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Abstract

Nonparametric correlation measures at the Kendall and Spearman correlation

are widely used in the behavioral sciences. These measures are often said to be

robust, in the sense of being resistant to outlying observations. In this note we for-

mally study their robustness by means of their influence functions. Since robustness

of an estimator often comes at the price of a loss in precision, we compute efficiencies

at the normal model. A comparison with robust correlation measures derived from

robust covariance matrices is made. We conclude that both Spearman and Kendall

correlation measures combine good robustness properties with high efficiency.
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1 Introduction

Pearson’s correlation measure is one of the most often used statistical estimators. But

its value may be seriously affected in presence of even only one outlier. The effect of an

outlier on an estimator can be measured by its influence function. The influence function

gives the effect that an outlying observation has on an estimator, and it is an important

measure of robustness of an estimator (Hampel et al., 1986). Devlin et al. (1975) showed

that the influence function of the classical Pearson correlation is unbounded, proving the

lack of robustness of the latter estimator.

In this paper we provide expressions for the influence functions of other measures of

correlation, in particular for the popular Spearman and Kendall correlation. We show

that their influence function is bounded, hereby formally proving their robustness. This

confirms the general belief that these nonparametric measure of correlation are more

robust to outliers. Other robust measures of correlation have been introduced in the

literature (e.g. Shevlyakov and Vilchevski, 2002; Wilcox, 1998) and a comparison with

some of them is made in this paper.

Besides being robust, an estimator should also be precise, in the sense of having a

high statistical efficiency. At the normal distribution the Pearson correlation measure is

the most efficient. The price of using a more robust estimator is a loss of efficiency, but

we would like this loss in precision to be limited. We compute the statistical efficiency at

the normal distribution of the Spearman and Kendall correlation estimators, and it turns

out to be above 75% for all possible values of the true correlation. Hence they provide a

good compromise between robustness and efficiency.

In Section 2 we review several measures of robust correlation with focus on (i) the

rank and sign based measures Spearman, Kendall and the Quadrant correlation; (ii)

robust correlations derived from robust covariance matrices. Their influence function and

gross-error-sensitivity are presented in Section 3. Asymptotic variances are derived in

Section 4. Finally, in Section 5 we present a simulation study comparing the performance

1



of the different estimators of correlation in presence of outliers at finite samples. Section

6 contains the conclusions.

2 Measures of Correlation

Given a bivariate sample {(xi, yi), 1 ≤ i ≤ n}, the classical Pearson’s estimator of corre-

lation is given by

rP =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − x̄)2
(2.1)

where x̄ and ȳ are the sample means. To compute influence functions, it is necessary

to consider the associated functional form of the estimator. Let (X, Y ) ∼ H, with H

an arbitrary distribution (having second moments). The population version of Pearson’s

correlation measure is then given by

RP (H) =
EH [XY ]− EH [X]EH [Y ]√

(EH [X2]− EH [X]2)(EH [Y 2]− EH [Y ]2)
. (2.2)

and the function H → RP (H) is the functional representation of this estimator. If the

sample (x1, y1), . . . , (xn, yn) has been generated according to a distribution H, then the

estimator rP , as defined in (2.1), converges in probability to RP (H). If we take as model

distribution Hρ, the bivariate normal with population correlation coefficient ρ, then we

have that

RP (Hρ) = ρ.

The above property is called the Fisher consistency of RP at the normal model (e.g.

Maronna et al., 2006).

As an alternative to Pearson’s correlation, nonparametric measures of correlation using

univariate ranks and signs, have been introduced. The Quadrant correlation (Mosteller,

1946) rQ is computed by dividing the plane in 4 quadrants, with the coordinatewise

median as origin. Then rQ equals the frequency of observations being in the first or third
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quadrant, minus the frequency of observations in the second or fourth quadrant:

rQ =
2

n

n∑
i=1

sign{(xi −medianj(xj))(yi −medianj(yj))} − 1. (2.3)

Here, the sign function equals 1 for positive and -1 for negative arguments. The associated

functional is given by

RQ(H) = 2PH [(X −median(X))(Y −median(Y )) > 0]− 1. (2.4)

When comparing a nonparametric correlation measure with the classical Pearson correla-

tion, one needs to realize that they estimate different population quantities. For Hρ the

bivariate normal distribution with correlation ρ, one has (Blomqvist, 1950)

ρQ := RQ(Hρ) =
2

π
arcsin(ρ)

being different from ρ, for any ρ 6= 0 . To obtain a consistent version of the Quadrant

correlation at the normal model, we apply the following transformation

R̃Q(H) = sin(
1

2
πRQ(H)).

