuring the actual CLV over the corresponding period. Ordinary least
squares estimation yields then θ̂. For prediction, we compute the wi over the
complete three years time period, and do obtain the predicted values of the
CLV as θ̂wi. A major advantage of the Pareto/NBD-based models is that
one does not need to split the estimation sample in two for the parameter
estimation, since the CLV can be predicted without having a single observed
value for it. Finally, note that we could not implement a linear regression for
the CDNOW data set, since we only had the summary values xi and mi at
our disposal, and not the complete transaction history.

5.4 Comparison of the Models

In this section, we compare the models previously presented on the basis
of several performance measures. In Section 5.4.1 we define the accuracy
measures and in Section 5.4.2 we compare the models performance at the level
of the whole sample and at the level of each of the eight cohorts. We show that
the Pareto/Dependent model clearly beats the Pareto/Independent model
when strong correlations are present, and is still performing very well when
no correlation has been reported.

5.4.1 Measures of Accuracy

As first measures of prediction accuracy, we use the Root Mean Square Error
(RMSE) and the Mean Absolute Error (MAE) between the prediction of
the customer lifetime value and the actual value. In order to improve the
robustness to possible outliers in the data set, a trimming of 1% is applied
to both the RMSE and the MAE. This process discards the largest 1% of
the prediction errors. There are indeed a few customers with an extremely

7As before, the other two years are kept as an out-of-sample for model assessment.
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large CLV, and we do not want them to dominate the analysis. The RMSE
is then defined as

RMSE =

√
1

0.99× n

∑
i∈BP

(ĈLVi,h − CLVi,h)2, (5.3)

with n the number of observations and BP the set of the 99% best predic-
tions. Accordingly the MAE is,

MAE =
1

0.99× n

∑
i∈BP

|ĈLVi,h − CLVi,h|. (5.4)

As a complementary measure of prediction accuracy, we propose Spear-
man’s correlation. Spearman’s correlation is a non-parametric measure of
correlation between predicted and actual values. The actual CLV and the
predicted CLV are sorted by value and a rank is given to each observation.
The standard correlation between these ranks is then the Spearman’s corre-
lation. We use the Spearman’s correlation instead the traditional Pearson’s
correlation because Spearman’s correlation is more robust to outliers.8 More-
over, this measure provides an information on the quality of the ranking of
the customers based on their CLV, being a useful driver from a customer
relationship perspective.

5.4.2 Results

For the retail banker data set, the securities transactions of the customers
of a Belgian retail bank, the CLV is predicted for a horizon of two years on
the basis of the transactions made before January first, 2004. The predicted
values are then compared with the true value of the CLV yielded between
January first, 2004 and the end of December 2005, discounted from the start
of this period. The reader has to keep in mind that the transactions re-
quired for the computation of the actual CLV have been kept out-of-sample
when estimating the models. Table 2 provides the models accuracy synthesis
on the basis of the RMSE, the MAE and the Spearman’s correlation. The
Pareto/Dependent model outperforms the Pareto/Independent model for ev-
ery accuracy measure. Moreover, even though the linear regression achieves
good results, better than the Pareto/Independent model, it is still outper-
formed by the Pareto/Dependent approach. For this retail banker data set,
the Pareto/Dependent model is clearly the best one of the three models de-
scribed in this paper.

8Nevertheless, during our investigations, we also computed a regular correlation for
each model. The ranking between the models was identical and the differences of the
same order.
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Table 2: Models comparison for the CLV prediction using the retail banker
data set. Root Mean Square Errors, Mean Absolute Errors and Spearman’s
Correlations are reported for the three considered models.

Model RMSE MAE Correlation
Pareto/Independent 946.2 411.9 40.5 %
Linear Regression 892.7 340.5 47.9 %
Pareto/Dependent 843.4 324.0 51.8 %

In order to study how the models perform for different durations of trans-
action history, we also report the results for each cohort separately. Figure
3 shows the model accuracy as measured by the RMSE, the MAE and the
Spearman’s correlation between the prediction of the customer lifetime value
and the actual outcome, computed separately for each cohort. All the mod-
els show decreasing prediction accuracy when the duration of the transaction
history becomes smaller.

