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Abstract. Simulation models are a commonly used tool for the study
of the co-existence between conventional and genetically-modified (GM)
crops. Among other things, they allow us to investigate the effects of us-
ing different crop varieties, cropping systems and farming practices on the
levels of adventitious presence of GM material in conventional crops. We
propose to use machine learning methods to analyze the output of simu-
lation models to learn co-existence rules that directly link the above men-
tioned causes and effects. The outputs of the GENESYS model, designed
to study the co-existence of conventional and GM oilseed rape crops, were
analysed by using the machine learning methods of regression tree induc-
tion and relational decision tree induction. Co-existence and adventitious
presence of GM material were studied in several contexts, including gene
flow between pairs of fields, the interactions of this process with farming
practices (cropping systems), and gene flow in the context of an entire field
plan. Accurate models were learned, which also make use of the relational
aspects of a field plan, using information on the neighboring fields of a
field, and the farming practices applied in it. The use of relational deci-
sion tree induction to analyze the results of simulation models is a novel
approach and hold the promise of learning more general co-existence rules
by allowing us to vary the target field within a chosen field plan, as well as
consider completely different field plans at the same time.

1 Introduction

Crop varieties developed by genetic engineering were first introduced for commer-
cial production in 1996. Today, these crops are planted on more than 167 mil-
lion acres worldwide. Genetically-modified (GM) crops are usually engineered to
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tolerate herbicides and/or resist pests. Crops carrying genes coding for herbicide
tolerance were developed so that farmers could spray their fields with non-selective
herbicides to eliminate weeds irrespective of species and stage without damaging
the crop. Likewise, pest-resistant crops have been engineered to contain a gene for
a protein from the soil bacterium, Bacillus thurigiensis, which is toxic to certain
pests. This protein, referred to as Bt, is produced by the plant, thereby making it
resistant to insect pests like the European Corn Borer (Ostrinia nubilalis) or Cot-
ton Boll Worm (Helicoverpa zea). Other pest-resistant GM crops on the market
today have been engineered to contain genes that confer resistance to specific plant
viruses. So the main purpose of growing genetically-modified crops in a developed
European agriculture is not to achieve higher yields, but to reduce producers’
inputs and operating costs.

However, genetically-modified crops were not primarily developed with envi-
ronmental benefit in mind and the introduction of transgenic crops and foods into
the existing food production system has generated a number of questions about
possible negative consequences. These concern the co-existence issue, i.e., the eco-
nomic damage caused by GM contamination of conventional crops; the unwanted
ecological influences of GM crops on habitats in natural and agricultural environ-
ments; and the consequences of exposure of humans to transgenic proteins.

The possible unwanted influence of consuming GM crops on the human health
and the influence of growing GM crops on the habitats in natural and agricultural
environments are topics of ongoing research. The main concern in this paper is
the co-existence issue, i.e., the possibility of GM plants mixing with conventional
or organic crops. GM crops can contaminate other crops simply by pollen being
transported from one field to another. In addition, for species such as oilseed rape,
seeds lost before or during the harvest survive in the soil and give rise to volunteers
in subsequent crops. If these volunteers emerge in later non-GM oilseed rape crops,
they lead to the adventitious presence of GM seeds in non-GM harvests.

Corn (maize) and oilseed rape (OSR) are the most important transgenic crops
in Europe. EU regulations allow 0.9% of adventitious presence of GM material in
conventional harvests and the co-existence is concerned with achieving the pre-
scribed level of adventitious presence in regions with both conventional and trans-
genic cultivars. Therefore, there is a need to find appropriate measures at the farm
and regional levels to minimize gene flow from GM crops.

To study the co-existence issue for the above two crops, computer simulation
models have been developed (e.g., GENESYS - for oilseed rape, MAPOD - for
corn) [7, 8, 19]. Given a specific situation, e.g., a specific field plan and a set of
chosen farming practices, the simulation models give predictions for the levels
of adventitious presence in the fields under study. By analyzing and aggregating
the results of many such simulations, one can gain insight about the conditions
under which co-existence is possible. For example, a JRC (Joint Research Center
of the European Commission) study [19] gives some recommendations regarding
co-existence of conventional and GM corn, produced by analysing the results of
MAPOD simulations.

In this study we propose the use of machine learning methods to analyze the re-
sults/outputs of the simulation model GENESYS to gain insight into co-existence
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issues. Machine learning methods derive general knowledge from specific exam-
ples. By applying machine learning methods, we would generalize over the specific
outputs of individual simulations and derive more general rules concerning the
co-existence of conventional and GM crops.

We use machine learning to analyze the outputs of two sets of GENESYS
simulations. The first studies the effects of relative size and position of fields on
gene flow (via pollen or seed) between pairs of fields. The second examines the
adventitous presence of GM seeds in the central field of a high-risk field pattern.
To the outputs of each set of simulations, we apply suitable machine learning
techniques: we use regression trees for the first and relational decision trees for the
second.

