
Experiment databases: a novel methodology for

experimental research

Hendrik Blockeel

Katholieke Universiteit Leuven, Department of Computer Science
Celestijnenlaan 200A, 3001 Leuven, Belgium

Hendrik.Blockeel@cs.kuleuven.be

Abstract. Data mining and machine learning are experimental sciences:
a lot of insight in the behaviour of algorithms is obtained by imple-
menting them and studying how they behave when run on datasets.
However, such experiments are often not as extensive and systematic as
they ideally would be, and therefore the experimental results must be
interpreted with caution. In this paper we present a new experimental
methodology that is based on the concept of “experiment databases”. An
experiment database can be seen as a special kind of inductive database,
and the experimental methodology consists of filling and then querying
this database. We show that the novel methodology has numerous ad-
vantages over the existing one. As such, this paper presents a novel and
interesting application of inductive databases that may have a significant
impact on experimental research in machine learning and data mining.

1 Introduction

Data mining and machine learning are experimental sciences: much insight in
the behaviour of algorithms is obtained by implementing them and studying
their behaviour on specific datasets. E.g., one might run different learners using
different algorithms to see which approach works best on a particular dataset.
Or one may try to obtain insight into which kind of learners work best on which
kind of datasets, or for which parameter settings a parametrized learner performs
best on a certain task.

Such experimental research is difficult to interpret. When one learner per-
forms better than another on a few datasets, how generalizable is this result?
The reason for a difference in performance may be in the parameter settings
used, it may be due to certain properties of the datasets, etc. Similarly, when
we vary one parameter in the hope of understanding its effect on the learner’s
performance, any effect we notice might in fact be specific for this dataset or
application; it might be due to interaction with other, uncontrolled, effects; and
even if we eliminate this interaction by keeping the values for other parameters
fixed, perhaps the effect would have been different with other values for those
parameters.

As a consequence of this complex situation, overly general conclusions are
sometimes drawn. For instance, it has recently been shown [5] that the relative

performance of different learners depends on the size of the dataset they are used
on. Consequently, any comparative results obtained in the literature that do not
take dataset size explicitly into account (which is probably the large majority)
are to be interpreted with caution.

Clearly, the methodology usually followed for experimental research in ma-
chine learning has its drawbacks. In this paper we present a new methodology
that avoids these drawbacks and allows a much cleaner interpretation of results.
It is based on the concept of experiment databases. An experiment database
can be seen as a kind of inductive database, and the methodology we propose
essentially consists of querying this database for patterns. As such, this paper
presents a novel and potentially interesting application of inductive databases
that may have a significant impact on how experimental research in machine
learning and data mining is conducted in the future.

We present the basic ideas of the approach, but many details are left open
and there remain several interesting questions for further research.

We will first give an overview of the shortcomings and caveats of the clas-
sical experimental methodology (Section 2), then we introduce informally the
concept of experiment databases and show how they can be used (Section 3).
We summarize our conclusions in Section 4.

2 The classical experimental methodology

Let us look at a typical case of an experimental comparison of algorithms. A
realistic setup of the experiments is:

– A number of datasets is chosen; these may be existing benchmarks, or syn-
thetic datasets with specific built-in properties (for instance, one may want
to control the skewness of the class distribution in the dataset)

– On all of these datasets, a number of algorithms are run. These algorithms
may have different parameter settings; typically they are run with “suitable”
(not necessarily optimal) parameters.

– Certain performance criteria are measured for all these algorithms.

The above methodology, while very often followed, has two important disad-
vantages: the generalizability of the findings is often unclear, and the experiments
are not reusable.

2.1 Unclear Generalizability

The conclusions drawn from experiments may not hold as generally as one might
expect, because the experiments typically cover a limited range of datasets as
well as parameter settings.

Comparisons typically happen on a relatively small number of datasets, in
the range of 1-30. Imagine describing all datasets using a number of proper-
ties such as the number of examples in the dataset, the number of attributes,

the skewedness of the class distribution, the noise level, level of missing values,
etc. Many such properties can be thought of, leading to a description of these
datasets in a high-dimensional space, let us call it D-space (D for datasets).
Clearly, in such a high-dimensional space, a sample of 1-30 points (datasets) is
extremely sparse. As a consequence, any experimental results obtained with such
a small number of datasets, no matter how thoroughly the experiments have been
performed, are necessarily limited with respect to their generalizability towards
other datasets.

