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ABSTRACT. This article is concerned with variable selection methods for the pro­
portional hazards regression model. Including too many covariates causes extra 
variability and inflated confidence intervals for regression parameters, so regimes 
for discarding the less informative ones are needed. Our framework has p covari­
ates designated as 'protected' while variables from a further set of q covariates are 
examined for possible in- or exclusion. In addition to deriving results for the AIC 
method, defined via the partial likelihood, we develop a focussed information cri­
terion that for given interest parameter finds the best subset of covariates. Thus 
the FIC might find that the best model for predicting median survival time might 
be different from the best model for estimating survival probabilities, and the best 
overall model for analysing survival for men might not be the same as the best 
overall model for analysing survival for women. We also develop methodology 
for model averaging, where the final estimate of a quantity is a weighted average 
of estimates computed for a range of submodels. Our methods are illustrated in 
simulations and for a survival study of Danish skin cancer patients. 

KEY WORDS: Akaike's information criterion, covariate selection, Cox regression, 
focussed information criteria, median survival time, model averaging 

1. Introduction and summary 

Suppose survival data of the form (ti' Oi, Xi, Zi) are recorded for n individuals, where ti is 

life-time, possibly censored, Oi is an indicator for non-censoring, Xi contains say p covariates 

that are deemed necessary in the regression model, while Zi has say q further covariates 

potentially worthy of inclusion. The most popular model for such data is the Cox model 

of proportional hazards, where the hazard rate for individual i is expressed as 

hi(u) = ho(u) exp(x;,6 + z;,) for i = 1, ... , n. (1.1 ) 

Here ho( u) is assumed to be continuous and positive over the range of life-times of interest, 

but is otherwise not specified. This makes the model partly parametric and partly nonpara­

metric. Inference about (,6,,) typically proceeds using the well-known partial likelihood 

Ln (,6,,), properly defined in Section 2. 

This article is concerned with developing methods for selecting the in some sense best 

covariates Zi,j among the q. The argument against simply including all of them is that 

this may cause too much estimation variability, leading to inflated confidence intervals and 

less powerful tests. On the other hand including too few covariates could mean serious 

modelling bias and missing important explanatory features in the analysis. Thus selecting 

'the best' set is a statistical balancing act between bias and variance. 
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1.1. The Danish malignant melanoma study. For an illustration we study the skin 

cancer survival analysis data set that is described and analysed extensively in Andersen, 

Borgan, Gill and Keiding (1993) and elsewhere. In this Danish study, 205 patients with 

malignant melanoma had radical removal surgery and were followed after operation over 

the time period 1962-1977. Several covariate variables are of potential interest for studying 

survival chances, including 

Xl, indicator for sex of the patient (woman = 1, man = 2); 

Zl, thickness of the tumour, more precisely Zl = (z~ - 292)/100 where z~ is the real 

thickness, in 1/100 mm, with the average value 292 subtracted out; 

Z2, infection infiltration level, a measure of resistance against the tumour, from high 

resistance 1 down to low resistance 4); 

Z3, presence indicator of so-called epithelioid cells (present = 1, non-present = 2); 

Z4, ulceration presence (present = 1, non-present = 2); 

Z5, invasion depth (at levels 1, 2, 3); and 

Z6, age of the patient at the operation (in years). 

Patients dead of other causes or still alive in 1977 are treated as censored observations. 

Among the findings in Andersen et al. (1993) were that men tend to have higher hazard 

than women. That is why we designate Xl as 'protected' here, and look for 'the best' 

covariates to keep among Zl, ... , Z6. Data rows for the first five and the last five of the 205 

are as follows (we have sorted the 205 rows by increasing life-times). Here Ci is 1 if dead 

from the illness, 2 if censored, and 4 if dead from other reasons, so that Oi = I {ci = I}. 

ti Ci Xl Zl Z2 Z3 Z4 Z5 Z6 

1 10 4 2 3.84 3 2 1 2 76 
2 30 4 2 -2.27 1 1 2 1 56 
3 35 2 2 -1.58 3 1 2 2 41 
4 99 4 1 -0.02 3 1 2 1 71 
5 185 1 2 9.16 3 2 1 3 52 

201 4492 2 2 4.14 4 2 1 3 29 
202 4668 2 1 3.20 3 2 2 3 40 
203 4688 2 1 -2.44 2 2 2 1 42 
204 4926 2 1 -0.66 2 1 2 1 50 
205 5565 2 1 -0.02 3 1 2 2 41 

TABLE 1.1. The first five and the last five rows from the Danish malignant 
melanoma survival data set, with life-times ti (in days), censoring indicator Ci, 

and covariates Xl, Zl, ... ,Z6 as described above. 