2 The GENESYS simulation model

The computer model GENESYS was used to assess probable effects of chang-
ing farming practices on contamination rates. GENESYS [7, 8] was developed by
INRA (French National Institute for Agronomy Research) to rank cropping sys-
tems according to their probability of gene flow from herbicide-tolerant winter
oilseed rape to rape volunteers and neighbor crops, both in time via seeds and in
space via pollen and seeds. The model works for seed as well as crop production.
GENESYS integrates various input variables (Figure 1):

– The field plan of the region, comprising cultivated fields as well as unculti-
vated field- and road-margins (hence ”borders”). Borders consist of strips of
spontaneous vegetation where rape volunteers can appear, produce pollen and
seeds that are dispersed to fields and other borders;

– The crop rotation of each field;
– The cultivation techniques applied to each crop (summer tillage, primary

tillage and tillage for seed bed preparation, sowing date and density, herbi-
cide applications, cutting dates and seed loss at rape harvest) as well as the
management of the borders (herbicides and/or cutting), and

– The type of the simulated gene (dominant A or recessive a), as well as the
genotype of the rapeseed varieties.

The model is based on the life-cycle of oilseed rape, and includes both cropped
and volunteer plants, starting with the seed bank at harvest and continuing with
seedling emergence. Some of these seedlings become adults, flower and produce
new seeds, part of which replenish the seed bank at the end of the season. The
model calculates for each stage of the annual rapeseed life-cycle and for each
field or border the number of individuals per m2 (number of seeds in the seed
bank, of seedlings etc.) and the proportions of these individuals with and without
transgenes (e.g. contamination with GM seeds).

GENESYS has already been evaluated using independent data collected on
farmers’ fields and on the GMO field trials set up and managed by INRA and
CETIOM (Centre Technique Interprofessionnel des Oléagineux Métropolitains,
France) and other technical institutes [5]. The first comparisons of simulation and
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Fig. 1. GENESYS: input and output [6]

trial results show that the rates of contamination of harvested seeds are underesti-
mated but that the orders of magnitude are reliable and that the various situations
are ranked correctly. GENESYS may therefore be used to compare the effects of
different cropping practices or of various varietal characteristics for decreasing the
probability of contamination in the field.

3 Machine learning methods

This section describes the machine learning methods used to analyse the GENE-
SYS simulation outputs. We first describe regression trees, which were used to
learn co-existence rules for paired fields. Then we describe relational decision trees,
which were used to learn co-existence rules and predict the rate of adventitious
presence of GM seeds in the central field of a large-risk field plan.

3.1 Regression trees

In order to explain regression trees, we first describe decision trees [3]. Regression
trees are namely a special type of decision trees.

Decision trees predict the value of a dependent variable (called target) from
the values of a set of independent variables (called attributes), by partitioning
the space of attributes into axis-parallel rectangles and fitting a model for each
of these partitions. A decision tree (see for example Fig.3 or Fig.4) has a test in
each inner node that tests the value of a certain attribute and compares it with a
constant. Leaf nodes give a prediction that applies to all instances (examples) that
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reach the leaf. To predict the target of an unknown instance, it is routed down the
tree according to the values of the attributes tested in successive nodes, and when
a leaf is reached the instance is given the prediction, assigned to the leaf. If the
dependent variable is nominal, the task is called classification, the predictions in
the leaves are called classes, and the decision trees are called classification trees. If
the dependent variable is numeric, then in each leaf there is a model for predicting
it: the model can be a linear equation (model trees) or a constant (regression
trees).

In order to build a decision tree, one makes use of a dataset of examples, for
which the target is known. This dataset is called the training set. Tree construction
proceeds recursively, starting with the entire training set. At each step a node is
created and the most discriminating attribute is placed in the node. A number
of new branches are created according to the values of the selected attribute. For
discrete attributes, a branch of the tree is typically created for each possible value
of the attribute. For continuous attributes, a threshold is selected and two branches
are created based on that threshold. Technically speaking, the most discriminating
attribute test is the one that most reduces the entropy/variance (for classification
and regression trees respectively) of the values of the target. The training set is split
into subsets by sorting down each example following the appropriate branch. For
each subset, the tree construction algorithm is called recursively. Tree construction
stops when the entropy/variance of the target values of all examples in a node is
small enough (or if some other stopping criterion is satisfied). Such nodes are called
leaves and are labeled with a class or a model (constant or linear equation) for
predicting the target value.

An important mechanism used to prevent trees from over-fitting data is tree
pruning. Pruning can be employed during tree construction (pre-pruning) or after
the tree has been constructed (post-pruning). Typically, a minimum number of
examples in branches can be prescribed for pre-pruning and a confidence level in
the error estimates in the leaves for post-pruning.