This is not a purely theoretical issue; as we already mentioned, recent work
[5] has shown how the relative performance of different learning algorithms in
terms of predictive accuracy may depend strongly on the size of the dataset.
This sheds a new light on hundreds of scientific papers in machine learning and
data mining. Indeed, many authors implicitly assume the predictive accuracy
of algorithms, relative to each other, to be independent of data set size (or any
other data set parameters, for that matter).

A second possible cause for limited generalizability is that many algorithms
are highly parametrized. Let us call an algorithm with completely instantiated
parameters a ground algorithm. Then typically, a limited number of ground
algorithms is used in the experiments. If, similar to D-space, we define for each
parameterized algorithm or class of algorithms its parameter space (P -space),
then again the experiments involve a very sparse sample from this space, and
the results may not be representative for the average or optimal behaviour of
the algorithm.

An additional problem here is that authors presenting new algorithms often
understand their own algorithm better and may be better at choosing optimal
parameter values for their own approach, putting the existing algorithm at a
small disadvantage.

The above discussion was from viewpoint of comparing algorithms, but the
generalizability problem also occurs when, for instance, the effect of a single
parameter of the algorithm or dataset on the performance of the system is in-
vestigated. For instance, to study the robustness of an algorithm to noise, one
would typically run it on a variety of data sets with increasing noise levels. Using
synthetic datasets in which the noise level can be controlled, it makes sense to
increase the noise level while keeping all other parameters of the data set and
the algorithm constant, and plot performance as a function of the noise level.

Here, too, generalizability is problematic. If we look at such approaches in
D×P -space or P -space, it is clear that by varying one parameter of the dataset
or algorithm, one constructs a sample that lies in a one-dimensional subspace of
the high-dimensional space. The sample is typically dense within this subspace,
but still located in a very limited area of the overall space, so, again, the general-
izability of the results may be low due to this. For instance, one might conclude
that a certain parameter has a large influence on the efficiency of an algorithm,
when in fact this holds only for datasets having certain specific properties.

2.2 No Reusability

In the classical methodology, the experimental setup is typically oriented to-
wards a specific goal. The above example regarding the study of the effect of
noise illustrates this: since the researcher knows that she wants to study the
effect of noise, she varies the noise level and nothing else. Such an experimental
setup is clearly goal-oriented. Each time the researcher has a new experimental
hypothesis to be tested or wants to investigate a new effect, this will involve
setting up and running new experiments. This obviously takes additional work.
Moreover, there may be practical problems involved. For instance, if there is a
large time span between the original experiments and the newly planned exper-
iments, certain algorithm implementations may have evolved since the time of
the original experiments, making the new results incompatible with the old ones.

2.3 Summary

The above problems can be summarized as follows:

1. Experimental results regarding the relative performance of different methods
and the effect that certain parameters of the algorithm or properties of the
dataset have, may have limited generalizability.

2. For each additional experimental hypothesis that is to be investigated, new
experiments must be set up.

We will next show how the use of experiment databases can solve these problems.

3 Experiment databases

An experiment database (in short, an ExpDB) is a database that contains results
of many random experiments. The experiments in themselves are unfocused; the
focused, goal-oriented experiments mentioned above will be replaced by specific
queries to the database.

In the following, we first describe how the database can be created, and next,
how it can be mined to obtain useful knowledge. For simplicity, we start with
the case where we are interested in the behaviour of a single algorithm. The
extension towards a comparison of multiple algorithms is non-trivial but will
briefly be discussed afterwards.

3.1 Creating an experiment database

Assume we have a single algorithm A with a parameter space P . Assume fur-
thermore that some fixed method for describing datasets is given, which gives
rise to a D-space D. (Note that there is a difference between the dataset space
and the D-space; the D-space is an n-dimensional space containing descriptions
of datasets, not the datasets themselves). Finally, we denote with M a set of per-
formance metrics; M may include runtime, predictive accuracy, true and false
positive rates, precision, recall, etc.