When comparing the three models at the cohort level, several observa-
tions can be made. First, the new approach achieves a better RMSE, MAE
and Spearman’s correlation over the Pareto/Independent model for almost
every cohort. Secondly, the Spearman’s correlation is consistently higher for
the Pareto/Dependent model than for the linear regression. When the du-
ration of the transactions history decreases the reliability of the rank of the
observation given by the linear regression also decreases, whereas it remains
more stable for the Pareto/Dependent model. Moreover, a Pareto/NBD-
based model has two advantages over a linear regression model. First, it
does not need a splitting of the estimation sample set in two parts for the
parameter estimation purpose. Secondly, it provides more information on
the customer activity, since it also estimates the probability for a customer
of being active. Consequently, for the retail banker data set at the cohort
level, the Pareto/Dependent model is presented as the best one of the three
models described in this paper.

For the sales of the CDNOW data set, Table 3 displays the accuracy of the
two Pareto/NBD adaptations for the RMSE, the MAE and the Spearman’s
correlation. One can see that the accuracy of the models are similar for the
RMSE and the MAE measures. Nevertheless the Pareto/Dependent model
has a better correlation between the ranks of the predicted and actual values.
Accordingly, we claim that, even when there is only a weak dependence
between the number of transactions and the average profit per transaction,
the Pareto/Dependent model is still performing very well.
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Figure 3: Root Mean Square Error (upper panel), Mean Absolute Error (mid-
dle panel) and Spearman’s correlation (lower panel), computed separately for
every quarterly cohort of the retail banker data set.
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Table 3: Models comparison for the CLV prediction using the CDNOW data
set. The Root Mean Square Errors, the Mean Absolute Error and Spearman’s
Correlation are reported for the two Pareto/NBD-based models.

Model RMSE MAE Correlation
Pareto/Independent 52.3 24.9 53.6 %
Pareto/Dependent 52.9 23.2 63.7 %

We can summarize the predictive accuracy results of the Pareto/Dependent
approach as follows. It is not clear whether the Pareto/Dependent approach
always improves a Pareto/Independent approach on the basis on a RMSE
or a MAE measure of accuracy. In our application, the Pareto/Dependent
clearly outperforms the Pareto/Independent approach. But, as it could be
seen from the CDNOW data, when the correlation between the number of
transactions and the average profit per transaction is weak, the dependency
modification is not considerably improving the performance measures, but
is neither deteriorating them. Nevertheless, in each of the two applications,
Spearman’s correlation between the predicted and actual values of the CLV
is much larger for our approach. This is a noticeable result, a model having
a high Spearman’s correlation indicates a good ability to rank the customers
by their CLV. This is very useful from a managerial perspective: in order to
detect the most valuable customers which are to be closely followed, and for
the detection of the less valuable ones, to which the company should pay less
attention.

6 Conclusion

The customer lifetime value, the value of a customer based on his/her future
activity, is a key metric for any business activity. The Pareto/NBD model
is a suitable approach when predicting the activity of a customer in a non-
contractual relationship. This paper focusses on Pareto/NBD-based models,
and more particularly on the independence assumption between the number
of transactions a customer makes and the average profit yielded by these
transactions. We demonstrated in our empirical application that these two
variables cannot be considered as independent for all customers. Predict-
ing the future number of transactions and the future profit per transaction
separately could lead to a loss in predictive performance.

A modification needs to be made in order to predict the CLV in presence
of a dependence between the number of transactions a customer makes and
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the profit per transaction. We proposed the Pareto/Dependent alternative,
performing better in our empirical application than the Pareto/Independent
model. It does not require complex adjustments. We also briefly discussed a
linear regression approach, as an example of a business rule that could also
be implemented. It worked quite well in the first empirical application, but
it has various shortcomings as we discussed in Section 5.

Finally, in our study, only transactional data were considered. One could
include socio-demographic explanatory variables for the CLV prediction. For
instance, when studying the dependence between the number of transac-
tions and the average profit per transaction as described in Section 4, socio-
demographic regressors could be taken into account as well.
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