A number of systems exist for inducing regression trees, such as CART [3] and
M5 [20]. M5 is one of the most well-known programs for regression and model tree
induction. We used the system M5’ [22], a re-implementation of M5 within the
software package WEKA [23].

A decision tree can be easily transformed into a set of rules. One rule is gener-
ated for each leaf. The rules are of form:

IF conditions THEN prediction

The antecedent of the rule includes a condition for every node on the path from
the root to that leaf, and the consequent of the rule is the constant or the linear
model assigned by the leaf. This procedure produces rules that are unambiguous
in that the order in which they are executed is irrelevant.

3.2 Relational decision trees

Most machine learning algorithms assume that the training set is stored in a single
table where each example is represented by a fixed number of attributes. These
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are called attribute-value or propositional techniques (as the patterns found can
be expressed in propositional logic). Propositional machine learning techniques
(such as the classification or regression decision trees discussed in the previous
section) are popular, mainly because they are efficient, easy to use and are widely
accessible.

In practice, however, the single table assumption turns out to be a limiting fac-
tor for many machine learning tasks that involve data residing in multiple related
tables. An example of such a problem is the analysis of co-existence of GM and
non-GM crops in a region with many fields, where there is a need to examine the
relations among the fields. Typically, the data consists of several pieces of infor-
mation; one could imagine having a table storing general information on each field
(e.g. area), a table storing the cultivation techniques for each field and each year,
and a table storing relations (e.g. distance) among pairs of fields. Data scattered
over multiple relations (or tables) can be transformed into a propositional table
(attribute-value representation) by means of propositionalization, so that conven-
tional machine learning techniques can be applied to the transformed data [15].
This allows a wide choice of robust and well known algorithms. A disadvantage is
that propositionalization almost inevitably leads to a loss of information due to
aggregation or to the generation of a (possibly huge) amount of redundant data
[12]. Also, if different examples can have a different number of fields (e.g., by vary-
ing the field plan), the propositionalization approach is not feasible. Alternatively,
the relational approach takes into account the structure of the original data by
providing functionalities to navigate relational structure in its original format and
generate potentially new forms of evidence not readily available in a flattened
single table representation.

Since decision tree induction is one of the major approaches to machine learn-
ing, upgrading this approach to a relational setting has been of great importance.
Like in the propositional case, a table or relation is given, which contains at least
two columns where the IDs of the examples and the values of the target vari-
able are stored. An example of such a relation is contamination(sim1, positive),
which means that simulation 1 (example ID) is labeled as contaminated (target).
(Recall from the introduction that a field is considered as contaminated if it con-
tains more that 0.9% GM material.) In addition, a set of background knowledge
relations, stored in other tables, may be given, as illustrated above.

Relational decision trees have much the same structure as propositional deci-
sion trees. Internal nodes contain tests, while leaves contain predictions for the
target value. If the target variable is discrete/continuous, we talk about relational
classification/regression trees. For regression, linear equations may be allowed in
the leaves instead of constant class-value predictions: in this case we talk about
relational model trees.

The major difference between propositional and relational decision trees is in
the tests that can appear in the internal nodes. In the propositional case, the tests
compare the value of an attribute to a constant. In the relational case the tests are
conjunctions of relations, instantiated with variables (starting with upper case)
and constants, and are mapped against the examples. For each example, a test
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results in ’yes’ or ’no’. The conjuncts in the tests refer to background relations,
while the leaves predict a value for the target in the target relation.

targetField(SimID,FieldA),
 fieldDataYear(SimID,FieldA,0,Crop,SowingDate),

 SowingDate<=252

fieldDataYear(SimID,FieldA,0,Crop,SowingDate),
 SowingDate<=233

yes

contamination(SimID,neg)

no

contamination(SimID,pos)

yes

neighbor(SimID,FieldA,FieldB,noborder),
 fieldDataYear(SimID,FieldB,1,gmOSR,SowingDate)

no

contamination(SimID,pos)

yes

contamination(SimID,neg)

no

Fig. 2. An example of relational classification tree predicting whether a field in a large-
risk field plan is contaminated by a GM crop (Section 5).

An example of a relational classification tree for predicting the contamination
of the central field of a large-risk field plan is given in Figure 2. The top node of the
tree calls FieldA the target field we are interested in (targetField(Sim,FieldA)) and
checks whether the sowing date of FieldA in the present year (year 0) is before the
252th day of the year, i.e., 9 September (fieldDataYear(Sim,FieldA,0,Crop,Sowing-
Date), SowingDate<252). If not, then the field is predicted not to be contaminated.
If yes, there is another test that checks if the sowing date of FieldA in the present
year is before the 233th day of the year (21 August). If it is the case, then the
field is predicted to be contaminated. If not, then the contamination depends on
whether the target field has a neighboring field (called FieldB) with which it is
adjacent (neighbor(Sim,FieldA,FieldB,adjacent)), and which had GM oilseed rape
in the previous year (fieldDataYear(Sim,FieldB,1,gm-OSR,SowingDate)). Remark
that this kind of test can not be found by a propositional system. A propositional
decision tree can only refer to a particular field, e.g., it can check whether field
20 had GM oilseed rape in the previous year, but it can not check this for any
neighbor field without enumerating them all.