We further assume that a dataset generator GD is given. GD generates
datasets at random, according to some distribution over D. This distribution
need not be uniform (this would be impossible if some parameters are un-
bounded), but it should cover all of D, i.e., for each d ∈ D, the distribution
must assign a non-zero probability to an element “sufficiently close to” d. For
instance, the “dataset size” parameter is continuous but one could choose to use
only the values 10k with k = 2, 3, 4, 5, 6, 7, 8, 9. A dataset generator using these
values could be said to “cover” datasets of a hundred up to a billion instances.

Finally, we assume we have a random generator GP for parameter values
of the algorithm; again this generator should generate values according to a
distribution that covers, in the same sense as above, all of P.

Now we can create a table of experimental results, as follows:

Experiment Database Creation:

Input: A, D, GD , P , GP , M

Output: a table T

Create a table T with attributes from D × P × M .
for i = 1 to k:

Generate a random data set DS using GD

Let d be the D-space description of DS
Generate random parameter values p according to GP

Run A with parameter values p on DS
Let m be the result of this run in terms of the performance metrics M

Insert a new row containing d, p, m in the table

The table now contains the results of k random experiments, that is, runs of
algorithm A with random parameters on random datasets. We will discuss later
how large k would need to be for this table to be useful.

A final note regarding the creation of the database: we have assumed that
datasets and algorithm parameters are chosen at random, and we will continue
our discussion under this assumption. However, total randomness is not required;
we require only that the whole D × P -space is covered. As several researchers
have pointed out (personal communication), it may well be possible to do better,
for instance, by filling the table according to experiment design principles. The
analysis we further make on the required size of the table should therefore be
considered a worst-case analysis.

3.2 Mining the database

We have a database of “random” experiments, but we are in fact interested in
testing specific hypotheses about the behaviour of the algorithm A, or investigat-
ing the influence of certain parameters or dataset properties on A’s performance.

If the table is considered an inductive database and we can query for pat-
terns in the table, then such knowledge is immediately obtainable in a very
straightforward way.

Suppose A is some frequent itemset discovery algorithm, and we want to
see the influence of the total number of items in the dataset on A’s runtime.
Assuming NItems (number of items in the dataset) is one dimension of D and
the attribute Runtime is included in M , the following simple SQL query

SELECT NItems, Runtime

FROM EXP

SORT BY NItems

gives us the results. (In practice we would of course graphically plot Runtime
against NItems; such a plot can be readily derived from the result of the SQL
query. In this text we are mainly concerned with how the results to be visualized
can be obtained with a query language, rather than the visualization itself.)

The Runtime attribute is of course related to many other parameters, which
vary randomly, and as a result the above query may result in a very jagged plot
(e.g., Runtime for NItems=100 might be larger than Runtime for NItems=1000
just because lower values for the MinSupport parameter were used for the for-
mer). In the classical experimental setting, one would keep all other parameters
equal when one is interested in the effect of the number of items only. For in-
stance, knowing that the minimal support parameter of a frequent itemset min-
ing algorithm typically has a large influence on the run time, one might keep this
parameter fixed at, say, 0.05. This can easily be simulated with our approach:

SELECT NItems, Runtime

FROM EXP

WHERE MinSupport = 0.05

SORT BY NItems

Assuming that GP generates 10 different values for MinSupport, uniformly
distributed, the result of this query is based on roughly 10% of the database.
Compared to the classical setting where the experimenter chooses in advance to
use only MinSupport=0.05, we need to populate the database with 10 times as
many experiments. Figure 1 illustrates how the WHERE constraint gives rise to
fewer points with a clearer trend.