1.2. Some selection methods. There are rather few well-developed variable selection 

methods for the Cox model. Methods involving pre-testing of coefficients and variants of 

backward and forward regression can be put forward, in partial analogy with linear or 

generalised linear regression theory; we know of no serious study of the performance of 

such methods in the Cox model context, however. The general model averaging theory 
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we develop in Section 8 below will actually accurately describe the performance of such 

methods. Fan and Li (2002) propose a penalised version of the log-partial likelihood, with 

a penalty called the smoothly clipped absolute deviation. This penalty depends on two 

unknown parameters where the first is fixed at a pre-determined value while the second 

is chosen via an approximation to generalised cross-validation. Tibshirani (1997) uses the 

lasso method for variable selection in the Cox model; this and similar L1 based methods 

refined later in Efron, Hastie, Johnstone and Tibshirani (2004) are of particular value 

when the number q of non-protected covariates is large. Bunea and McKeague (2004) 

also introduce a penalised partial likelihood, where now the penalty depends on both 

the number of parameters in the parametric part of the model and on the number of 

components in the sieve construction to estimate the unknown baseline hazard function. 

More traditional model selection methods such as AIC and BIC are not automatically 

defined for Cox models, since there is no workable full likelihood for data. One may however 

choose to use the partial likelihoods, say Ln,s for the model that only uses covariates Zi,j 

for j E S, which leads to 

AICn,s = 2 log Ln,s(!3s,-;;;s) - 2(p+ lSI), 
BIen,s = 2 log Ln,sC!3s, -;;;s) - (p + lSI) log n, 

(1.2) 

in terms of the Cox estimators (!3s,-;;;s) inside the S submodel. Here lSI denotes the 

number of elements in S, and the model with the highest score is selected. These model 

selection schemes are easily implemented using software for handling the Cox regression 

model. Volinsky and Raftery (2000) investigate some aspects of the BIC scheme, including 

discussion of other penalty factors, along with versions of Bayesian model averaging strate­

gies for the Cox model. Less theory has however been developed for the AI C and BI C 

methods valid for the Cox model than for fully parametric regression models. It should 

be noted that these criteria work only with the parametric part of the (1.1) model, thus 

ignoring the nonparametric part. It is therefore not clear whether model selectors using 

(1.2) are relevant when it comes to consequences for questions that relate to all of the (1.1) 

model, like survival probabilities and median survival time. For the melanoma data set, 

at any rate, the AIC method selects variables 2, 3, 4, 5, 6 among the Zi,jS while the BIC 

regime chooses variables 4, 5. 

1.3. Focussed information criteria and model averaging. Different selection method 

find different 'best subsets', as dramatically witnessed for the Danish melanoma data set 

with the AIC and the Ble. What all the methods mentioned above have in common 

is however that they advocate one and only one final model, regardless of its intended 

use, whether this involves predicting median survival time or estimating survival chances 

for patients with unusual characteristics and so on. We shall develop a certain 'focussed 

information criterion', the FIC, that for each parameter of interest finds the best submodel 

for that purpose. Specifically, for a given focus parameter {-L({3, r, Ho), where Ho is the 
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cumulative baseline hazard rate, we are able to estimate the mean squared error for each 

of the many candidate estimators, say lis for the model indexed by subset S. The FIC 

strategy is to select the model with lowest possible mean squared error estimate. 

We do not view this as a paradox, even if it means leaving behind the traditionally 

strong and conceptually sirening paradigm of finding one adequate model to explain all 

aspects and facets of the data. Thus for the Danish skin cancer data we shall see in Section 

9 that when it comes to estimating a certain relative risk parameter, then the FIC selects 

the narrow model as the best one, with only Xl and none of the ZjS; while for estimating 

a certain survival probability, FIC chooses to include Z5. 