For easier inspection and comprehensibility relational decision trees can be
transformed/reformulated into relational decision lists, i.e., ordered lists of rela-
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tional rules. When applying a decision list to an example, we always take the
first rule that applies and return the answer produced. A decision list is produced
by traversing the relational decision tree in a depth-first fashion, going down left
branches first. At each leaf, a rule is output that contains the prediction of the
leaf and all the conditions along the left (yes) branches leading to that leaf.

The two major algorithms for inducing relational decision trees are upgrades of
the two most famous algorithms for inducing propositional decision trees. SCART
[17, 18] is an upgrade of CART [3], while Tilde [1, 13] is an upgrade of C4.5 [20].
Both SCART and Tilde have their propositional counterparts as special cases.
The actual algorithms thus closely follow CART and C4.5.

In our relational data analysis, we used the system Tilde for building relational
classification trees. The algorithm is included in the ACE-ilProlog data mining
system [4].

3.3 Evaluating predictive performance

For classification problems it is natural to measure a classifier’s performance in
terms of accuracy. The classifier (in our case a predictive model in the form of a
propositional or relational classification tree) predicts the class of each example:
if the prediction is correct, that is counted as success; if not, it is an error. The
accuracy is the proportion of successful predictions (classifications) made over the
whole set of instances, and it measures the overall performance of the classifier
[23].

The performance of machine learning methods for regression (such as propo-
sitional and relational regression trees) can be measured by the correlation coef-
ficient, which measures the statistical correlation between the predicted and the
real values of the target variable. The correlation coefficient ranges from 1 for
perfectly correlated results, through 0 when there is no correlation, to -1 when
the results are correlated perfectly, but negatively. Other performance measures
for regression include root mean squared error (RMSE), relative RMSE (RRMSE)
and mean absolute error (MAE).

As mentioned before, the data on which we build a predictive model is called
the training set/data. Normally, we are interested in the future performance of
the model on new data. The accuracy on the training set is not a good indicator
for future performance, since the classifier has been learned from the very same
training data and any estimate of performance based on that data will be very
optimistic. Thus, to evaluate the performance of a classifier, we have to assess its
accuracy on a dataset that played no part in the formation of the model. This
independent dataset is called test set. It is assumed that both training data and
the test data are representative samples of the underlying problem.

If large sets of data are available, a large sample is taken for training, and
another, independent large sample of different data for testing. However, in many
real problems the data is limited, and in this case a certain amount of the dataset
is set aside for testing, and the remainder is used for training (this is called a
holdout procedure).

In general, we cannot tell whether a sample chosen from the dataset is rep-
resentative or not, so to avoid any bias caused by the particular sample chosen
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for holdout, the whole process, training and testing, is repeated several times
with different random samples. This technique is called cross-validation. In cross-
validation, we decide on a fixed number of folds, or partitions of the data. Suppose
we use k folds, then the data is split into k approximately equal partitions and each
in turn is used for testing and the remainder is used for training. This procedure
is repeated k times so that, in the end, every partition has been used exactly once
for testing. This is called k-fold cross-validation. At the end, the accuracies on the
different iterations are averaged to yield an overall accuracy.

In practice, 10-fold cross-validation is used. Extensive tests on numerous datasets,
with different learning techniques, have shown that 10 is about the right number
of folds to get the best estimate of the accuracy, and there is also some theoretical
evidence that backs this up [23]. Although there is still a debate what is the best
scheme for evaluation, 10-fold cross-validation has become a standard method for
evaluation of machine learning methods.

4 Learning co-existence rules for pairs of fields

This part of the analysis presents the application of propositional machine learning
techniques on outputs from GENESYS simulations.

To learn co-existence rules for pairs of fields, three different output variables
were analysed:

– the proportion of pollen dispersed from a donating to a receiving field,
– the same for seeds,
– the proportion of GM seeds in non-GM oilseed rape harvests (hence harvest

contamination).