Now, as said before, the influence of NItems on Runtime might be different if
we vary other parameters, such as MinSupport. We can easily vary the MinSup-
port condition in the above query to check whether this is the case. For instance,
using an ad-hoc scripting language that allows to plot query results, and where
we use the notation $x inside an SQL query to refer to the value of a variable x
defined outside the query, we could write

FOR ms = 0.001, 0.005, 0.01, 0.05, 0.1 DO

PLOT

SELECT NItems, Runtime

FROM EXP

WHERE MinSupport = $ms

SORT BY NItems

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

Fig. 1. An impression of what plots would typically look like under different constraints
in the SQL query. The left plot shows a cloud obtained from all data points, the right
plot shows a cloud obtained using MinSupport=0.05. The latter contains a subset of
the former’s points, but with a clearer trend.

and get a figure showing different curves indicating the effect of NItems, one for
each value of MinSupport.

In the classical experimental setting, if the experimenter realizes that this
would be a better approach only after having performed the experiments, she
needs to set up new experiments. The total number of experiments will then be
equal to the number of experiments in our database.

From the above discussion, two differences between the classical approach
and the ExpDB approach become clear.

1. In the classical approach, experiments are set up from the beginning to test
a specific hypothesis; to test new hypotheses, new experiments are needed.
With the ExpDB approach, many experiments are run once, in advance,
independent of the goal; to test new hypotheses, new queries are run on the
database.

2. Due to stronger randomization of the experiments, the experiment database
approach tends to yield results in which fewer parameter values are kept con-
stant. This may lead to less convincing (though more generalizable) results.
To some extent, queries can be written so as to counter this effect.

Looking at the above SQL queries, another advantage of the ExpDB approach
becomes clear. As said before, the second query has the advantage of producing
a less jagged curve, in other words, less variance in the results, but this comes
at the cost of obtaining less generalizable results. It is immediately clear from
the form of the second query that the obtained results are for MinSupport=0.05,
whereas in the classical approach this is left implicit. In both queries, nothing
is explicitly assumed about the unmentioned parameters, and indeed in the ac-
tual experiments these parameters get random values and we may assume that
roughly the whole range of values is covered. Thus, these queries explicitly state
how general a result is. The first query yields the most general results (and, as
a consequence, the least conclusive results, as far as the detection of trends or
rejection of hypotheses is concerned). The second query yields results for a more
specific case; the results are more conclusive but may be less generalizable.

3. The ExpDB approach explicitates the conditions under which the results are
valid.

What if, at some point, the researcher realizes that besides MinSupport, also
the number of transactions NTrans in the database might influence the effect
of NItems on Runtime? Now the researcher following the classical approach has
several options. He may run new experiments, fixing MinSupport at 0.05 but
now varying NTrans. He might also decide to combine each value of MinSupport
with each value of NTrans, which would give a detailed account of the effect
of both together on Runtime. Or he might randomize the MinSupport setting
while controlling NTrans.

In each case, new experiments are needed. The original experiments are not
usable because the NTrans parameter was not varied. Even if it was varied,
the necessary statistics to test the new hypothesis have not been recorded in
the original experiments because they were not needed for the goal of those
experiments.

The situation is entirely different with the ExpDB approach. The experi-
ment database was created to be as generally useful as possible; a large number
of statistics, potentially useful for a variety of purposes, have been recorded.
When the researcher wants to test a new hypothesis, he just needs to query
the experiment database. In other words, a fixed set of experimental results is
re-used for many different hypothesis tests or other kinds of investigations. This
leads us to a fourth difference:

4. The ExpDB approach is more efficient than the classical approach if multiple
hypotheses will be tested.

Clearly, the ExpDB approach makes controlled experimentation much easier.
As a result, such experimentation can easily be performed in much more depth
than with the classical approach. For instance, classically, higher-order effects
are usually not investigated. Researchers vary one parameter P1 to investigate
its effect, then vary another parameter P2 to investigate its effect. This leads
to the discovery of only so-called marginal effects of the parameters. By varying
P1 and P2 together, one can discover so-called higher order effects; for instance,
one might discover that the effect of P1 on performance is large when P2 is low
but not so large when P2 is high.