Another nonparametric correlation measure based on signs is Kendall’s correlation (Kendall,

1938), given by

rK =
2

n(n− 1)

∑
i<j

sign ((xi − xj)(yi − yj)) . (2.5)

The corresponding functional version is then

RK(H) = EH [sign(X1 −X2)(Y1 − Y2)] (2.6)

where (X1, Y1) and (X2, Y2) are two independent copies from H. At normal distributions,

it estimates the same parameter as the Quadrant’s correlation (Blomqvist, 1950), so

RK(Hρ) = ρK = ρQ. Hence, the Fisher consistent version of Kendall’s correlation is given

by

R̃K(H) = sin(
1

2
πRK(H)).
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Finally, the most popular nonparametric correlation measure is Spearman’s rank cor-

relation (Spearman, 1904), of which the sample version is simply the classical Pearson

correlation computed from the ranks of the observations. Take (X, Y ) ∼ H, and denote

F (t) = PH(X ≤ t) and G(t) = PH(Y ≤ t) the marginal cumulative distribution functions

of X and Y . Then the functional version of Spearman’s correlation is given by

RS(H) = Corr(F (X), G(Y )) = 12EH [F (X)G(Y )]− 3. (2.7)

At the normal model Hρ, we have

ρS := RS(Hρ) =
6

π
arcsin(

ρ

2
),

see Moran (1948). Again we see that the Spearman correlation differs from the correlation

coefficient ρ of the bivariate normal distribution. To make a comparison between different

estimators at the normal model possible, we will therefore consider the transformed version

of RS:

R̃S(H) = 2 sin(
1

6
πRS(H)).

In this paper we focus on the above nonparametric correlation measures. Robust

correlations, however, are often derived from robust covariance matrix estimates (see

Maronna et al., 2006; Croux & Dehon, 2002). If C(X, Y ) is a 2 × 2 robust covariance

matrix computed from X and Y , then a robust correlation results immediately as

RC(H) =
C12(X, Y )√

C11(X, Y )C22(X,Y )
. (2.8)

Hence, any robust bivariate covariance matrix C leads to a robust correlation coefficient.

We will consider two highly robust covariance matrix estimators for C in (2.8). The S-

estimator (e.g. Davies, 1987), leading to the correlation measure RS, and the Minimum

Covariance Determinant (MCD, Rousseeuw and Van Driessen, 1999), resulting in RMCD.

We take the MCD and the S-estimator with maximum breakdown point, i.e. 50%. The

breakdown measures the maximum fraction of outliers the estimator can withstand. The

MCD and S-estimator estimate (a multiple) of the population covariance matrix at the

normal distribution, so RC(Hρ) = ρ.
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3 Influence Function and Gross-Error-Sensitivity

As model distribution for (X, Y ) we take the bivariate normal Hρ, with correlation coef-

ficient ρ. We assume that the population means of X and Y are equal to zero, and their

variances one. Since all correlation measures considered in this paper are invariant with

respect to linear transformation of X, respectively Y , the latter assumption is without

loss of generality. The influence function (IF) of a statistical functional R at the model

distribution Hρ is defined as

IF((x, y), R,Hρ) = lim
ε↓0

R((1− ε)Hρ + ε∆(x,y))−R(Hρ)

ε

where ∆(x,y) is a Dirac measure putting all its mass at (x, y). It can be interpreted as the

infinitesimal effect that a small amount of contamination placed at (x, y) has on R, when

the data come from the model distribution Hρ. An estimator is then called B-robust if

its influence function is bounded (see Hampel et al., 1986). For the Pearson correlation,

Devlin et al. (1975) computed

IF((x, y), RP , Hρ) = xy − ρ
x2 + y2

2
, (3.1)

which is an unbounded function, showing that RP is not B-robust. The influence functions

associated to the Quadrant, Kendall and Spearman correlation can be derived in a rather

straightforward way, and are given by

IF((x, y), RQ, Hρ) = sign[(x−median(X))(y −median(Y ))]− ρQ (3.2)

IF((x, y), RK , Hρ) = 2{2PHρ [(X − x)(Y − y) > 0]− 1− ρK} (3.3)

IF((x, y), RS, Hρ) = −3ρS − 9 + 12{F (x)G(y) + EHρ [F (X)I(Y ≥ y)]

+EHρ [G(Y )I(X ≥ x)]}, (3.4)

where I(t) stands for the indicator function. While the expression for the IF for RQ

appeared in Shevlyakov and Vilchevski (2002), the other expressions for the IF do not

seem to have been published in the printed literature, even if they are not difficult to
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obtain. There is only an unpublished manuscript of Grize (1978) who listed similar

expressions as above. Details on their calculation can be obtained upon request from the

authors.

