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Abstract

We present a nonparametric approach for (1) efficiency and (2) equity evaluation in

education. Firstly, we use a nonparametric (Data Envelopment Analysis) model that is

specially tailored to assess educational efficiency at the pupil level. The model accounts

for the fact that typically minimal prior structure is available for the behavior (objectives

and feasibility set) under evaluation. It allows for uncertainty in the data, while it

corrects for exogenous ‘environmental’ characteristics that are specific to each pupil.

Secondly, we propose two multidimensional stochastic dominance criteria as naturally

complementary aggregation criteria for comparing the performance of different school

types (private and public schools); these criteria are specifically designed for aggregating
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pupils’ output performance while adjusting for environment-corrected inefficiency. While

the first criterion only accounts for efficiency, the second criterion also takes equity

into consideration. The model is applied for comparing private (but publicly funded)

and public primary schools in Flanders. Our application finds that no school type

robustly dominates another type when controlling for the school environment and taking

equity into account. More generally, it demonstrates the usefulness of our nonparametric

approach, which includes environmental and equity considerations, for obtaining ‘fair’

performance comparisons in the public sector context.

Keywords: equity; efficiency; private versus public education; nonparametric analysis;

Data Envelopment Analysis; stochastic dominance

1 Introduction

An important theme in policy evaluation is whether public funds are used in an efficient and

equitable way. In the specific context of education, the comparison between private –but,

possibly, publicly funded– schools and public schools is at the heart of a debate, which

started with the work of Coleman et al. (1982). They find that (1) catholic school students

achieve higher standardized test scores than public school students (while controlling for

family background); and (2) this is particularly the case for minority students. Therefore, one

could conclude that catholic schools were both more efficient and more equitable than public

schools in the U.S. at that time. The work of Coleman et al. was (and still is) controversial,

not only in the public debate (see, e.g., the New York Times articles of April 7, April 12 and

April 26, 1981, discussing the consequences of Coleman et al.’s results for the introduction

of tuition tax credits and/or school vouchers), but also in academics (see, e.g., Cain and

Goldberger, 1983, for an overview). In spite of these criticisms, many studies have confirmed

the outperformance of public by private schools; see, e.g., the literature overview in Altonji

et al. (2005a).

Most studies consider differences between public and private schools in the US on the

basis of parametric regression techniques. Toma (1996) argues that further investigation us-
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ing different case-studies and/or different methodologies is needed. First, the US educational

system is rather different compared to, e.g., European systems. Private schools in the US his-

torically represent only a small percentage of all pupils. The relative outperformance could

vanish if the private educational system operates at a different scale. In addtion, it is not

clear to what extent the outperformance of public by private schools in the US has to be

attributed to the different ideological vision on education or rather to the different ways these

schools are funded. Although Hanushek and Raymond (2005) do not focus on public-private

differentials, they show that the different funding systems in the different US states lead to

different outcomes. In this study, we compare private (catholic) and public primary schools

in Flanders, i.e., a region in Belgium, where the number of pupils in both school types is

roughly equal and all schools are fully funded by the government. Second, most studies

are parametric and therefore it might be worthwile to complement this analysis with other

techniques, e.g., nonparametric techniques.1 In this study, the methodology consists of two

steps, a measurement step (estimating the education production function at the individual

level) and an aggregation step (aggregating the actual and potential outcomes for each school

type).2 Both steps are non-parametric, i.e., we impose little a priori structure on the mea-

surement step (to minimize specification error when estimating production functions) and on

the aggregation step (to minimize value-laden statements when assessing outcomes).

To set the scene, we briefly present the measurement and aggregation step in more detail

and relate them to the existing literature. We use a nonparametric DEA model to measure

educational efficiency at the pupil level on the basis of test scores in mathematics and language

proficiency (writing and reading in Dutch). We account for the inputs used (which the

policy makers do control) as well as for possibly diverging ‘environmental’ variables –socio-

economic status of parents and lagged test score results– that might affect pupil performance

(and which often fall beyond the control of policy makers and schools). The environmental

variables control for selection issues, assumed to be based on observables only; see, e.g.,

1Relatively few studies have compared parametric and non-parametric estimation techniques in education;
see, e.g., De Witte et al. (2008).

2The potential outcome is the actual outcome plus the inefficiency.
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Altonji et al. (2005b) for selection on unobservables in parametric estimation of education

production.

DEA models have been used before to evaluate the educational efficiency at the pupil

level; see, e.g., Grosskopf et al. (1997, 1999), Portela and Thanassoulis (2001), and the ref-

erences therein. In the current study, we propose a DEA model that is specially designed for

educational efficiency evaluation: while at the input side it uses the minimal ‘free disposabil-

ity’ assumption (in casu, more input never leads to a lower (potential) performance), at the

output side it uses the linear aggregation that is typical for measuring pupil performance in

primary education (i.e., aggregate performance results are conventionally defined as weighted

sums of the results in separate disciplines). Focusing on linearly aggregated output, it mea-

sures educational inefficiency in terms of the difference between the maximally attainable

output and the actually achieved output.