4.1 Predicting the proportion of pollen/seed dispersal

In each simulation, the field plan was limited to two individual field. The simula-
tions were obtained by taking all possible combinations of the following properties:
(1) the distance between the plots (0, 10, 50, 100, 500, 1000, 1500, 2000 or 3000
m); (2) their areas (9, 100, 961 or 10000 m2); (3) their shapes (square, linear with
1-m-width or intermediate with length equal to three times the width); and (4)
the orientation of the two plots (parallel or perpendicular). In total, there were
9 ·42 ·32 ·2 =2592 couples of plots tested. For each of these couples, the proportions
of pollen and seeds from the first plot to itself, from the first plot to the second
plot, from the second plot to itself and from the second plot to the first plot were
simulated and analysed, resulting into 4 · 2592 =10368 situations (examples).

To summarize, the field descriptors used as attributes in the analysis were the
following:

– DispersalType (type of dispersal, i.e., identical vs. distinct donating and re-
ceiving fields),

– Distance (between fields),
– Orientation (of the fields related to each other),
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– Area D (area of donor field),
– Area R (area of receiver field),
– RatioLW D (shape: ratio length to width of donor),
– RatioLW R (idem for receiver),
– Circumference D (circumference of donor field),
– Circumference R (circumference of receiver field).

For each of the output variables, a model tree was fitted. In all the cases, the cor-
relation coefficient r2 of the regression trees, obtained with 10-fold cross-validation,
was extremely large (0.99). The structures of the pollen and seed dispersal trees
were similar (Fig. 3).

DispersalType

Distance

distinct 

RatioLW_D

 identical

0.0328

<=30 

0

 >30

0.3567

 <=0.222

Area_D

 >0.222

0.4698

<=54.5

Area_D

  >54.5

0.7689

 <=530.5

0.9339

  >530.5

DispersalType

Distance

distinct  

RatioLW_D

 identical

Distance

<=30  

0

 >30

0.5145

 <=0.222

Area_D

  >0.222

Area_R

<=5  

0

 >5

0.0755

<=100 

0.01

>100

-0.0269*Circumference_D
 + 1.0082

<=54.5

Area_D

 >54.5

0.877

<=530.5

0.9557

 >530.5

Fig. 3. Model trees for predicting pollen (left) and seed (right) dispersal (proportions
dispersed from a donating field to a mean m2 of a receiving field). Explicative variables
are distance between fields (in m), length/width ratio (RatioLW D) and circumference
(Circumference D, in m) of donating field, areas of donating (Area D, in m2) and re-
ceiving fields (Area R, in m2), and dispersal type (identical vs. distinct donating and
receiving fields).

The main factor explaining the proportion of immigrating pollen was the ”type”
of dispersal, i.e. dispersal was larger for pollen movement from a plot to itself than
from a plot to a distinct neighbor plot (Fig. 3, left). In the case of distinct plots,
the only other factor was the distance between fields: below 30 m, mean pollen
dispersal to a mean m2 of the receiving field was 0.03 of the production of the
donating field; above 30 m, it was nil. In case of seed dispersal to neighbor fields
(Fig. 3, right), the distance threshold was 5 m, and the area of the receiving
plot also had an effect: the larger this area, the smaller the dispersal because the
incoming seeds were distributed over a larger reception area.
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In case of self-dispersal, i.e. dispersal from a plot to itself, the shape of the field
was most important: self-dispersal was lower for rectangular (low width/length
ratio) vs. square plots. In the case of ”squarer” plots, both pollen and seed dispersal
increased with field area.

4.2 Predicting the adventitious presence of GM seeds

For predicting the third output variable (harvest contamination) the same 2592
plot couples were used to simulate harvest contamination, but additional input
variables were necessary, comprising cropping systems, initial seed bank and the
characteristics of the oilseed rape varieties. Each simulation covers a period of
25 years, which is far longer than the time during which the initial seed bank
influences harvest contamination [9]. As only the last year was used for analysis,
we were able to ignore the effect of the initial seed bank present at the onset of the
simulation and started all simulations with an empty seed bank. Six contrasted
cropping systems were identified by Colbach et al. (2004). They comprised two
high-risk systems (with frequent GM rape), two intermediate systems and two
low-risk systems (with GM rape only every 10 or 25 years). The varieties used
in these systems were high-risk genotypes (low self-pollination of non-GM plants,
large pollen emission of GM plants, etc.) or low-risk genotypes (high non-GM self-
pollination, low GM pollen emission etc.). The remaining cultivation techniques
were also chosen according to these contrasted cropping systems.

For each of the 6 cropping systems and 2592 plot couples, 7 repetitions were
simulated, resulting into 108864 simulations (examples). The 7 repetitions re-
sulted from starting each time with a different crop from the 7-year rotation (e.g.
rape/winter wheat/spring barley/set-aside/rape/winter wheat/spring barley) sim-
ulated in the plot couples.