With the ad-hoc language introduced before, such interaction can be studied
easily, for instance using the following SQL query:

FOR a=0.01, 0.02, 0.05, 0.1 DO

FOR b = 1000, 10000, 100000, 1000000 DO

PLOT

SELECT NItems, Runtime

FROM EXP

WHERE MinSupport = $a AND $b <= NTrans < 10*$b

SORT BY NItems

This shows that

5. The ExpDB approach makes it easy to perform in-depth analyses of both
marginal and higher-order effects of parameters and dataset properties.

The inductive database approach, where mining is performed by querying
for patterns using a special-purpose inductive query language [1], allows us to
go further. While the above kind of queries amount to checking manually for the
effects of specific parameters or dataset characteristics, or interactions between
them, one can easily think of more sophisticated data mining approaches that
allow the researcher to ask questions such as “what is the parameter that has the
strongest influence on the predictive accuracy of my decision tree system”, or
“are there any dataset characteristics that interact with the effect of parameter
P on predictive accuracy”, etc. Clearly, inductive database query languages are
needed for this purpose. A possible query would be

SELECT ParName, Var(A) / Avg(V) as Effect

FROM AlgorithmParameters,

SELECT $ParName, Var(Runtime) as V, Avg(Runtime) as A

FROM EXP

GROUP BY $ParName

GROUP BY ParName

SORT BY Effect

This SQL-like query (it is not standard SQL)1 requires some explanation. The
inner SELECT query takes a parameter $ParName (e.g., $ParName = ’MinSup-
port’) and computes the average A and variance V of the runtimes measured for
specific values of $ParName. If $ParName = ’MinSupport’, then the result of the
inner query is a table with attributes MinSupport, A, V, and for each occurring
value of MinSupport the corresponding average runtime is listed as well as the
runtimes’ variance.

The outer SELECT query takes a table AlgorithmParameters that is sup-
posed to have an attribute ParName. For each value of ParName, the inner query
is instantiated and run. We again use the convention that $ParName refers by
definition to the value of ParName. The result of this construction is a “table”
with attributes ParName, $ParName, A, V. (It is not a standard SQL table
because the second attribute does not have a fixed name.) The SELECT part
of the outer query projects this onto ParName and Effect, sorting the parame-
ters according to their influence on runtime, where this influence is defined as
the ratio of the variance of the averages of the different groups to the average
variance within these groups.

6. The ExpDB approach, if accompanied by suitable inductive querying lan-
guages, allows for a much more direct kind of questions, along the lines of
“which parameter has most influence on runtime”, instead of finding this out
with repeated specific questions.

1 The same query could be expressed in standard SQL if the parameter names listed
in ParNames are hardcoded in the query, but this makes the query lengthy and
cumbersome, and less reusable. We prefer this more compact and intuitive notation.

A final advantage of the ExpDB approach is their reusability: experiment
databases could be published on the web, so that other researchers can investi-
gate the database in ways not thought of by the original researcher. Currently,
the tendency is to make available the datasets themselves, possibly also im-
plementations of systems used, but the actual experiments and conclusions are
described on paper (and sometimes the experimental settings are not described
in sufficient detail for others to reconstruct the experiments exactly). By follow-
ing the ExpDB approach and publishing the experiment database, a detailed
log of the experiments remains available, and it becomes possible for other re-
searchers to, e.g., refine conclusions drawn by previous researchers from these
experiments. It is likely that such refinements would happen less frequently than
is currently the case, exactly because the ExpDB approach enforces a much more
diligent experimental procedure.

7. The ExpDB approach leads to better reusability of experiments and better
reproducibility of results.

3.3 A summary of the advantages

We can summarize the advantages of the experiment database approach as fol-
lows:

– Efficiency. The same set of runs (of algorithms on datasets) is reused for
many different goal-oriented experiments.

– Generalizability. The generalizability of experimental results in the original
setting is often unclear. With the experiment database approach, due to
randomization of all parameters not under investigation, it is always clear to
what extent results are generalizable. Results are obtained from a relatively
large sample in P × D-space that covers the whole space, instead of from a
small sample covering a small part of the space.

– Depth of analysis. It is easy to investigate the combined effect of two or more
parameters on some performance metric, or, in general, to check for higher-
order interactions (in the statistical sense) between algorithm parameters,
dataset properties, and performance criteria.