Three additional features of our DEA model are worth mentioning. Firstly, it uses linear

output aggregation, but it allows for flexible weighting of the different performance dimen-

sions. Essentially, such a flexible weighting allows each pupil to be evaluated in terms of

his/her own ‘most favorable’ weighting scheme, which accounts for ‘specialization’ in educa-

tion. At the same time, we avoid undesirable ‘extreme’ specialization by limiting the range

of possible output weights through pre-specified bounds. Secondly, by suitably adapting the

methodology of Daraio and Simar (2005, 2007) to our DEA model, it can account for out-

lier behavior, while it also allows us to explain observed performance differences in terms of

diverging environmental characteristics in a nonparametric way. The observed environmen-

tal impact as well as the corresponding environment-corrected efficiency results provide an

easy-to-implement tool for attention-direction in the political process. Thirdly, economies of

scale XXX

To compare the aggregate performance of public and private schools, we suggest two

multidimensional stochastic dominance criteria that were introduced by Atkinson and Bour-

guignon (1982). In this view, the overall performance of a school is defined by the sum of

individual performances of their pupils. The individual performance of a pupil is in turn a
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function of the pupil’s actual and potential outcome (i.e., the actual outcome plus the (es-

timated) inefficiency). Rather than imposing a specific functional form for the individual

performance function, Atkinson and Bourguignon (1982) focus on a wide class of functions

which all satisfy principles with which everyone can agree; e.g., the individual performance

functions increase with the pupil’s actual output, ceteris paribus. The resulting dominance

criterion tells us that one school (type) outperforms another if the sum of individual perfor-

mances is higher at the former, for all performance functions satisfying the general principles.

It is thus robust (everyone agrees with the resulting statement), but comes at the cost of

incompleteness (a school (type) could be better according to some, but worse according

to other individual performance functions and is therefore classified as incomparable). We

believe these aggregation criteria are particularly useful in the context of DEA efficiency

evaluation of the public sector. First, they are nonparametric in nature, which naturally

complies with the nonparametric orientation of DEA. Next, it is possible to incorporate a

concern for equity (i.e., ‘higher efficiency is especially better for pupils with lower test scores’),

which is particularly relevant within the context of public policy evaluation. As with DEA,

these aggregation criteria are easy-to-implement, which makes them attractive for practical

applications.

The remainder of this paper unfolds as follows. The next section presents our research

question. Section 3 discusses our methodology for evaluating educational efficiency at the

individual pupil level. Section 4 presents the efficiency results, with a main focus on envi-

ronmental effects. Section 5 discusses the aggregation of the individual efficiencies. A final

section 6 summarizes our main conclusions.

2 Data and motivation

In general, the literature finds a positive impact for private schools as they are creating a

higher added value given the characteristics of the pupils. However, past research generally

evaluates private schools which are privately funded (Toma, 1996). As such, the effect of pri-

vate schools could be attributed to both its way of funding (and the incentives which result
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from it), its pupil characteristics (due to the nonrandom selection of pupils) and its poten-

tially more efficient educational system (thanks to ideological background). By considering

a specific example, i.e. schooling in the Flemish region, we consider only publicly funded

schools which allows us to fully concentrate on the ideological background of the school.

Indeed, in Flanders (and in Belgium in general) both public and private schools are publicly

funded by the regional government and receive full taxpayer funding since 1914. In return,

schools should conform to education programs and regulation which regulates the subjects

taught and the language used. The methods for instruction are left to the schools (for an

extensive discussion, see Toma, 1996).

Whereas the private schools are mainly catholic in Flanders, public schools both originate

from the local and the central level, depending on the level of government initiation. We label

the latter, respectively, as local and Flemish public schools. In line with the literature, the

general belief in Flanders is that private schools perform better (i.e., the cognitive output of

their pupils is thought to be higher on average). However, this statement is somewhat blurred

by two counteracting forces related to inputs and environment. While private schools are said

to have more pupils with an ‘advantageous’ family background, they should also receive less

funding from the ‘Equal Educational Opportunities’ programme of the Flemish government

(see infra). In the remaining of this section, we will define and describe the inputs, outputs

and environment in the Flemish educational system, which, at the same time, will confirm

the above belief.

We use data from the SiBO-project. The aim of SiBO is to describe and explain differences

in the primary school curriculum of a cohort of Flemish pupils. The dataset is oversampled as

it consists of a reference group, which is representative for the Flemish population of primary

school pupils, and three additional data sets which allow us to capture specific features of the

Flemish region. The oversampling is due to (1) including all public city schools of the city

of Ghent, (2) an oversampling to get a sufficient number of schools with a high number of

disadvantaged pupils (pupils for whom the schools get additional means in the so-called ‘Equal

Educational Opportunities’ programme of the Flemish government) and (3) an oversampling
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to obtain a sufficient number of non-traditional schools. Although we use all pupils together,

we correct for the sample’s non-representative nature in our empirical efficiency evaluation.

This leaves us with 3413 pupils (with complete data), of whom 1774 attend private catholic

schools, 1039 local public schools and 553 Flemish public schools. The remaining 47 pupils

take classes in private non-catholic schools. Because we will not include these pupils in our

comparison of school types, the term private schools stands for catholic private schools in

the sequel.

We look at the cohort of pupils in their second year of primary education (2004-2005) –at

the (normal) age of 7– while we use data from the same pupils in the first year (2003-2004)

to retrieve environmental variables. We extract 3 types of variables at the individual level,

called inputs, outputs and environmental variables in the sequel.

Financial inputs in primary schools mainly consist of salaries (80%) and operational costs

(20%). As we a priori assume that the differences in operational costs are unlikely to cause

differences in cognitive results, we only focus on inputs related to teaching. Government

assigns instruction units to pupils, which can be freely used by their respective schools to

finance teachers: 24 instruction units correspond with a full-time teacher. We note that,

in practice, the input allocated by the Flemish government to a particular pupil should not

perfectly correlate with the input allocated by the school to the same pupil, which implies a

possible cause of measurement error. (Our application uses outlier robust inefficiency mea-

sures to mitigate this measurement error.) The total number of instruction units assigned

to a particular pupil consists of regular (REG) and additional, so-called ‘equal educational

opportunity’ (EEO), instruction units. Regular (per-capita) instruction units are, roughly

speaking, the same for all pupils, as they are divided among schools on the basis of a scale

which is approximately linear in the number of pupils. The additional EEO instruction units

depend on certain ‘disadvantageous’ pupil characteristics, to wit, the household income con-

sists of replacement incomes only, the pupil is living outside the biological family, the level

of education of the mother is low, the pupil’s family belongs to a travelling population and

–in combination with one of the former characteristics– the home language is different from
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Dutch. Table 1 contains some summary statistics for both types of instruction units REG

and EEO over the different school types in Flanders.3 Overall, local public schools receive

most instruction units (per capita), private schools the least, while the Flemish public schools

are in between both.