When a model selection scheme like the AIC or FIC is followed to produce an estimator 

it is important to realise that the real variance involved is larger than if the selected 

model had been given in advance. Studying statistical properties of such post-selection 

estimators involves more work than simply understanding the limit distributions of the 

Cox estimators. In our article we reach precise large-sample results for a broad class of 

'compromise estimators' that interpolate between all candidate models, with the post­

selection estimators constituting special cases. The limit distributions involved are not 

normal, but rather non-linear mixtures of different normals. 

The theory and results for our FIC and model average estimators parallel development 

and findings in our earlier articles Claeskens and Hjort (2003) and Hjort and Claeskens 

(2003a, 2003b), hereafter referred to as CH and HC (2003). These articles were concerned 

with likelihood methods for general parametric models, including various regression mod­

els, but the results reached there do not capture and cannot be applied directly inside the 

Cox regression model. This is partly because of the censoring and of the semiparametric 

nature of model (1.1), rendering analysis of estimators that combine both H o and ((3, ,) 

estimators difficult. Thus a separate development for building a proper FIC along with 

proper model average methods for the Cox model has been necessary. 

We learn in doing so that the CH and HC (2003) theory and methods carryover 

with reasonable ease to situations which involve only the regression parameters ((3, I); in 

other words, as long as questions are posed that can be answered in terms of ((3, I), one 

does not need significant extensions of the already available theory. This comment will 

be seen to apply also to results for the AIC strategy. Many questions of interest relate 

however to the full (1.1) model, including the hazard rate part, like the median survival 

time HOI (log 2j exp(xt(3 + zt,)), the survival probability exp{-exp(xt(3 + zt,)Ho(t)}, 
likewise conditional survival probabilities given than one has survived up to a certain time 

point, etc. It is for such questions that the CH and HC (2003) theory needs harder work 

to be appropriately extended, as seen in the sections to follow. 

1.4. The present article. Our article is organised as follows. Section 2 sets the 

basic framework, properly defining all subset estimators lis for a given focus parameter 

/1(Ho, (3, I), and provides a local neighbourhood formulation that turns out to give fruitful 
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large-sample approximations to modelling bias, variance, and distributions of estimators. 

In Sections 3 and 4 we develop theory for describing the behaviour of submodel-based 

estimators /3s and 1s for the regression coefficients and Ho,s for the cumulative hazard. 

This is used in Section 5 to provide precise large-sample results for limit distributions and 

limiting risk for all submodel estimators. This is a harder task than proving limit theorems 

for the Cox estimators, in that these need to be studied also outside model conditions and 

since we need to care about simultaneous aspects of all the estimators involved. 

In Section 6 we go through a list of particularly important parameters of interest, 

including survival probability curves for given strata of patients, median survival times, 

and relative risks. This is also where we describe how to estimate various quantities 

necessary for implementing the FIC methods. Section 7 gives the proper machinery for 

the FIC and its averaged versions. Then in Section 8 a 'master theorem' is provided that 

accurately describes the limit distribution for a large class of model average estimators. 

This in particular provides precise descriptions of the large-sample behaviour of all post­

selection strategies, like the AIC and the FIC. Section 9 illustrates our methods in some 

settings with simulated data and goes on to analyse the Danish melanoma survival data 

set. Our article ends with a list of concluding remarks in Section 10, some of which might 

lead to further research work, and with Section 11, where we gather all proofs of lemmas 

from earlier sections. 

2. A framework for covariate subset selection 

Working inside the (1.1) model, with life-time data observed or partly observed over a time 

horizon [0, T], the log-partial likelihood can be written 

log Ln C8, 1') = tiT [x~,8 + zi'Y - log{t Yi( u) exp(x~,8 + zi'Y) } ] dNi ( u), (2.1) 
i=l 0 i=l 

where Yi(u) = I{ti 2:: u} and dNi(u) = I{ti E [u,u + du],oi = I}. The maximum 

partial likelihood estimators, also referred to as the Cox estimators, are the (/3,1) values 

maximising (2.1). The theory to be developed in our article will partly utilise the large­

sample theory associated with counting processes and martingales, as exposited e.g. in 

Andersen et al. (1993), where results are most comfortably reached if the upper time limit 

T is finite, so we shall assume it to be so; somewhat more technical assumptions are needed 

if one wishes to obtain results valid for T = 00. 