– True data mining capacity. With a suitable query language, one can also ask
questions such as “what algorithm parameters have the most influence on
the accuracy of the algorithm?” (and hence are most important to tune).

– Reusability. Publishing an experimental database guarantees that a detailed
log of the experiments is available. It makes it easier for other researchers to
reproduce the experiments, and it makes it possible for them to investigate
other hypotheses than the ones described by the authors of the experiment
database.

3.4 Size of the table

How large should the number of tuples in the experiment table, k, be? Assume
that we want each point that we plot to be the average of at least e examples

and no parameter or dataset characteristic has more than v values (continuous
variables are discretized). e = 30 and v = 10 are reasonable values. Then we need
to have ve = 300 experiments to measure the effect of any single parameter on
any single performance metric. Measuring the effect while keeping the value of a
single other parameter constant, may require up to v times more data to obtain
equally precise results (e.g., averaged over 30 measurements); the same holds for
measuring any second-order effects. In general, to measure mth-order effects, we
need evm experiments. Thus, a table listing a few thousand experimental results
is typically enough to perform more thorough experiments than what is typically
done with the classical approach. Note that it is not problematic for the creation
of this table to create hours or even days, as this can be done off-line, possibly
as background computations, and subsequent experimentation will take require
very little time. In this way, assuming the use of reasonably efficient algorithms,
creation of a database of 10,000 to 100,000 experiments is quite feasible.

As mentioned before, this analysis holds for a method where the experiment
database is filled randomly. Following experiment design principles, it may be
possible to improve this number, but we have not looked into this issue yet. The
main conclusion here is that even with the randomized approach, the number of
experiments needed is not prohibitive.

Note that there is always the possibility of filling the database also in a goal-
oriented way, by only generating tuples with specific values for certain attributes.
This defeats part of the purpose of the ExpDB, but makes it possible to build
an ExpDB with exactly the same number of experiments as would have been
needed in the classical setting, while still allowing deeper analysis.

3.5 The multiple-algorithm case

Up till now we have assumed that the experiments recorded in the ExpDB
involve one single algorithm. In practice, it will be useful to build ExpDB’s with
information on multiple algorithms.

One problem that then arises, is that different algorithms typically have
different sets of parameters. As a result, there exists no elegant schema for the
single table we considered up till now.

A solution is to have multiple tables for describing parameter settings, where
each class of algorithms has its own different table and schema. An example
is shown in Figure 2. This necessitates a relational data mining approach [2].
The SQL-like “mining” approach that we have discussed before is not limited
to querying a single experiment table, and hence simple queries can be asked to
compare for instance the best-case, worst-case, average-case behaviour of differ-
ent algorithms, possibly with constraints on the parameters of the algorithms
and datasets. For instance, the query

SELECT AVG(s.Accuracy) - AVG(t.Accuracy),

VAR(s.Accuracy), VAR(t.Accuracy)

FROM (ExpDB JOIN Alg1) s , (ExpDB JOIN Alg2) t

WHERE Alg1.C=0 and Examples < 1000

for the database schema shown in Figure 2 compares the average and variance
of the accuracy of algorithms Alg1 and Alg2 under the constraint that Alg1’s C
parameter is 0 (e.g., the default), on datasets of less than one thousand examples.

ExpDB
ExpID Attr Examples Target Complexity Runtime Accuracy

Alg1 Alg2

ExpID A B C D ExpID A B E F

Fig. 2. Schema for an experiment database containing data for two algorithms Alg1
and Alg2 with different parameters.

An alternative to this approach could be to define a generic description
of algorithms: a so-called A-space, in which any algorithm is described us-
ing algorithm-independent properties, similarly to the D-space that describes
datasets without giving full information on the dataset. An advantage would be
that one would be able to detect dependencies between algorithm-independent
characteristics of learners, and the performance on certain kinds of datasets. It
is unclear, however, what kind of characteristics those should be.