Table 1: (Input) REG and EEO instruction units per school type.

school type all private public

input local Flemish

all
average

std. dev.

1.00

0.28

0.97

0.26

1.07

0.30

1.04

0.28

REG
average

std. dev.

0.88

0.18

0.87

0.18

0.92

0.19

0.86

0.15

EEO
average

std. dev.

0.12

0.19

0.09

0.17

0.15

0.20

0.19

0.22

Output is defined on the basis of test scores in three dimensions: mathematics, technical

reading and writing, collected at the end of the second year. All scores are set between 0

and 100. We calculate a language proficiency score as the simple average of the reading

and writing scores. Table 2 provides summary statistics for the mathematics (MATH ) and

language proficiency score (DUTCH ) for the different school types in Flanders. Private

(catholic) schools do best in both tests. They are followed closely by the local public schools

and, at some distance, by the Flemish public schools.

Table 2: (Output) MATH and DUTCH per school type.

3All reported figures in this paper are weighted in proportion to the inverse of the sampling probability,
to correct for the non-representative nature of the dataset.
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school type all private public

output local Flemish

MATH
average

std. dev.

57.08

19.40

58.33

18.95

57.54

19.02

50.74

20.78

DUTCH
average

std. dev.

55.27

14.05

56.49

13.46

54.00

14.19

51.56

15.71

Pupil environment is measured by three indices: socio-economic status and entry level in

mathematics and language proficiency. First, socio-economic status (SES) reflects the cul-

tural, social and economic environment of the pupil’s home. We use data that are calculated

as the normalized average of the following three variables: average education level (5 cat-

egories: 1 to 5), average professional status (7 categories: 1 to 7) and total income of the

parents of the pupil (6 categories: 1 to 6); normalization implies that, for each observation,

the difference (of the average) with the sample mean is divided by the sample standard de-

viation. As for the full sample, normalized values vary between -2.41 (minimum) and 2.63

(maximum); see Reynders et al. (2005) for further details. Next, the starting level in math-

ematics (B-MATH ) and language proficiency in Dutch (B-DUTCH ) reflect the intellectual

antecedents of the pupil, and is equal to the mathematics and language proficiency score of

the pupil at the end of the previous year. As with MATH and DUTCH, these scores are set

between 0 and 100.

Table 3 reports summary statistics for SES, B-MATH and B-DUTCH. We find that, on

average, private (catholic) schools attract pupils with more ‘advantageous’ environmental

characteristics compared to local public schools and –to an even greater extent– Flemish

public schools. Notice that the differences in EEO instruction units between the different

school types (reported in Table 1) reflect the differences in SES.

Table 3: (Environment) SES, B-MATH and B-DUTCH per school type.
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school type all private public

environment local Flemish

SES
average

std. dev.

0.03

0.85

0.11

0.83

-0.01

0.85

-0.35

0.83

B-MATH
average

std. dev.

53.26

19.06

53.91

18.66

54.05

18.75

48.44

20.69

B-DUTCH
average

std. dev.

47.25

9.74

47.92

9.69

47.29

9.42

43.92

9.87

To summarize, our data roughly confirm the widely held belief that private (catholic)

schools in Flanders perform better, while they receive less teaching inputs as a consequence

of their more ‘advantageous’ pupil population. Our main research question is how we must

assess these output differences in a fair way, i.e., by taking the differences in inputs and

environment into account.

3 Efficiency measurement: method

Consider a general educational system that is characterized, at the level of each pupil, by p

inputs and q outputs. We denote the corresponding input vector by x ∈ IRp+, and the output

vector by y ∈ IRq+; in our application, p = 1 and the input is the sum of the REG and EEO

instruction units, while q = 2 and the outputs are the MATH and DUTCH scores. The set

of all feasible combinations of educational inputs and outputs is the feasibility set

F =
©
(x, y) ∈ IRp+q+ | x can produce y

ª
.

Educational efficiency analysis relates educational input to educational output. As such,

empirical efficiency evaluation essentially requires two steps: (1) we need to empirically esti-

mate the feasibility set F ; (2) we have to evaluate observed efficiency by using an (in)efficiency

measure that has a meaningful interpretation in terms of the underlying educational objec-
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tives. These two issues are discussed next. Subsequently, we discuss two additional issues

that will be important for our empirical application: (3) we need to account for outlier ob-

servations in the empirical efficiency evaluation; and (4) we want to correct the observed

(in)efficiency scores for environmental characteristics, which will also allow us to visualize

the impact of the latter on the former. We construct the model step by step.

3.1 Empirical feasibility set

Usually, the ‘true’ feasibility set F is not observed. To deal with such incomplete information,

the nonparametric approach suggests to start from the set of n observed input-output vectors

S ⊆ F (|S| = n); it assumes that observed input-output combinations are certainly feasible

(e.g., Varian, 1984). In addition, we assume that inputs and outputs are freely disposable,

which means:

if (x, y) ∈ F then (x0, y0) ∈ F for x0 ≥ x and y0 ≤ y.

Taken together, these assumptions define the empirical feasibility set

bF = ©(x0, y0) ∈ IRp+q+ | x0 ≥ x and y0 ≤ y for (x, y) ∈ S
ª
;

i.e., the free disposal hull (FDH) of the set S (e.g., Deprins et al., 1984; Tulkens, 1993).

We briefly discuss the interpretation of the assumptions that underlie the construction of

bF . Firstly, ‘free disposability of inputs’ means that more input never implies a decrease of
the (maximally achievable) output. We believe this is a reasonable assumption in the current

context, where inputs stand for instruction units and outputs stand for pupil performance

(in alternative disciplines). Secondly, ‘free disposability of outputs’ means that more output

never implies a decrease of the (minimally required) input. Once more, we believe this

assumption is tenable in our specific context.