So in this analysis we used the following attributes:

– CroppingSystem (6 options)
– FirstCrop (7 options)
– Distance (between fields)
– Orientation (of the fields related to each other)
– Area D (area of donor field)
– Area R (area of receiver field)
– Circumference D (circumference of donor field)
– Circumference R (circumference of receiver field)

The structure of the regression tree for harvest contamination (Fig. 4) was very
different from the structures of the trees for predicting pollen and seed dispersal.
The main factor was the effect of cropping system. In case of the maximum-risk
systems as well as intermediate and low-risk systems, field characteristics had no
influence at all. Only in the case of the high-risk systems was there any effect
of field characteristics, which were similar to those observed for pollen and seed
dispersal: harvest contamination increased with the area of the gene-donating field
and was more important in case of rectangular vs. square donating fields.
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CroppingSystem

0.9832

max risk  

Area_D

  high risk

0

medium and
 low risk

0.3032

<=54.5

Circumference_D

  >54.5

Area_D

<=1192.94

0.2689

  >1192.94

0.33

<=100

0.403

  >100

Fig. 4. A regression tree for predicting harvest contamination (rate of adventitious pres-
ence of GM seeds in non-GM oilseed rape harvests). Explicative variables are area of
donating field (Area D, in m2), cropping system (labeled as max risk, high risk, medium
and low risk), and circumference of donating field (Circumference D, in m).

The identified effects of field characteristics were consistent with previous sensi-
tivity analyses [10] and the knowledge on dispersal mechanisms: dispersal decreases
with distance from the pollen or seed source, large areas emit more pollen or seeds
and ”dilute” the incoming material, rectangular plots emit more material because
most of their surface is close to a neighbor field etc. In contrast to the previ-
ous study, the present work improves the knowledge on interactions, e.g. that the
shape of fields is most important for small fields. The most interesting result was
the interaction between cropping systems and field characteristics, showing that
the latter were only important in certain situations such as the high-risk system in
the present study. This system comprised frequent GM and non-GM oilseed rape
crops both in space and in time and, most importantly, non-GM varieties with
low self-pollination rates (50%) [9]. In case of omnipresence (maximal-risk crop-
ping system) or low frequency of GM pollen and seeds (intermediate and low-risk
systems), field plan characteristics present a negligible effect.

The results of this section confirmed the overall importance of the cropping
systems, overriding most of the field plan effects. To obtain satisfactory simulations
with GENESYS, it is thus most important to concentrate on gathering input data
on cropping system while errors on field coordinates should have less impact.
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5 Learning co-existence rules for a large-risk field plan

The aim of this analysis was to estimate how the properties of the farming region
and the cropping system influence the rate of contamination of non-GM crops with
GM seeds. In this part of the analysis, the focus was not on predicting gene flow and
contamination between pairs of fields, but on predicting the rate of adventitious
presence of GM seeds in the central field of a large-risk field pattern (Figure 5).

Fig. 5. Large-risk field plan. Out-crossing rate for the central field (dark-shadowed field
with number 14) was predicted. Neighbor fields are numbered from 1 to 13 and 15 to
35. (Borders are numbered from 36 to 56 and are small grass strips between cultivated
fields, but in our analysis only the large-risk field plan without borders was used.) [10]

The large-risk field plan consists of a small and rectangular central field (field
number 14) surrounded by large neighbor fields, a combination which maximises
pollen and seed input into the central field. The dataset used in this analysis was
based on previous sensitivity analyses of GENESYS to field patterns [7, 8, 10].
Each simulation starts with an empty soil seedbank and covers a period of 25
years. Each year, the crops and the management techniques for crops were chosen
randomly, as well as the genetic variables describing the oilseed rape varieties.
The only exception was the crop grown during the 25th year in the central field
which was always non-GM oilseed rape. Our target variable was the rate of harvest
contamination (adventitious presence of GM seeds) in this crop. 100000 simulations
of crop rotation on the large-risk field plan without borders were performed. Of
the 25 simulated years of each simulation, full details were kept only for the last 4
years.
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The dataset produced by GENESYS was analyzed using relational decision
trees. Our assumption was that the contamination of a field with GM seeds de-
pends a lot on the cropping techniques and crops grown on the surrounding fields
(e.g., the level of contamination of a field may be influenced by the crop grown
at or the level of contamination of its neighboring fields). So it seems worthwhile
to exploit neighborhood relations in the predictive model and create a relational
representation of the problem. Also, the probability of contamination might in-
crease if the field plan contains a lot of contaminated fields. Therefore it would
be useful to investigate properties at the regional level, which can be obtained by
aggregating over the individual fields. For this study we used Tilde [1], a system
that builds relational decision trees.

According to the previous analysis of factors for presence and abundance of
GM oilseed rape [14], a field is most likely to be contaminated if GM oilseed rape
had been grown in the same field previously. Having this in mind, we filtered the
dataset originally consisting of 100000 examples, excluding the examples in which
there was GM oilseed rape grown on the target field in the last four years. The
reason to do this was to avoid generating very obvious rules (for example: if there
was GM oilseed rape on the target field in the last four years, the probability that
it will now be contaminated is almost 100%) and try to see what is the role of the
neighboring fields. At the end the dataset consisted of 64877 examples.