For comparing the numerical values of the different IF, it is important that all consid-

ered estimators estimate the same population quantity, i.e. are Fisher consistent. Figure

1 plots the influence function of RP and of the transformed measures R̃Q, R̃K and R̃S, for

ρ = 0.5. The analytical expressions of their IF are simply given by

IF((x, y), R̃Q, Hρ) =
π

2
sign(ρ)

√
1− ρ2IF ((x, y), RQ, Hρ) (3.5)

IF((x, y), R̃K , Hρ) =
π

2
sign(ρ)

√
1− ρ2IF ((x, y), RK , Hρ) (3.6)

IF((x, y), R̃S, Hρ) =
π

3
sign(ρ)

√
1− ρ2

4
IF ((x, y), RS, Hρ). (3.7)

INSERT FIGURE 1

As one can see from Figure 1, the IF of the Pearson correlation is indeed unbounded.

On the other hand, the influence function for the Quadrant estimator is bounded but has

jumps at the coordinate axes. This means that small changes in data points close to the

median of one of the marginals, will lead to relatively large changes in the estimator. For

Kendall and Spearman the influence functions are both bounded and smooth. The value

of the IF for RK and RS increases fastest along the first bisection axis. It can be checked

that for ρ = 0 the influence functions of Spearman and Kendall estimators are exactly

the same, but they slightly differ for other values of ρ.

We also compare with the IF of the correlation estimator RC , based on an affine

equivariant covariance matrix estimator C. Croux and Haesbroeck (2000) showed that

there exist a function γC : [0,∞[→ IR+ such that

IF((x, y), RC , Hρ) = γC(d(z))IF((x, y), RP , Hρ) (3.8)
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with d2(z) = ztΣ−1z, and Σ = ((1, ρ)t, (ρ, 1)t). For the MCD estimator, the function γC

is given by

γMCD(t) =
I(t ≤ √

qα)

P (χ2
6 < qα)

with qα = χ2
2,1−α,

and χ2
2,1−α the 1− α quantile of a chi-square distribution with 2 degrees of freedom, and

α the trimming proportion used in the definition of the MCD. In this paper we take

α = 50%, corresponding to the estimator C with the highest possible breakdown point.

Since γMCD equals zero for large values of its argument, the IF for the corresponding

correlation measure will be bounded, as is confirmed by Figure 1. But is can also be seen

that, when using the MCD, the IF contains jumps and is not smooth anymore. Using

the S-estimator, however, the IF for RC will be both bounded and smooth, as can see be

seen from Figure 1. For the analytical expression of γC for the S estimator, we refer to

Lopuhaä (1989).

An influence function can be summarized in a single index, the gross-error sensitiv-

ity (GES), giving the maximal influence an observation has. Formally, the GES of the

functional R at the model distribution Hρ is given by

GES(R, Hρ) = sup
(x,y)

|IF((x, y), R,Hρ)|.

For example, since the classical Pearson estimator is not B-robust, GES(RP , Hρ) = ∞.

The following proposition gives the GES associated to the nonparametric measures of

correlation and those based on robust covariance matrices.

Proposition 1 The gross-error sensitivity (GES) of the three transformed nonparametric

correlation measures are given by

(i) GES(R̃Q, Hρ) =
π

2

√
1− ρ2[

2

π
arcsin(|ρ|) + 1]

(ii) GES(R̃K , Hρ) = π
√

1− ρ2[
2

π
arcsin(|ρ|) + 1]

(iii) GES(R̃S, Hρ) = π

√
1− ρ2

4
[
6

π
arcsin(|ρ

2
|) + 1],
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and the GES of any correlation estimator based on an affine equivariant covariance matrix

estimator C by

(iv) GES(RC , Hρ) =
(1− ρ2)

2
sup

t
γC(

√
t)t.