Finally, the assumption S ⊆ F excludes measurement errors and atypical observations,

such that all observed input-output vectors are comparable (or, alternatively, that all rele-

vant input and output dimensions are included in the analysis). Admittedly, this assumption
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may seem problematic in our application, which compares pupils that may be characterized

by different background characteristics (that are not explicitly included in our set of condi-

tioning/environmental variables; see infra: conditional inefficiency measure), and which uses

inputs that may be characterized by measurement errors (see supra). Therefore, as we will

explain further on, we will use an efficiency evaluation method that mitigates the impact of

potential outliers within the observed set S.

3.2 Inefficiency measure

In line with the usual practice in primary education, we focus on output performance (see,

e.g., Worthington, 2001). Specifically, we use an inefficiency measure which is, for a given

input, equal to the maximally possible output performance minus the actual output perfor-

mance. The output performance is measured as a weighted sum of the output performances

in alternative disciplines (captured by the q constituent components of each output vector

y), which again reflects the usual practice in primary education. Suppose, that we are to

evaluate a pupil observation (xE , yE) ∈ S (also referred to as ‘observation E’ in what follows)

and that the relevant output weights are given by wE ∈ IRq+. For the empirical feasibility setbF , educational inefficiency for this pupil is defined as
θE = max

(x,y)∈F

½
wE · (y − yE)

wE · g
| x 6 xE

¾
,

with g ∈ IRq+ an aggregation vector that defines the denominator as a weighted sum of the

output weights; we use wE ·g > 0. For the given input level, the measure takes the difference

of (linearly aggregated) maximal output performance over actual output performance; this

difference is normalized by dividing through the weighted sum wE · g. Clearly, ∞ > θE ≥ 0.

Efficiency implies θE = 0; and higher inefficiency values generally reveals more inefficiency.

In our application, we set the aggregation vector g equal to a q-dimensional vector of ones,

which implies that the denominator is simply the (equally weighted) sum of weights. We

believe this specification of g is appropriate in our application context because the outputs
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(MATH and DUTCH ) are measured in a comparable measurement unit: it naturally corrects

for the scale of the output weights wE (i.e., κwE obtains the same results as wE for all κ > 0),

while treating the (directly comparable) output dimensions identically. But it should be clear

that, in general, our method also allows for other specifications of g, which accounts for the

possibility that different outputs are expressed in different measurement units.4

The measure θE assumes that the weighting vector wE is fixed a priori. In our application,

we will focus on an alternative inefficiency measure that allows for flexible weighting. This

is particularly relevant in the present context, because the teaching curricula are typically

different among schools. Specifically, for each pupil observation we choose ‘most favorable’

weights bwE that minimize the inefficiency of the input-output vector under evaluation; this

conveniently allows for ‘specialization’ in learning (at the school level and/or the pupil level):

e.g., if pupils perform relatively well in mathematics, then this discipline gets a relatively

high weight in their inefficiency measure. To avoid undesirable ‘extreme’ specialization, we

impose that the endogenously selected relative output weights bwE should respect upper and

lower bounds, which are captured by the set WE ⊆ IRq+ characterized in terms of linear

constraints ( bwE ∈ WE satisfying bwE · g > 0). (The construction of WE for our empirical

application is discussed in the beginning of section 4.) This yields the empirical inefficiency

measure

bθE = min
wE∈WE

max
(x,y)∈F

½ bwE · (y − yE)bwE · g
| x 6 xE

¾
.

Clearly, for wE ∈ WE we have θE ≥ bθE ≥ 0. The measure bθE , with endogenously defined
most favorable weights, has a directly similar interpretation as the measure θE , with a priori

fixed weights wE .

To conclude, we note that the empirical inefficiency measure can be computed by simple

linear programming. Specifically, given the construction of bF , the computation proceeds
in two steps. The first step identifies the set of observations that dominate the evaluated

4 In this respect, it is also worth indicating that, for general g, the ‘empirical’ inefficiency measure θE
(cfr. infra) is formally similar to the so-called ‘directional distance function’; see, for example, the duality
results in Chambers et al. (1998, p. 358). These authors also provide a discussion on possible specifications
of g; while they focus on profit efficiency, the analogy with our setting is straightforward.
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observation in input terms:

DE = {(x, y) ∈ S | x 6 xE} .

The second step involves the linear programming problem. As a preliminary note, we

recall that bwE · g > 0 in the above definition of bθE , so that we can use the normalization
bwE · g = 1 (because the set WE only restricts the relative output weights). As such, we can

compute

bθE = min
u,wE∈WE

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩u− bwE · yE |

bwE · g = 1

u ≥ bwE · y ∀y : (x, y) ∈ DE

bwE ∈WE

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

This is a linear programming problem given that the set WE is characterized by linear

constraints. The fact that merely linear programming is required for the computation of

the empirical inefficiency measure bθE (after a trivial check of input dominance) makes it

attractive for practical applications.

3.3 Outlier-robust inefficiency measure

To mitigate the impact of (potential) outlier behavior and to allow for uncertainty in the

observed sample S, we use the order-mmethod as suggested by Cazals et al. (2002); we adapt

the method for the specific inefficiency measure bθE defined above. Essentially, in terms of the
terminology introduced above, this boils down to repeatedly drawing (with replacement) R

subsets Dr,m
E (r = 1, ..., R) from the dominating set DE ; each subset D

r,m
E contains (at most)

m (> 1) (different) input-output vectors that are selected from DE , i.e., D
r,m
E ⊆ DE and
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|Dr,m
E | ≤ m.5 For each Dr,m

E we compute the corresponding empirical inefficiency measure

eθr,mE = min
u,wE∈WE

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩u− bwE · yE |

bwE · g = 1

u ≥ bwE · y ∀y : (x, y) ∈ Dr,m
EbwE ∈WE

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

which again uses linear programming. Subsequently, the outlier-robust order-m inefficiency

measure is defined as the arithmetic average

eθmE = PR
r=1

eθr,mE
R

.