We used the following relational representation of the data. The target re-
lation was contamination(SimID,RateAdvPres), where RateAdvPres is the target
variable, denoting the rate of adventitious presence of GM varieties of the non-GM
central target field and SimID is the number (from 1 to 100000) of the simulation.

The background relations were related to the cultivation techniques, the year
that oilseed rape was last planted at a given field, and the geometry of the field
plan. A first relation is targetField(SimID,FieldID), denoting that FieldID is the
target field of the field plan. In this analysis, FieldID always refers to field 14 (see
Figure 5), although the applied method allows to vary the target field per ex-
ample. In the relation fieldDataYear(SimID,FieldID,Year,CultivationTechniques),
CultivationTechniques is a list of variables describing the cropping techniques.
Here we use only crop and sowing date and ignore the other cropping tech-
niques, like tillage, sowing density, efficiency for herbicides on non-GM/GM vol-
unteers, 1st/2nd cutting, harvest loss and grazing. Year takes values from [0,
1, 2, 3], 0 denoting the present year and 3 - three years ago. In the relation
lastOSR(SimID,FieldID,LastGM,LastNonGM), LastGM is the number of years ago
[1..25] in which GM oilseed rape was last grown on FieldID, and LastNonGM is
the number of years ago in which non-GM oilseed rape was last grown on FieldID.

The relation neighbor(SimID,Field1ID,Field2ID,NeighType) holds if the mini-
mum distance between Field1 and Field2 is zero. If they have a common edge of
non-zero length, NeighType is adjacent, and if they have only one point in common
(touching with only one corner), then NeighType is corner. Additional information
on the area of fields, their mutual distances (average and minimal), and length of
the common edges was available, but was not used in our analyses.
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Experiments and results. For the experiments we discretized the target at-
tribute, in order to obtain a classification problem. If the rate of harvest con-
tamination exceeds 0.9%, an EU labeling threshold, the target field is considered
contaminated, otherwise not.

Given the size of the dataset, we used a sampling strategy to build the tree:
at each node only 10000 examples are used to evaluate the tests and select the
best test. Afterwards, the whole dataset is split according to this best test. The
minimum number of examples a leaf has to cover was set to 600, and a random
proportion of 20% of the data was set aside as a validation set for pruning.

We tried the following experimental settings:

– Propositional: besides the target relation contamination(SimID,RateAdvPres),
only (propositional) data for the target field is included (not using any relations
among the fields), i.e., the following predicates are used:
• fieldDataYear(SimID,FieldID,Year,Crop,SowingDate), for the target field
• lastOSR(SimID,FieldID,LastGM,LastNonGM), for the target field

– Neighbor: the same relations were used as in the Propositional setting, but
now other fields are introduced via the neighbor relation, starting at the target
field:
• neighbor(SimID,Field1ID,Field2ID,NeighType)

Note that the information on the neighboring fields from the relations field-
DataYear and lastOSR can also be used.

For each of these settings, we report the tree size (number of nodes) and the
predictive performance in Table 1. The accuracy was measured by three-fold (and
not 10-fold) cross-validation due to high computational complexity resulting from
the large size of the dataset.

Propositional Neighbor
tree size 15 13
accuracy 78.35% 79.66%

Table 1. Tilde’s experimental results.

In addition, we give examples of rules obtained in each of the experimental
settings tried. The following rule is an example from the Propositional experiments:

contamination(S,neg):-targetfield(S,T), fieldDataYear(S,T,0,Crop,SowingDate), SowingDate<252,

yearsSinceOSR(S,T,Gm,NonGm), Gm>5, !.

The above rule states that the target field will be predicted as not contami-
nated, if the sowing date in the present year is before the 252nd day of the year (9
September) and the last GM oilseed rape grown on it was more than 5 years ago.

The relational model contains 4 nodes referring to neighboring fields. The next
rule is an example from the relational model (Neighbor experiments) which uses
information about a neighboring field:
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contamination(S,pos):-targetField(S,T), fieldDataYear(S,T,0,Crop,SowingDate), SowingDate<252,

neighbor(S,T,FieldA,adjacent), fieldDataYear(S,FieldA,1,gm-OSR,SowingDate),!.

This rule can be interpreted as follows: if the sowing date of the target field in
the present year is before the 252nd day of the year (9 September) and it has a
neighboring field (FieldA) with which it is adjacent, and the neighboring field had
GM-OSR last year, then the target field is predicted to be contaminated.