3.6 A connection to Meta-learning

Meta-learning is a subfield of machine learning that is concerned with learning to
understand machine learning algorithms by applying machine learning methods
to obtained experimental results. While our ExpDB approach has been presented
as a way to improve the experimental methodology typically followed by machine
learning and data mining researchers, it is clear that the approach is very suitable
for meta-learning:

– Working with synthetic datasets solves the problem of sparse data that is so
typical of meta-learning. While the UCI repository, for instance, is a sizeable
collection of machine learning problems, from the meta-learning point of
view each UCI dataset yields a single example, so the meta-learning dataset
derived from the UCI repository contains only a few dozen examples. This
makes it difficult to derive any conclusions. A synthetic dataset generator,
such as used in the ExpDB approach, appears crucial for the success of
meta-learning.

– As explained, our approach allows thorough investigation of the interac-
tions between algorithm parameters, dataset characteristics, and perfor-
mance metrics, in addition to allowing a comparison between different kinds
of algorithms.

Conversely, a lot of existing work in meta-learning is very useful for the con-
cept of experiment databases. For instance, significant efforts have been invested

in the description of datasets and algorithms [6, 4] and in methods for generating
synthetic datasets (Soares, Džeroski, personal communication). All of these can
be used to give the work on experiment databases a headstart.

4 Conclusions

We have presented a novel methodology for experimental research in machine
learning and data mining. The methodology makes use of the concept of ex-
periment databases. The idea behind this is that a database of random ex-
periments is first created, then hypotheses can be tested ad libitum by just
querying the database instead of repeatedly setting up new experiments. The
experiment database approach has many advantages with respect to reusability,
reproducibility and generalizability of results, efficiency of obtaining them, ease
of performing thorough and sophisticated analysis, and explicitness of assump-
tions under which the obtained results are valid.

The current paper is obviously very preliminary; it presents the basic ideas
and promises of experiment databases. There are many open questions, such as:

– The format of the D-space: it is easy to list some characteristics of datasets
that might be useful, but difficult to ensure no important ones are missed.
Some work has already been done on this in the meta-learning community
[4], but we expect further efforts on this may yield more results.

– The dataset generator: such a generator generates data according to a certain
distribution; how do we specify this distribution? For supervised learners a
target concept must be included; how do we generate this target concept?
Information on this concept (e.g., its complexity) is part of the D-space.

– An inductive query language: In the above we have used an ad hoc language
for inductive queries. It is necessary to define a suitable inductive query
language for the kind of patterns we are interested in. It is not clear if any of
the existing query languages are suitable; for instance, languages for finding
frequent itemsets or association rules [3] are not immediately applicable. It
seems that a kind of standard SQL that allows the user to mix the meta and
object level in a single query, would be useful.

We believe that further research along the proposed direction has the po-
tential to lead to much better experimental research in machine learning and
data mining, and to ultimately lead to a greatly improved understanding of the
strengths and weaknesses of different approaches.

Acknowledgements

The author is a post-doctoral fellow of the Fund for Scientific Research of Flan-
ders, Belgium (FWO-Vlaanderen). He thanks Sašo Džeroski, Carlos Soares, Ash-
win Srinivasan, and Joaquin Vanschoren for interesting comments and sugges-
tions.

References

1. L. De Raedt. A perspective on inductive databases. SIGKDD Explorations, 4(2):69–
77, 2002.

2. S. Džeroski and N. Lavrač, editors. Relational Data Mining. Springer-Verlag, 2001.
3. R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association rules

in SQL. Data Mining and Knowledge Discovery, 2:195 – 224, 1998.
4. Y. Peng, P. Flach, C. Soares, and P. Brazdil. Improved dataset characterisation

for meta-learning. In Proceedings of the 5th International Conference on Discov-
ery Science, volume 2534 of Lecture Notes in Computer Science, pages 141–152.
Springer-Verlag, 2002.

5. C. Perlich, F. Provost, and J. Siminoff. Tree induction vs. logicstic regression: A
learning curve analysis. Journal of Machine Learning Research, 4:211–255, 2003.

6. B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning by landmarking
various learning algorithms. In Proceedings of the 17th International Conference on
Machine Learning (ICML 2000), pages 743–750. Morgan Kaufmann, 2000.