The gross-error sensitivities depend on the parameter ρ in a non-linear way, and are pic-

tured in Figure 2. A first observation is that the GES for the estimator based on the MCD

is extremely large compare to the others. Using the S robust covariance matrix estimator,

having a smooth IF, leads to much lower values for the GES. Surprisingly, the GES of

the simple nonparametric correlation measures are of the same magnitude as the more

complicated S-estimator, the latter being designed for its robustness properties. Note

that for lower values of the population correlation ρ, the Quadrant is even more robust

than the S-estimator. The Quadrant estimator has uniformly a lower GES than Kendall

and Spearman. Kendall’s measure is on his turn preferable to Spearman, although the

difference in GES is negligible for smaller values of ρ. Finally, note the GES curve for

Spearman is increasing in ρ and does not vanish to zero for ρ tending to one.

INSERT FIGURE 2

4 Asymptotic Variance

All considered correlation estimators are asymptotically normal, and their asymptotic

variance can be computed from the influence functions derives in Section 2. Let r be the

correlation estimator associated with the functional R, then at the model distribution Hρ

√
n(r − ρ)

d→ N(0, ASV(R,Hρ))

with asymptotic variance ASV(R, H) = EH [IF((X, Y ), R, H)2], see (Hampel et al., 1986,

p. 226). The next proposition, with the proof in Appendix, presents expressions for the

asymptotic variance of several correlation estimators.
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Proposition 2 At the model distribution Hρ, we have:

(i) ASV(RP , Hρ) = (1− ρ2)2 (4.1)

(ii) ASV(R̃Q, Hρ) = (1− ρ2)(
π2

4
− arcsin2(ρ)) (4.2)

(iii) ASV(R̃K , Hρ) = π2(1− ρ2)(
1

9
− 4

π2
arcsin2(

ρ

2
)) (4.3)

(iv) ASV(R̃S, Hρ) =
π2

9
(1− ρ2

4
)144{ 1

144
− 9

4π2
(arcsin2(

ρ

2
)

+
1

π2

∫ arcsin( ρ
2
)

0

arcsin(
sin(x)

1 + 2 cos(2x)
)dx

+
2

π2

∫ arcsin( ρ
2
)

0

arcsin(
sin(2x)√

1 + 2 cos(2x)
)dx

+
1

π2

∫ arcsin( ρ
2
)

0

arcsin(
sin(2x)

2
√

cos(2x)
)dx

+
1

2π2

∫ arcsin( ρ
2
)

0

arcsin(
3 sin(x)− sin(3x)

4 cos(2x)
)dx} (4.4)

(v) ASV(RC , Hρ) = (1− ρ2)2ASV(C12, H0). (4.5)

The asymptotic variances of the Pearson, Quadrant, and Kendall correlations are ex-

plicit formulas. Most complicated is the expression for Spearman’s correlation, requiring

standard numerical integration of univariate integrals. Note that a similar result, but

expressed more generally in terms of expectations of the joint and marginal distribution

functions is given in Borkowf (2002). Result (v) of proposition 2 is known (e.g. Bilodeau

and Brenner, 1999, p. 230) and expresses the asymptotic variance of a correlation derived

from an affine equivariant robust covariance matrix C as a function of the asymptotic

variance of an off-diagonal element of C. For the MCD, for example, the asymptotic

variance ASV(C12, H0) is computed in (Croux and Haesbroeck, 1999).

It can be verified that all asymptotic variances decrease in ρ, and tend to the value

zero for ρ converging to one. In Figure 3 we plot asymptotic efficiencies (relative to Pear-

son correlation) as a function of ρ. Most striking are the high efficiencies for Kendall and

Spearman correlation, being larger than 70% (??) for all possible values of ρ. This means
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that Kendall and Spearman are at the same time B-robust, and very efficient. Compar-

ing Kendall’s with Spearman’s correlation is favorable for Kendall, but the difference in

efficiency is rather small, and almost negligible for ρ smaller than 0.2. On the other hand,

using the Quadrant correlation leads to a high loss in efficiency.

As can be seen from Figure 3, the efficiency associated to the estimators based on

robust covariance matrices is constant in ρ. For MCD, we have an efficiency of only

3.33% and for S an efficiency of 37.65%.