For each subset S of {I, ... ,q} we may study the model indexed by (,8,'Ys), where 

'Ys contains precisely those 'Yj coefficients where j E S, i.e. corresponding to including 

in the model only those Zi,j where j E S, excluding those with j tt S. There is a total 

of 2q such submodels to consider. Sometimes several of these might be ruled out on a 

priori grounds, e.g. when there is a natural ordering in complexity, in which case only 

the q + 1 nested submodels of {I, ... ,q} are considered. For each submodel S there are 
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Cox estimators (/3s,;;Ys), and also an accompanying Aalen-Breslow type estimator of the 

cumulative baseline hazard function, namely 

ii (t) = it L~l dNii u) 
o,S n t t ~ , 

o Li=l Yi(u) exp(xi;Js + Zi,S'S) 

(2.2) 

where Zi,S means the components Zi,j of Zi for which j E S. For given estimand of interest, 

say ~ = ~(;J", H o), there is accordingly a list of potential estimators 

(2.3) 

one for each submodel. The notation indicates that one uses the null value ,j 0 for 

j tJ- S, i.e. for j E se, the complement set. The ~ in question may also depend on covariate 

positions x and z, as exemplified in Sections 6 and 9. 

We shall study questions of covariate inclusion and exclusion inside a large-sample 

framework where, is small or moderate, and where the largest of the models, the one 

containing all p + q covariates, contains the truth. More specifically, the real hazard rate 

functions are taken to be 

hi,true(u) = ho(u) exp(x;;J + z;7]/vin) for i = 1, ... , n, (2.4) 

for suitable (;J1, ... ,;Jp)t and (7]1, ... , 7]q)t. This turns out to be a fruitful framework for 

deriving accurate approximations to modelling bias and variances and hence mean squared 

errors for different estimators, essentially because variances and squared biases now become 

exchangeable currencies, both of order O(l/n). See also the general discussion surrounding 

these issues in CH and HC (2003). 

3. Submodel estimators for hazard regression coefficients 

This section develops theory for the large-sample behaviour of all submodel estimators 

(;J s, ;;Y s ). This requires some modifications and extensions of standard theory for the Cox 

regression models, in that we need to analyse estimators for models that are perhaps 

approximately but not fully correct. We also need an apparatus for handling estimators 

from different submodels simultaneously. See Andersen and Gill (1982), Gill (1984) and 

Andersen et al. (1993) for such 'standard theory'. 

To properly analyse the submodel estimators we need to introduce certain random 

quantities and their limit functions. Let 

n 

G~O) (u,;J, ,) = n-1 L Yi( u) exp(x;;J + z;,), 
i=l 
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along with 

We shall also need the sub-functions associated with subset S being used instead of the 

full {I, ... , q}; thus G~I~ is the p + lSI-vector where the first p components make up G~lb , , 

and the next lSI components define G~~i,s, and similarly with the ratio En,s which has p 

components giving En,o and then lSI components defining En,I,S. 

As is commonly assumed in treatises on the Cox regression model, we postulate that 

these functions have limits in probability g(O) (s,{3, ,), g(1)(8,(3,,), g(2)(8,(3,,), and that 

these limit functions are continuous in 8. Actually, since we work under the (2.4) as­

sumption, we are more concerned with the related condition that G~O\ 8, (3, rll y'ri) --"p 

g(0)(8,(3,0), and so on. We also write e(8,(3,0) for the limit function of G~I)(8,(3,rlly'ri)/ 
G~O) (8, (3, 7]/ y'ri). 

Let Un and Vn be the derivatives with respect to (3 and, of the log-likelihood nor­

malised by n- 1 , so that 

(3.1) 

Let also In ((3, ,) be the (p + q) x (p + q) matrix of second order derivatives, leading to 

-In((3,,) = iT L,n(U,(3,,)G~O)(u,(3,,)ho(u)du, 
in which L, = G(2) /G(O) - E Et n n n n n· 

Under standard assumptions about the covariate sequences Xi and Zi, and in the 

framework defined by (2.4), it follows that -In ((3, 7]/ y'ri) as well as -In ((3, 0) have as limit 

in probability a (p + q) x (p + q) matrix 

Jfull = ( JOO 
JlO (3.2) 

which we also take to be positive definite; see again Andersen et al. (1993) for more details. 

In fact, also In,full = -In((3full,1full) tends in probability to Jfull, under condition (2.4). 