Referring to Cazals et al. (2002), this measure has attractive statistical properties and con-

veniently mitigates outlier behavior. See also Simar (2003) for a related discussion.6 As a

final note, because it can well be that (xE , yE) /∈ Dr,m
E , we may have eθr,mE < 0 and thus also

eθmE < 0. We label such observations as ‘super-efficient’.

3.4 Environment-corrected inefficiency measure

To capture environmental effects, we use the procedure outlined by Daraio and Simar (2005,

2007). Like before, we adapt this method to the specific inefficiency measure under consid-

eration by implementing the Daraio and Simar procedure in the outlier correction, which in

turn is an adaptation of the simple efficiency evaluation model.

Suppose we want to take up k environmental characteristics, which corresponds to a k-

dimensional vector z of environmental indicators associated with each input-output vector

(x, y); in our application, k ≤ 3 and the vector z captures SES, B-MATH and/or B-DUTCH.

For the evaluated observation E, the Daraio-Simar procedure computes an environment-

5Remark that, to correct for the non-representative nature of our dataset, we take the probability of
drawing a pupil proportional to the inverse of the probability that this pupil appears in the sample due to the
specific sampling design. A similar qualification applies to the environment-corrected inefficiency measure
where we weight the Kernel functions by the inverse of the sampling probability.

6Cazals et al. (2002) actually consider an efficiency measure that does not consider linear but monotonic
aggregation of the outputs. But their main results carry over to the linear variant that we consider. A similar
qualification applies for our use of the procedure of Daraio and Simar (2005) to account for environmental
effects in the efficiency evaluation exercise. In fact, these authors also focus on input efficiency, while we
translate their procedure towards output efficiency.
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corrected inefficiency measure by conditioning on the corresponding value zE of the environ-

mental vector: it selects input-output vectors (x, y) ∈ DE with z in the neighborhood of zE .

This gives us the conditional inefficiency measure

bθE (zE) = min
u,wE∈WE

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩u− bwE · yE |

bwE · g = 1

u ≥ bwE · y ∀y : (x, y) ∈ DE(zE)

bwE ∈WE

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

with DE(zE) = {(x, y) ∈ DE | |zE − z| ≤ h} and h a Kernel bandwidth vector. In our appli-

cation, when the number of conditioning variables k is larger than 1, we first apply a so-called

Mahalanobis transformation to decorrelate the environmental variables (see, e.g., Mardia et

al., 1979). Afterwards, we perform a sequential Kernel estimation –as if all environmental

variables were independently distributed– to compute the optimal bandwidth vector (via

the likelihood cross-validation criterion). Similar to before, outlier-robust conditional ineffi-

ciency measures eθmE (zE) can be obtained by the order-m method; in that case, we use the

Kernel estimates to repeatedly draw subsets of size m.

4 Efficiency measurement: application

In this section, we focus on visualizing the impact of the environmental variables SES, B-

MATH and B-DUTCH on educational efficiency at the pupil level, by using the outlier-

robust order-m inefficiency measures described in the previous section. For these measures,

an additional consideration concerns the specification of the parameters R (the number of

drawings with replacement) and m (the number of input-output vectors selected from DE in

each drawing). In the following, we discuss empirical results for R = 50 and m = 100 as, from

these values on, the number of super-efficient observations (see supra) in the sample is robust

at around 1%; Daraio and Simar (2007) use similar criteria for defining m. Still, at this point

it is worth stressing that we have also experimented with other values for R (R = 10, 25, 100)

andm (m = 10, 25, 50, 125, 150); these alternative configurations generally obtained the same

qualitative conclusions. For compactness, we do not include all these results in the current
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paper, but they are available from the authors upon simple request.

As discussed before, our application avoids ‘extreme’ specialization in either DUTCH

or MATH by focusing on a restricted set WE ⊆ IRq+ (with q = 2), which captures upper

and lower bounds of the relative output weights. To construct these bounds, we divide the

number of hours spent on DUTCH in the classroom by the sum of the number of instruction

hours spent on DUTCH and MATH. This reflects the weight attached to DUTCH (relative

to MATH ) in the second year of primary education. The average equals 0.54 –and is very

similar for the different school types– while the 1 and 99-percentile values equal 0.44 and

0.71, respectively. These 1 and 99-percentile values will serve as (relative) weight restrictions

for DUTCH (and hence 0.56 and 0.29 for MATH ). To check the sensitivity of our main

results with respect to this particular specification of WE , we have also considered extreme

scenarios with no weight flexibility (i.e., using 0.50 as a fixed weight for the two outputs

DUTCH and MATH ) and full weight flexibility (i.e., WE = IRq+, with bwE · g = 1 for

bwE ∈ WE). Our main qualitative results appeared to be robust for these alternative weight

bounds; the corresponding results will not be reported in the current paper, but they are

available from the authors upon simple request.