INSERT FIGURE 3

5 Simulation study

By means of a modest simulation experiment, we investigate two different questions. First

we verify whether the finite-sample variances of the estimators are close their asymptotic

counterparts, derived in Section 4. Secondly, we check how the estimators behave when

outliers are introduced in the sample.

We first generate m = 2000 samples of size n = 20, 50, 100, 200 from a bivariate normal

with ρ = 0. We did performed the same simulation exercise for several other values of

ρ, with similar conclusions. For each sample j, the correlation coefficient is estimated by

ρ̂j, one of the estimators introduced in Section 2. The mean squared error (MSE) is then

computed as

MSE =
1

m

m∑
j=1

(ρ̂j − ρ)2

and reported in Table 1. As we can see from Table 1, the finite sample MSE converge

rather quickly to the asymptotic variance (reported under the column n = ∞). For

the S and MCD estimators convergence is slower, and we see that for MCD the finite-

sample MSE is substantially smaller than the asymptotic counterpart. The simulation

experiment confirms the conclusions from Section 4. Also at finite samples, the precision

of the Spearman and Kendall estimators is close to the Pearson correlation. The MSE of
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the Quadrant correlation is about twice as large, and the estimates derived from robust

correlation measures perform even worse.

INSERT TABLE 1

The second simulation scheme is similar, but now we only generate samples of size

n = 200, and replace a certain percentage ε of the observations by outliers. The outliers

are placed at a distance equal to the square root of the 0.90 quantile of a χ2
2 distribution,

and in the direction of the 45-degree line. Indeed, as we can see from Figure 1, the

influence of outliers increases fastest in that direction. The MSEs are reported in Table

2.

INSERT TABLE 2

Although we know that the MSE is smallest for the Pearson correlation if no outliers

are present, we see from Table 2 that this does not hold anymore in presence of outliers.

The MSE for the Pearson correlation increases quickly with the fraction of outliers, and

already for 5% of outliers its MSE is by far the largest of all considered estimators.

This confirms the non robustness of the Pearson correlation. A comparison of the other

estimators shows that for about 5% of contamination, the MSE for Spearman and Kendall

correlation remains small, but for larger, more unrealistic, amounts of contamination,

there is also a substantial increase in MSE. The Quadrant estimator perform betters than

the two other nonparametric correlation measures under contamination, as we can see

from Table 2. The good robustness of the Quadrant correlation was already observed

from Figure 2, where it has the smallest value of the gross-error sensitivity. Finally note

the high robustness of the S and MCD based estimators, where the MSE remains low

for even 20% of contamination. The reason for this good performance is due to the fact

that the S and MCD are redescending estimators, meaning that there influence function

equals zero for larger values of the observations (see Figure 1). Outliers have little effect

on the S and MCD estimators, unless if they are located at very particular positions.
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6 Conclusion

In this paper we study the robustness and efficiency of some widely used nonparametric

measures of correlation at a bivariate normal distribution. The main conclusion is that the

Spearman and Kendall correlation measures are fairly robust, while maintaining a quite

high statistical efficiency. They have a bounded and smooth influence functions, and

reasonably small values for the gross-error sensitivity. The Kendall correlation measure

is at the same time slightly more robust and slightly more efficient than Spearman’s rank

correlation, making it the preferable estimator from both perspectives. The Quadrant

correlation measure was also studied, and shown to be highly robust but at the price of

a too low efficiency. The efficiency of the Quadrant correlation even converges to zero if

the true correlation is close to one.

Although the nonparametric correlation measures discussed in this paper are well

known, and frequently used in psychometrics, this paper is up to our knowledge the

first one that gives a more formal treatment of their robustness and efficiency properties.

The robustness of an estimator is summarized by its gross-error sensitivity, measuring

the maximal effect that a single outlier can have on the estimator. We stress that both

the gross-error sensitivity and the efficiencies of the different estimators are depending

on the true value of the correlation coefficient, and this in a nonlinear way. We also

make a comparison with robust correlation estimators derived from robust covariance

matrices, the latter being well studied in the literature. This type of robust estimators is

much harder to compute, and it turns out that both their gross-error sensitivity and their

asymptotic variance are higher as for the simple Spearman and Kendall measures. We are,

however, not claiming that one should discard robust correlation estimators derived from

robust covariance matrices, like the MCD or S. From the simulations in Section 5 we could

see that these estimators perform well in presence of larger amounts of contamination.