The estimator we shall use for Jfull is 

(3.3) 

We shall also have occasion to need the (p + lSI) x (p + lSI) submatrix Js, with blocks 

say Joo , J01 ,s, J lO ,s, J11 ,s. It is convenient to phrase some of the results in terms of the 

projection function 1fs:Rq --" Risl which takes v = (VI, ... ,vq)t to its subvector Vs with 

those Vj for which j E S. Thus 1fs is an lSI x q matrix of Is and Os. 
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The following key lemma, with its proof in Section 11, gives the precise large-sample 

behaviour of the S-submodel Cox estimators, under the (2.4) assumption. We assume 

that 'ordinary regularity conditions', as spelled out and discussed in Andersen et al. (1993, 

Ch. VII) are in force; these may actually also be substantially weakened, as discussed in 

Hjort (1992) and Hjort and Pollard (1996). 

LEMMA 1. Assume that the conditions just described are in force. Then, under the 

sequence of true hazard rate functions (2.4), 

( fo(/3s - {3) ) (Bs) rv N (J- 1 ( JOl) J-l) ;;::;~ ---+d C p+lsl s '7T" J f/, s . yn,s S liS 11 

Armed with this lemma we may derive useful expressions for the approximate mean 

squared error of estimators 11(/3s,::Ys) of estimands of the type 11((3, I). Since we shall take 

an interest in more general estimands, which also may depend on H o, further efforts are 

needed to determine the behaviour of Ho s estimators. , 

4. Submodel estimators for the cumulative baseline hazard 

Inside a submodel S, which gives maximum partial likelihood estimators (/3s,::Ys) for the 

(2.1) model, we now study the accompanying Aalen-Breslow type estimator given in (2.2) 

for the cumulative hazard function Ho(t) = J~ ho(u) duo To reach a precise result, consider 

first 

W (t) = -1/21t L~=1 dMi(u) 
n n (0) . 

o Gn (u,{3,O) 

This is a martingale with variance function converging towards J~ g(O)(u,{3,O)-1 dHo(u), 
which implies that the Wn (.) process tends in distribution to a GauBian zero-mean mar­

tingale W(.) with VardW(u) = dHo(u)/g(O)(u,{3, 0). One also finds that the Wn process 

and the vector of foUn ({3, 0) and foVn (u, {3, 0) are independent in the limit, that is, the 

W process becomes independent of each B s , Cs of Lemma 1. To see this, work first with 

cov{vnUn({3,O),dWn(u)}, which by martingale theory can be expressed as the mean of 

say Sn, where 

S - -1 ~{ . _ E ( r-I )}Yi(u) exp(x~{3 + z;f//fo) 
n - n D x~ n,O U, jJ, 0 (0) , 

i=1 Gn (u,{3,O) 

which is seen to be composed of G~~S(u,{3,O) - En,o(u,{3,O)G~O\u,{3,O), which vanishes, 

plus a term of order Op(n- 1/ 2 ). A similar calculation confirms the claim for foVn(u, {3, 0) 

and W n . 

For the next central result, its proof placed in Section 11, let us introduce the (p + q)-
vector function 

t (Fo(t)) F(t) = Jo e(u, {3, 0) dHo(u) = Fl (t) , 
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where the first p components comprise Fo (t) and the final q components make up Fl (t). 
We also use F1,s(t) to denote the subset of F1(t) with components belonging to subset S, 

and finally Fs(t) for the p + lSI-vector with Fo(t) and Fl,S(t). 

LEMMA 2. Under the (2.4) assumptions, along with other conditions stated in con­

nection with Lemma 1, the An,s(t) = n 1/2 {Ho,s(t) - Ho(t)} process tends in distribution 

to the process 

As(t) ~ W(t) _ (:,~;~~)) t ( ~: ) + P, (t)try. 

Note that it dHo(u) t -1 
Var As(t) = (0)( (3 ) + Fs(t) Js Fs(t), 

o 9 u, ,0 
getting larger when more covariates are included. This needs to be weighted against its 

bias level, which can be read off from Lemmas 1 and 2. An expression for the bias will 

also flow from the efforts of the next section. 