4.1 Outlier-robust inefficiency measures

Before visualizing the impact of the different environmental variables under study, Table

4 provides summary statistics for alternative outlier-robust order-m inefficiency measures

(individual efficiency scores are available upon request). We report results for the full sample

(see the column ‘all’) and for the subsamples that correspond to the different school types

(private schools, local public schools and Flemish public schools).
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Table 4: Some summary statistics for the robust inefficiency measures.

school type all private public

environment local Flemish

∅ average 26.99 25.74 27.68 31.61

std. dev. 13.85 13.28 13.78 15.49

minimum -5.70 -3.50 -3.67 -5.70

maximum 74.10 74.03 74.10 71.39

SES average 26.97 25.39 27.43 31.17

std. dev. 13.80 13.25 13.78 15.27

minimum -3.02 -2.85 -3.02 -2.34

maximum 75.96 73.45 75.96 70.03

B-MATH average 24.17 23.00 25.12 27.88

std. dev. 12.34 11.87 12.28 13.62

minimum -5.74 -5.42 -4.92 -5.74

maximum 72.46 61.63 71.52 72.46

B-DUTCH average 23.61 22.61 24.34 27.04

std. dev. 12.35 11.80 12.39 14.03

minimum -6.54 -1.37 -6.54 -0.86

maximum 65.41 62.88 65.41 60.09

B-MATH, B-DUTCH & SES average 17.18 16.34 18.52 18.70

std. dev. 10.16 9.78 10.35 11.04

minimum -17.52 -1.99 -17.52 -3.39

maximum 55.14 49.72 55.14 53.43

Let us first regard the unconditional inefficiency values (with environment = ∅). Table 4

reports an average inefficiency score of 26.99 for all pupils in our sample. In words, the average

pupil achieves an output level that is 26.99 points below the best possible performance for

(at most) the same amount of instruction units (= REG + EEO = input). To interpret this

result, we recall that aggregate output performance is measured as a weighted sum of the
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output performance in the disciplinesMATH and DUTCH (using ‘most favorable’ weights for

each individual pupil), and that the MATH and DUTCH scores are both set between 0 and

100. As such, this average shortage of 26.99 points should be compared to a (‘theoretical’)

maximum possible shortage of 100 points. Next, we also observe much variation in the

inefficiency scores over pupils. For example, the standard deviation in the inefficiency values

is 13.85; and the maximum inefficiency value amounts to 74.10 points, while the minimum

value equals -5.70.7 Note, finally, that we find differences in the distributions for different

school types; for example, the average inefficiency value for private schools (25.74) is below

that for local public schools (27.68), which in turn is below that for Flemish public schools

(31.61).

In the following, we investigate to what extent these patterns in the distribution of the in-

efficiency scores can be attributed to environmental differences, as captured by the variables

SES, B-MATH and B-DUTCH. The summary statistics in Table 4 provide some prelimi-

nary insights. We first consider the separate impact of the social and cultural environment

of a pupil’s home (captured by SES) and the cognitive antecedents of the pupil (captured

by B-MATH and B-DUTCH ). As expected, we find that all three variables influence the

pupils’ inefficiency values. For example, when focusing on the full sample (see the column

‘all’), the average inefficiency reduces (marginally) to 26.97 when controlling for SES, and it

reduces (more substantially) to 24.17 and 23.61 when controlling for, respectively, B-MATH,

and B-DUTCH. In addition, we observe a decrease in the variation of the inefficiency values;

for example, the standard deviation reduces to 13.80, 12.34 and 12.35 when conditioning

on, respectively, SES, B-MATH and B-DUTCH. This indicates that each individual variable

can explain the observed variation in the inefficiency values to some extent. Finally, if we

simultaneously control for SES, B-MATH and B-DUTCH, we observe a further and rather

substantial decrease of the average inefficiency value (to 17.18 for ‘all’) as well as the standard

deviation of inefficiency values (to 10.16 for ‘all’). This suggests that simultaneous consider-

ation of all three environmental variables can effectively yield additional ‘explanatory’ value

7We recall that negative inefficiency values are possible for super-efficient observations because we focus
on outlier-robust inefficiency measures.
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in terms of explaining patterns of educational inefficiency. The same general conclusions hold

for all three school types (private schools, local public schools and Flemish public schools).

Remark, finally, that for all specifications of the conditioning variables that we consider, pri-

vate schools are, on average, more efficient than both types of public schools, and that local

public schools outperform Flemish public schools.

4.2 Environmental effects

To visualize environmental effects and, consequently, to detect whether an environmental

variable is favorable or unfavorable, we adapt Daraio and Simar (2007)’s methodology to our

setting. If z−jE denotes the vector of all conditioning variables, except for the j-th entry, and

zjE is the j-th entry, then we can nonparametrically regress the differences eθmE (zE)−eθmE ³z−jE ´
on the observed values for zjE . If, for a certain range, the regression is decreasing, the j-th

environmental variable is unfavorable to output, behaving as a ‘substitutive’ output in the

educational process. Conversely, an increasing curve indicates a favorable variable that plays

the role of a ‘substitutive’ input in the educational process. Finally, a flat curve suggests

that there is no output effect of the environmental variable.
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Figure 1: (Environmental impact) SES, B-MATH and B-DUTCH.

Figure 1 portrays the environmental effects. We first consider the variable SES. Generally,

we find a positive effect of SES on the educational output for low SES values, and a negative

effect for high SES values; generally, the effect of SES on output gradually decreases for

higher SES values. We infer that, while SES admittedly has some (positive) effect on educa-

tional efficiency, much of this effect is already captured by the other two variables B-MATH

and B-DUTCH, which causes the residual impact of SES to be rather low.

Let us then regard the variable B-MATH. Figure 1 reveals a positive impact of B-MATH

on output, which tends to decrease for higher B-MATH values. Compared to the SES
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picture, the positive effect is more pronounced, which provides more convincing support for

this residual B-MATH effect.

Finally, we consider the variable B-DUTCH. The general conclusions drawn from Figure

1 are similar to those for B-MATH : there is a clearly positive effect, wich again decreases

for higher B-DUTCH values. In this case, the positive effect is very clearly marked, and the

observation points are narrowly scattered around the full line, which provides strong support

for this conclusion.

Overall, we believe that our results provide sufficiently strong support for simultaneous

conditioning on all three variables when comparing the educational efficiency for different

pupils. Therefore, our aggregation exercise in the next section will mainly focus on such fully

conditioned educational efficiency values.