Moreover, by decreasing the breakdown point of the considered estimator to 25%, for

example, the statistical efficiency of the S-estimator increases from 38% to 84% and of
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the MCD estimator from 3% to 16%. Of course, this increase of efficiency goes along with

a decrease of robustness.

While this paper focuses on widely used measures of correlation as the Spearman

and Kendall coefficient, other proposals for robust estimation of correlation have been

made. For example a correlation coefficient based on mad and comedians (Falk, 1998),

a correlation coefficient based on the decomposition of the covariance into a difference of

variances (Genton & Ma, 1999), and a multiple skipped correlation (Wilcox, 2003) have

been proposed. We did not pursued in this paper to cover all previous proposal of robust

correlation measures. Another limitation of this paper is that robustness is measured

by means of the influence function, which is suitable for measuring the robustness with

respect to small amounts of outliers. For measuring robustness in presence of larger

amounts of outliers, the breakdown point is more useful. Defining the breakdown point

for correlation measures needs to be done with care, and we refer to the rejoinder of

(Davies & Gather, 2005) were breakdown points are considered for the Spearman and

Kendall correlation measures.

A Appendix

Proof of Proposition 2.

(i) From (3.1) it follows that

ASV(Rp, Hρ) = EHρ [(XY − ρ

2
(X2 + Y 2))2]

= (1− ρ2)2,

since EHρ [X
4] = EHρ [Y

4] = 3, EHρ [X
2Y 2] = 1 + 2ρ2 and EHρ [X

3Y ] = EHρ [XY 3] = 3ρ.

(ii) For the nonparametric Quadrant measure, using (3.2) and (3.5), we get

ASV(R̃Q, Hρ) =
π2

4
(1− ρ2)(1− ρ2

Q)

= (1− ρ2)(
π2

4
− arcsin2(ρ)),
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since E[sign(XY )] = ρQ and E[sign2(XY )] = 1.

(iii) From (3.3) and (3.6), we obtain

ASV(R̃K , Hρ) = π2(1− ρ2)EHρ [

(
2PHρ [(X −X1)(Y − Y1) > 0]− 1− 2

π
arcsin(ρ)

)2

]

which can be rewritten as

ASV(R̃K , Hρ) = cE[(K(X,Y )− E[K(X, Y )])2] = c{E[K2(X,Y )]− ρ2
K}, (A.1)

where K(x, y) = 2PHρ [(X − x)(Y − y) > 0] − 1 = 1 − 2(Φ(x) + Φ(y)) + 4Φρ(x, y) and

c = π2(1− ρ2). Now

E[K2(X, Y )] = E[sign((X −X1)(Y − Y1)(X −X2)(Y − Y2))]

= 2P ((
X −X1√

2
)(

Y − Y1√
2

)(
X −X2√

2
)(

Y − Y2√
2

) > 0)− 1,

where (X1, Y1) and (X2, Y2) are independent copies of (X,Y ). To simplify the above

expression, denote Z1 = (X − X1)/
√

2, Z2 = (Y − Y1)/
√

2, Z3 = (X − X2)/
√

2 and

Z4 = (Y − Y2)/
√

2, yielding

E[K2(X,Y )] = 2P (Z1Z2Z3Z4 > 0)− 1. (A.2)

It is now easy to show that

Cov




Z1

Z2

Z3

Z4




=




1 ρ 1
2

ρ
2

ρ 1 ρ
2

1
2

1
2

ρ
2

1 ρ

ρ
2

1
2

ρ 1




.

By symmetry, we have

P (Z1Z2Z3Z4 > 0) = 2[P (Z1 > 0, Z2 > 0, Z3 > 0, Z4 > 0) + P (Z1 > 0, Z2 > 0, Z3 < 0, Z4 < 0)

+ P (Z1 > 0, Z3 > 0, Z2 < 0, Z4 < 0) + P (Z1 > 0, Z4 > 0, Z2 < 0, Z3 < 0)].
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The first term in the above expression is of type (r), the second term of type (w), the

third term of type (r) and the fourth term of type (w) where the (r) and (w) types are

defined in Appendix 2 in David and Mallows (1961). We then obtain

P (Z1Z2Z3Z4 > 0) = 2[
5

18
+

1

π2
(arcsin2(ρ)− arcsin2(

ρ

2
))]. (A.3)

Combining (A.1), (A.2) and (A.3) yields (4.3).