5. Limiting risk of submodel estimators 

Consider an estimand of the general type /-L((3", Ho(t)), with t at the moment kept fixed, 

taken to be smooth in the sense of having continuous derivatives in a neighbourhood 

of ((3,O,Ho(t)). There is one potential estimator fis = /-L(i-fs,-:Ys,Osc,Ho,s(t)) for each 

regressor subset S c {1, ... ,q}. We shall reach a precise limit distribution result for fis. 
Our limiting risk results will involve concise expressions for bias and variance in terms of 

the quantities 

Ds = 1f1Ks1fsK-1, w = JlO Jo;} ~~ - ~~, K = K(t) = {JlO Jr;r/ Fo(t) -Fl (t)} 00;;0. (5.1) 

Here K = J11 is a q x q matrix, computed from the inverse of JfuU, while Ks = J11,S = 

(1fSK-11f1)-1 similarly is the lower right hand corner lSI x lSI submatrix of the inverse 

of Js. The partial derivatives are evaluated at the centre point ((3,0, Ho(t)); thus both 

00;;0 and K = K(t) depend upon the t under consideration. Note that both wand K are of 

dimension q. Finally define 

2 _ (~)2 t dHo(u) + {8/-L _ O/-L F, (t)}tl-l{O/-L _ O/-L F, (t)} (5.2) 
TO - oHo Jo g(O) (u, (3, 0) 0(3 oHo 0 00 8(3 oHo 0 , 

which will be seen to be the minimal possible limiting variance of the fis estirnators. 

The model underlying the data is again taken to be that of (2.4), under which /-Ltrue = 

/-L ((3 , TJ / Vii, H 0 ( t ) ) . 

LEMMA 3. Under conditions laid out for Lemmas 1 and 2, and under circumstances 

(2.4), the variable An,s = Vii(fis - /-Ltrue) tends in distribution to 

As = (~~)tBs + (t!/s)tCs - (~~)tTJ+ 00;;0 As(t). (5.3) 

This is a normal variable with mean and variance respectively equal to 

(w - K)t(I - DS)TJ and T5 + (w - K)tDsKD1(w - K). 
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Following the details of the proof, which is placed in Section 11, we also establish a 

quite fruitful representation of the limit distribution, namely 

in which U and VI are independent and respectively Np(O, Joo ) and Nq(O, K). It also 

follows from this that the mean squared error of the large-sample limit of n times fis, 

i.e. the limiting risk associated with using the S subset, is 

allowing our notation here to reflect that both TO and K, depend on the t engaged in the 

estimand p, = p,(j3, r, Ho (t)). 

REMARK. There is a result corresponding to that of Lemma 3 in CH and HC (2003), 

valid for general parametric families, but involving only a quantity similar to the w. It is 

the semi parametric nature of the Cox regression model that here leads to the more general 
w - K, quantity. _ 

6. Risk calculation and estimation for important estimands 

Note that the limit distributions and limiting risks derived in the previous section depend 

crucially on both TO(t) and the coefficients of w - K,(t), which vary from one parameter 

to the next. This is illustrated now for a brief list of examples, before we turn to the 

task of estimating these and other quantities involved in the limiting risk expressions. The 

important case of the median survival time, or more generally the task of estimating the 

quantile distribution of the survival time, needs some technical development of separate 

interest, and is treated in Section 6.2. 

6.1. A list of foci. 

(i) One may naturally compare hazard level for individuals with covariate x with 

hazard level for those with covariate xo using the hazard ratio, say h(s I x, z)/h(s I xo, z) = 
exp{ (x - xo)t,6}. This focus parameter has w = exp{ (x - xo)t,6} JlO Joc/ (x - xo) and K, = O. 

(ii) A natural parameter of interest is the relative risk p, = exp(xtj3 + ztr ) at position 

(x, z) in the covariate space; here w = exp(xt,6) (JlOJOC/X - z) while K, = o. 
The quantity just discussed can be seen as the relative risk in comparison with an 

individual with covariates (x, z) = (0,0). This is a natural quantity in situations where the 

covariates have been centred to have mean zero; in this case, the 'relative' in 'relative risk' 

would mean in comparison with 'the average individual'. Similarly, if x and z represent risk 

factors, scaled such that zero level corresponds to normal healthy conditions and positive 

values correspond to increased risk, then the p, = p,(x, z) above is relative risk increase at 

level (x, z) in comparison with normal health level. 
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In yet other situations it would be more natural to compare individuals with an exist­

ing or hypothesised individual with suitable null-covariates (xo, zo), say. This corresponds 

to focussing on the relative risk f-L = exp{(x - xo)t(3 + (z - zo)t,}, and leads to ~ = 0 and 

w = exp{ (x - xo)t (3}{ JlOJoc/ (x - xo) - (z - zo)}. (6.1) 

Note in particular that different covariate levels give different w vectors, which in view 

of Lemma 3 and risk expression (5.6) means that there might well be different optimal S 
submodels for different covariate regions. This is accounted for in our focussed information 

criterion for model selection, as discussed in Section 7. 