5 Aggregation: efficiency versus equity

This section aims to compare the aggregate efficiency and equity performance of private

schools, local public schools and Flemish public schools. Specifically, we start with the pupils’

inefficiency values and the corresponding optimal weights that underlie the results presented

in the previous section. Using these pupil-specific weights to aggregate DUTCH and MATH,

we obtain what we call the ‘actual score’ sa, with 0 ≤ sa ≤ 100. Adding the inefficiency score

θ to it, we get the so-called ‘potential score’ sp = sa + θ, with 0 ≤ sp ≤ 100. It follows from

our previous discussion that these potential scores correct for input differences (in terms of

REG and EEO instruction units), and avoid extreme specialization in DUTCH or MATH

(through weight bounds). In addition, given that we focus on robust inefficiency measures,

it also accounts for possible outlier behavior. Finally, if we use the conditional inefficiency

measures, we also correct for environmental differences (in terms of SES, B-MATH and

B-DUTCH ).8

We want to investigate whether one school type is ‘better’ than another in a ‘robust’

8We note that, when conditioning on B-MATH and B-DUTCH, we also correct for the pupils’ starting
level of output performance in the aggregation exercise.
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way, which here means that we impose minimal normative assumptions when aggregating

outcomes. To do so, we focus on two multidimensional stochastic dominance criteria devel-

oped in Atkinson and Bourguignon (AB; 1982). The first criterion (FAB) only cares about

efficiency, whereas the second criterion (SAB) also takes equity into account.

5.1 Only efficiency matters: FAB

We assume that the overall performance of a school can be measured by the average perfor-

mance of its pupils, where the pupil performance is measured via a function P : R2 → R

which maps a pupil’s actual and potential score (sa, sb) into a scalar P (sa, sb). If only educa-

tional efficiency matters, then (1) an increase in the actual score sa of a pupil, ceteris paribus

(i.e., for a given potential score sp), must increase the school type’s overall performance,

and (2) the same holds for a decrease in a pupil’s potential score sp, ceteris paribus (i.e.,

for a given actual score sa). Formally, one school type, say type A, is better than another

school type, say B, according to FAB, denoted A %1 B, if and only if the average perfor-

mance is higher in A than in B for all (differentiable) performance functions P : R2 → R in

P1 = {P |P 01 ≥ 0 and P 02 ≤ 0}.9 A special case of interest is P (sa, sp) = sa − sp = −θ, in

which case one school type would be judged better if the average inefficiency is lower. We

focus on the more general criterion

A %1 B ⇔
Z 100

0

Z 100

0

PdFA −
Z 100

0

Z 100

0

PdFB ≥ 0, for all P in P1,

with FA and FB the bidimensional distribution functions of the actual and potential scores for

both school types. Atkinson and Bourguignon (1982) provide an equivalent implementable

condition for A %1 B, requiring that (1) the proportion of ‘better’ pupils is higher in A

9 In this formulation, P 01 stands for the first derivative of P with respect to the j-th argument (j = 1, 2).
Similarly, P 0012 will stand for the corresponding cross-derivative in our discussion of SAB.
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everywhere and (2) the proportion of ‘worse’ pupils is lower in A everywhere. Formally,

A %1 B ⇔

⎧⎪⎨⎪⎩ L1A (sa, sp)− L1B (sa, sp) ≥ 0, for all (sa, sp) ∈ [0, 100]
2

L2A (sa, sp)− L2B (sa, sp) ≤ 0, for all (sa, sp) ∈ [0, 100]
2
, (1)

with L1j (sa, sp) =
R 100
sa

R sp
0

dFj the proportion of pupils in school type j = A or B who

perform definitely better compared to (sa, sp) and L2j (sa, sp) =
R sa
0

R 100
sp

dFj the proportion

of pupils in school type j = A or B who perform definitely worse. Notice that FAB is a robust

ranking criterion, since it holds for all specifications of P within P1. Still, it comes at a cost,

since two distributions might turn out to be non-comparable.

Table 5 presents our results for the FAB criterion in equation (1). We consider two extreme

cases: the first case (denoted by Z = {REG+EEO ;∅}) does account for input differences

but not for environmental differences by calculating the potential scores on the basis of

the unconditional inefficiency measures eθmE (which coincide with eθmE (zE) for zE empty);

the second case (denoted by Z = {REG+EEO ;SES,B-MATH,B-DUTCH }) simultaneously

takes account of input and all three environmental variables (i.e., it is based on the measure

eθmE (zE), with zE capturing SES, B-MATH and B-DUTCH ). For each case, Table 5 reports

the dominance relation between the row school type and the column school type: either the

row school type ‘dominates’, ‘is dominated by’, or is not comparable to (‘not comp. to’) the

column type. Two remarks are in order. Firstly, following the usual practice, dominance is

checked at a finite number of points (sa, sp) ∈ {0, 25, 50, 75, 100}2. Secondly, we use a naive

bootstrap procedure for statistical inference. That is, we calculate the proportion of the

total number of bootstraps, i.e., 10000 drawings with replacement from the original sample,

in which a certain result (‘dominates’, ‘is dominated by’, or ‘not comp. to’) is found.10 In

Table 5 we mention the empirical result for each comparison, together with the corresponding

‘naive’ p-value, i.e., the proportion of times this result was found. A large p-value indicates

a rather robust empirical result.

Considering only average test scores, we saw in Table 2 that private schools outperform

10Notice that, from 5000 bootstrap samples onwards, the results remain stable.
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local public schools, while the latter in turn outperform Flemish public schools. However,

by including both inputs, outputs and exogenous environmental characteristics, the robust

FAB criterion does not support this conclusion anymore. Indeed, the results in Table 5

indicate non-comparabilities between all school types. This result holds for both (extreme)

specifications of Z that we consider.

Table 5: FAB dominance results for two extreme cases of environment-correction.