(iv) For the transformed Spearman measure, one can rewrite (3.7) as

IF((x, y), R̃S, Hρ) = 12c{k(x, y)− E[k(X, Y )]}

where k(x, y) = F (x)G(y) + EHρ [F (X)I(Y ≥ y)] + EHρ [G(Y )I(X ≥ x)] and

c = π
3

√
1− ρ2

4
. It follows that

ASV(R̃S, Hρ) = 144
π2

9
(1− ρ2

4
){E[k2(X, Y )]− 9(

1

4
+

1

2π
arcsin(

ρ

2
))2}. (A.4)

Now, we must compute the expression E[k2(X, Y )], with

k(x, y) = E[I(X1 ≤ x)I(Y2 ≤ y)] + E[I(X2 ≤ X1)I(Y1 ≥ y)] + E[I(X1 ≥ x)I(Y2 ≤ Y1)].

Tedious calculations result in

E[k(X, Y )2] = E[I(X1 ≤ X)I(Y2 ≤ Y )I(X3 ≤ X)I(Y4 ≤ Y )]

+ 2E[I(X1 ≤ X)I(Y2 ≤ Y )I(X4 ≤ X3)I(Y3 ≥ Y )]

+ 2E[I(X1 ≤ X)I(Y2 ≤ Y )I(X3 ≥ X)I(Y4 ≤ Y3)]

+ E[I(X2 ≤ X1)I(Y1 ≥ Y )I(X4 ≤ X3)I(Y3 ≥ Y )]

+ 2E[I(X2 ≤ X1)I(Y1 ≥ Y )I(X3 ≥ X)I(Y4 ≤ Y3)]

+ E[I(X1 ≥ X)I(Y2 ≤ Y1)I(X3 ≥ X)I(Y4 ≤ Y3)],

from which, using Appendix 2 of David and Mallows (1961), we obtain the following sum

15



of 6 terms

E[k(X,Y )2] =
82

144
+

9

4π
arcsin(

ρ

2
) +

1

π2

∫ arcsin( ρ
2
)

0

arcsin(
sin(x)

1 + 2 cos(2x)
)dx

+
2

π2

∫ arcsin( ρ
2
)

0

arcsin(
sin(2x)√

1 + 2 cos(2x)
)dx +

1

π2

∫ arcsin( ρ
2
)

0

arcsin(
sin(2x)

2
√

cos(2x)
)dx

+
1

2π2

∫ arcsin( ρ
2
)

0

arcsin(
3 sin(x)− sin(3x)

4 cos(2x)
)dx.

Using the above expression and (A.4) results in (4.4).
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Figure 1: Influences functions for the consistent versions of the Pearson, Spearman, Kendall and

Quadrant estimators at a bivariate normal distribution with correlation ρ = 0.5. The bottom

row presents the IF for the correlation measures based on the MCD and S covariance matrix

estimator.
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Figure 2: Gross-error sensitivities for the nonparametric correlation measures R̃Q, R̃K , R̃S

and correlations based on the MCD and S covariance matrix as a function of ρ, the

correlation of the bivariate normal model distribution.
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Figure 3: Asymptotic efficiencies for the nonparametric correlation measures R̃Q, R̃K , R̃S

and correlations based on the MCD and S covariance matrix as a function of ρ, the

correlation of the bivariate normal model distribution.
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Table 1: MSE for several estimators of the population correlation ρ = 0 at a bivariate

normal distribution, for sample sizes n=20, 50, 100 and 200.

n ∗MSE n=20 n=50 n=100 n=200 n=∞
Pearson 1.05 1.02 1.00 1.00 1.00

Spearman 1.14 1.11 1.10 1.10 1.09

Kendall 1.22 1.15 1.11 1.11 1.09

Quadrant 2.30 2.40 2.43 2.47 2.46

S 3.39 3.06 2.82 2.80 2.65

MCD 8.09 12.96 18.04 21.53 30.01
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Table 2: MSE for several estimators of the population correlation ρ = 0 at a bivariate

normal distribution for sample size n=100 with a fraction ε of outliers.

MSE ε = 0% ε = 5% ε = 10% ε = 20%

Pearson 0.01 0.07 0.19 0.41

Spearman 0.01 0.02 0.07 0.24

Kendall 0.01 0.02 0.08 0.28

Quadrant 0.01 0.01 0.03 0.10

S 0.01 0.01 0.01 0.02

MCD 0.01 0.01 0.02 0.07

23