(iii) For the problem of estimating Ho(t) separately, the w vector is zero while ~ = 

JlOJor} Fo(t) - F1(t). 

(iv) Estimating a survival probability for a given individual translates to 

Su(t I x, z) = exp{ - exp(xt(3 + zt,)Ho(t)}, 

for which one finds 

w = -Su(t I x, z)Ho(t) (JlOJOr/X - z), 

~ = -Su(t I x, z) exp(xt(3){JlOJoc/ Fo(t) - F1(t)}. 

(v) Consider now a patient's chance of surviving t, given that he has managed to 

survive up to time to. This probability is exp[-{Ho(t) - Ho(s)} exp (xt (3 + zt,)]. Handling 

this estimand calls for some modifications of Lemmas 2 and 3, in that It: dHo(u) is at work 

rather than the full Ho(t). Lemma 2 may be extended to reach parallel results involving 

As (t) - As (to) rather than simply As (t), without serious difficulties. This includes revised 

definitions of ~ and T6, replacing Fo(t) and F1(t) with Fo(t) - Fo(to) and F1(t) - F1(tO). 

6.2. Estimating median survival time. A patient's median survival time, in terms 

of his covariates, can be expressed as ~ = H01(log2/ exp(xt(3 + zt,)). That this is a 

quantity of serious interest, and sometimes more important than say the mean survival 

time, is made clear in e.g. Gould (1995). Earlier work on conditional median survival time 

includes Dabrowska and Doksum (1987) and Burr and Doss (1993). Handling the case of 

such conditional quantiles here, in general 

requires some separate development, and it is not a priori clear that the limiting distribu­

tion of say 

~ { ~ -1 ( log 2 ) -1 ( log 2 ) } 
yIn(~s - ~true) = yin Ho,s exp(xt!3s + z~;Ys) - Ho exp(xt(3 + zt17/Vri) , 
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has the same appealing structure as in Lemma 3 of Section 5, since the ~((3", Ho) under 

consideration now does not only depend on Ho at a single value. 

Consider an estimand of the general form ~ = H;; 1 (f ((3, ,) ), where 1 ((3, ,) is some 

smooth function of the regression coefficients, and for which we contemplate using any of 

the estimates 

The following is proved in Section 11. 

LEMMA 4. Assume conditions laid out for Lemmas 1 and 2 are in force. Then, under 

circumstances (2.4), the variable An,s = yIn([s - ~true) tends in distribution to 

with U and V' as in (5.5), where ~o = H;;l (f((3, 0)), Ro = Fo(~o) + ~;, Rl = Fl (~o) + ~;, 
and (; = Rl - JlQJor} R o, and where the partial derivatives of 1 are evaluated at ((3,0). 
The limit distribution is normal, with mean and variance 

respectively. 

The limit distribution involves the baseline hazard rate ho (u), which for its estimation 

would require a suitable smoothing operation, using e.g. a kernel smoother on Ho(·). This 

is however not really required here, since our aim is to compare mean squared errors, and 

the very same multiplicative factor hO(~O)-l enters each of the As. We may therefore 

compare and estimate mean squared errors of the variables As = ho(~o)As, which has 

Here the first three terms combine to give the variance part while the fourth term stems 

from the model bias. Also, the two first terms are not affected by the model choice S, 

and represent the minimal possible variance, achieved by using the narrow model, where 

S = 0. We see that the structure of these limiting risk expressions is precisely of the same 

form as in (5.6), as found there via Lemma 3; the only essential difference is that 

of Lemma 4 replaces w - K., of Lemma 3. Clearly (; is very similar to w - K." but as explained 

above Lemma 3 does not cover the type of estimands handled by Lemma 4, which needed 

a separate treatment. 

Going back to the quantiles of the conditional survival time, for an individual with 

covariate (x,z), we have ~(r) = H;;l(f((3,,)) with 1((3,,) = cexp(-xt(3 - zt,) and c = 
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-log(l-r) for the rth quantile. Thus C = R 1 -JlQJr;r/ Ro with Ro = Fo(~o)-cexp( -xt(3)x 

and Rl = Fl (~o) - cexp( -xt(3)z, and c = log 2 for the case of the median. 