The results from the analysis in every experimental setting showed that the
most important attribute for determining the contamination of the target field is
the sowing date as was also shown in [16]. The later the sowing date the lower
the contamination, because the GM volunteers can appear and be destroyed prior
to the sowing of the non-GM oilseed rape, thus decreasing the possibility of its
contamination with GM material. Another important factor that influences the
contamination of one field is the crop grown on its neighboring fields. If GM
crops are grown in the nearest neighborhood of the target field, then it is very
probable that it will be contaminated. Also, as said previously, if the target field
had GM crops grown on it in the past years, then it is almost certain that it will
be contaminated.

From the results and the comparison of accuracies of the relational to the
propositional experiments we have noticed that the former provided only a small
improvement in accuracy (1%). However, this study is only a first step in using
the relational data mining methods for analysis of outputs of complex simulation
models. Exploring the possibility of varying the field plans and target fields within
them might use the advantages of relational methods in their full and result in
higher improvement in accuracy.

6 Conclusions and further work

In this paper, we have studied the use of machine learning for analyzing the output
of complex simulation models in the context of understanding the co-existence
of GM and non-GM crops and the conditions for its feasibility. The outputs of
the GENESYS model, designed to study the co-existence on conventional and
GM oilseed rape crops, were analysed by using the machine learning method of
decision tree induction. Co-existence and adventitious presence of GM material
were studied in several contexts, including gene flow between pairs of fields, the
interactions of this process with farming practices (cropping systems), and gene
flow in the context of an entire field plan. The results of our study confirmed that
machine learning is a powerful tool for learning co-existence rules for GM and
non-GM crops from the output of complex simulation models.

We first used machine learning to learn co-existence rules for pairs of fields,
predicting the pollen and seed dispersal, as well as the proportion of GM seeds
in non-GM oilseed rape harvests (harvest contamination). For each of the three
target attributes, very accurate model and regression trees were built (with cross-
validated correlation coefficients of 0.99). The trees were also simple enough to
be inspected and understood. The results showed that the identified effects of
field characteristics were consistent with previous sensitivity analyses [10] and
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the knowledge on dispersal mechanisms: dispersal decreases with distance from
the pollen or seed source, large areas emit more pollen or seeds and ”dilute” the
incoming material, rectangular plots emit more material because most of their
surface is close to a neighbor field etc. In contrast to the previous study, our anal-
ysis improves the knowledge on interactions between individual influencing factors,
e.g., that the shape of fields is most important for small fields. The most interest-
ing result was the interaction between cropping systems and field characteristics,
showing that the latter were only important in certain situations such as the high-
risk system in the present study. This analysis confirmed the overall importance
of the cropping systems, overriding most of the field plan effects. To obtain satis-
factory simulations with GENESYS, it is thus most important to concentrate on
gathering input data on cropping system while errors on field coordinates should
have less impact.

We then used machine learning to analyze the influence of the farming region
and various cropping systems on the contamination of non-GM crops with GM
material. For the purpose of this analysis, we used a large-risk field plan and
learned to predict the contamination of the central field based on the cropping
systems and farming practices of the central field and its neighbors. Given the
relational nature of this problem (namely, the relations to neighboring fields in the
field plan are expected to play an important role), we used the relational decision
tree learning system TILDE. The actual target variable that we predicted was
whether the level of adventitious presence exceeds the 0.9% threshold set by EU
regulations. We also constructed classical (propositional) decision trees which only
used the properties of the central field. The cross-validated classification accuracies
reached around 80%, with the relational approach achieveing a higher (albeit only
by 1%) accuracy. The learned model also clearly made use of the relational aspects,
referring to the properties of and farming practices applied to the neighboring fields
of the target (central) field.

While data analysis and machine learning methods had previously been used to
analyze the output of simulation models for studying the co-existence of GM and
non-GM crops, the use of relational learning methods is a novelty and a unique
contribution of our study. The relational learning methods allow us to use the re-
lational aspects, both spatial and temporal, of the information concerning the field
plan and farming practices applied to the field in it. In fact, these methods would
allow us to vary the target field within a chosen field plan, as well as consider com-
pletely different field plans at the same time, and thus obtain more generally valid
co-existence rules. This is a unique advantage as compared to the data analysis
method applied so far to the problem at hand.

The most natural direction for further work would be to use a larger amount
of simulation data that would exploit the advantages of the relational learning
methods. This would mean running GENESYS simulations with different field
plans, as well as with different target fields within each field plan. In this way, we
would exploit the relational capability of the learning methods better and obtain
more accurate and more general co-existence rules. Another direction for further
work would be to use the same general approach of using machine learning, and
the more specific approach of using relational learning, to analyse the simulation



18

results of other models designed to study the co-existence of GM and non-GM
crops. Finally, the general methodology we propose would be applicable to the
analysis of results of simulation models in other areas of ecology.
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Campagne 1995-96, CETIOM, 22p.

6. Colbach, N., Meynard, J.M., Clermont-Dauphin, C., Messéan, A.: GeneSys: A model
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