Z = {REG+EEO;∅} {REG+EEO;SES,B-MATH,B-DUTCH}

local public Flemish public local public Flemish public

private catholic not comp. to

(1.0000)

not comp. to

(1.0000)

not comp. to

(1.0000)

not comp. to

(1.0000)

local public not comp. to

(1.0000)

not comp. to

(1.0000)

5.2 Equity also matters: SAB

In addition to a preference for efficiency, we next include a preference for equity in our

comparisons of the overall performance of different school types. The SAB criterion requires

(besides (1) and (2) underlying the FAB criterion) that (3) an increase in a pupil’s actual

score sa is valued more (in terms of performance) for pupils with a higher potential score sp

and (4) a decrease in a pupil’s potential score sp increases performance more for pupils with

a lower actual score sa. To put it differently, a higher correlation between the pupils’ actual

and potential scores results in a better overall performance of the school type. Formally,

school type A is better than school type B according to SAB, denoted A %2 B, if and only

if the average performance is higher in A than in B for all (twice differentiable) performance

functions P : R2 → R in P2 = {P |P 01 ≥ 0, P 02 ≤ 0, and P 0012 ≥ 0}. We get

A %2 B ⇔
Z 100

0

Z 100

0

PdFA −
Z 100

0

Z 100

0

PdFB ≥ 0, for all P in P2.
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This is equivalent with the implementable condition that the proportion of ‘worse’ pupils is

lower in A compared to B (Atkinson and Bourguignon, 1982), or, formally,

A %2 B ⇔ L2A (sa, sp)− L2B (sa, sp) ≤ 0, for all (sa, sp) ∈ [0, 100]
2 , (2)

with L2j (sa, sp) =
R sa
0

R 100
sp

dFj for all j = A,B.

As before, we consider two extreme cases, depending on whether we only correct for inputs

(case Z = {REG+EEO ;∅}) or for both inputs and the complete environment (case Z =

{REG+EEO ;SES,B-MATH,B-DUTCH }). Table 6 presents the results. The interpretation

of the different entries is similar to that of Table 5, but now pertains to the SAB criterion

in (2). Interestingly, we now do find robust dominance relations. If we do not correct for

environmental characteristics, we find that the private catholic and the local public schools

(robustly) dominate the Flemish public schools; see the middle column of Table 5. However,

this comparison is not ‘fair’, since it does not correct for school environment at all. Therefore,

we consider the right column of Table 5 as the fairest base of comparison; and we conclude

that these robust dominance results change into either non-robust dominance results or robust

non-comparibility results.

Table 6: SAB dominance results for two extreme cases of environment-correction.

Z = {REG+EEO;∅} {REG+EEO;SES,B-MATH,B-DUTCH}

local public Flemish public local public Flemish public

private catholic not. comp to

(0.7268)

dominates

(0.9996)

dominates

(0.6881)

not comp. to

(1.0000)

local public dominates

(0.9117)

not comp. to

(1.0000)

6 Conclusion

Focusing on educational efficiency, we have presented a nonparametric approach for analyz-

ing public sector efficiency which also accounts for equity considerations. Firstly, we have
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designed a nonparametric (DEA) model that is specially tailored for educational efficiency

evaluation at the pupil level. It requires minimal a priori structure regarding the educa-

tional feasibility set and objectives. This is particularly convenient in the current context,

which typically involves minimal a priori information. Next, we introduced multidimensional

stochastic dominance criteria that are particularly well-suited for comparing the aggregate

educational performance of different school types; they aggregate pupils’ output while ad-

justing for environment-corrected inefficiency. These nonparametric aggregation criteria nat-

urally complement our nonparametric model for evaluating individual (pupil level) efficiency.

The first criterion is the appropriate criterion if only efficiency matters. By contrast, the

more powerful second criterion is recommendable when equity is important in addition to

efficiency; such equity considerations are usually prevalent in the context of public sector

efficiency evaluation. We have shown that our approach directly allows for adapting the

methodology of Daraio and Simar (2005, 2007), to account for potential uncertainty in the

data and environmental characteristics (in casu the pupils’ educational environment) in the

efficiency assessment. Although our application concentrates on educational efficiency, the

presented approach is also more generally useful for efficiency evaluation in the public sector.

To avoid interaction between the funding of schools (private versus public funding) and

the ideological background, we consider the Flemish situation where both private and public

schools are publicly funded. This particular application demonstrates the practical usefulness

of our approach. First, we have investigated the impact of the ‘environmental characteris-

tics’ socio-economic status (SES ), begin-level in mathematics (B-MATH ) and language pro-

ficiency (B-DUTCH ) on the educational output for individual pupils. Generally, we find that

all three environmental variables positively impact on the educational output, and that this

positive effect prevails in particular for low initial values for SES, B-MATH and B-DUTCH

values - it may be even negative for high initial SES values. We believe that our results con-

vincingly support that all three environmental variables should simultaneously be accounted

for to obtain a fair efficiency evaluation. Next, we have compared the aggregate efficiency of

private (but publicly funded) schools, local public schools and Flemish public schools (the
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latter depending on the level of government initiation). Focusing on the first stochastic dom-

inance criterion, we find that no school type robustly dominates another school type; we

conclude ‘non-comparability’ in all pairwise comparisons. However, the story changes if we

focus on the second criterion; in that case, private catholic and local public schools (robustly)

dominate the Flemish public schools if we do not account for environmental differences. Still,

if we account for the diverging environmental characteristics of the pupil populations, we no

longer find robust dominance relations between different school types and, as such, no school

type robustly dominates any other school type. This contrasts with the conclusions of e.g.

Coleman et al. (1982). Given that these aggregate comparisons nonparametrically account

for efficiency, equity and environment, we consider them as ‘fairest’ in the (public sector)

evaluation context under study. In turn, the paper demonstrates that school comparisons

on the basis of average scores instead of on the basis of environment corrected scores could

result in biased conclusions.
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