6.3. Estimation of risk quantities. Theory and calculations developed in the previous 

sections led to the definition of various model-based quantities that need to be estimated 

in practice. This is in particular required in light of the model selection criteria of the 

next section. Here we describe the required estimators. In this subsection we use (jj,9) to 

signal the full-model based partial likelihood estimators. 

This is a convenient place to discuss estimation of TO, J = Jfull, K, [ls, [ls, K s , w, 

K" C. As the theory is being used in the following sections it demands that the estimators 

To, J etc. that are used are consistent, i.e. that they should converge in probability to the 

relevant quantities as n grows, under the local neighbourhood circumstances (2.4). There 

are in fact several possibilities for say J here, typically ranging from say -In (jjnarn 0) 

that uses estimators from the narrow model to -In (jj,9) that employs estimators in the 

fullest p+q-parameter model. The first-order large-sample theory that we develop does not 

distinguish between these estimators, as long as they are consistent. We will in practice 

typically prefer the full-model based versions, partly for reasons of model-robustness. See 

CH and HC (2003) for parallel discussion. 

We start with the information matrix J, for which we use the full-model based estima-
-... -... ---- -... 

tor (3.3). From this matrix we extract further estimates Joo , J01 , J ll , Js, and furthermore 

K = J11 with consequent S1s = 1r1Ks1rsK-l matrices. We use full-model based parameter 

estimates also for estimating the (p + q)-vector function F of Section 4, giving 

Finally there are a couple of options when estimating the partial derivatives of p,({3", H o), 
which are required for arriving at wand K,. In most of our examples we are able to find 

explicit expressions for these, as for the earlier examples in this section, after which we 

again insert parameter estimates from the fullest model. General numerical recipes might 

also be used in situations where explicit expressions are harder to come by. 

For TO = To(t) of (5.2), we insert estimates already described for the partial derivatives 

of p, with respect to (3, " and Ho(t), and likewise for Fo(t) and Fl(t). The remaining 

integral J~ g(O) (u, (3, 0)-1 dHo( u) is estimated as 

For handling the model selection problems associated with conditional median or 

quantile survival distributions, or more generally situations where Lemma 4 is applicable, 
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one needs estimates of ~o, Ro, RI and C. We use fo = Hr;I(J(jj,-:y)), so for the median 

case we employ Hr;I(cexp( _xtjj - zt-:y)) with c = log 2. Similarly we use 

leading also to the crucial quantity (' = RI - holO(} Ro. 

7. The AI C and the FI C for Cox regression 

This section uses theory developed in earlier sections to properly analyse the natural 

partial-likelihood based version of the AIC, and then goes on to derive a focussed in­

formation criterion, the FIC announced in Section 1.3, for general use in Cox proportional 

hazards regression models. 

7.1. The AlC for the Cox mode1. Let if be the estimator of rJ = Vnr in the full Cox 

model with all p + q covariates included. From Lemma 1, 

(7.1) 

The natural statistic monitoring for absence or presence of rJ is 

~ 

with K defined in Section 6.3. 

The Akaike information criterion AIC is generally applicable for comparing competing 

parametric models; see e.g. Burnham and Anderson (2002) for a broad introduction with 

applications to many kinds of models. The arguments behind its construction do not 

necessarily apply to the Cox regression model, however, due to its semiparametric nature. 

We are not aware of any other attempts in the literature to define or discuss aspects or 

performance of the AIC for the Cox model. We are however free to define and analyse 

AICn,s = 2 log Ln,s({3s,-:Ys) - 2(p+ lSI), (7.2) 

in the style of parametric models, where Ln,s is the partial likelihood function engaging 

({3,rS), see (2.1). The submodel S with largest AIC score (7.2) is selected. 

A useful representation of AICn,s can be derived, in terms of if and hence Zn; 

AICn,s - AICn ,0 = Z~K-I/27f~Ks7fsK-I/2 Zn - 21S1 + op(l) 

= r;t K-l7f~Ks7fsK-Iif - 21S1 + op(l). 

This may be shown following arguments in HC (2003a). Note in particular that all AICn,s 

numbers, across submodels S, depend essentially only on the Zn vector. One may also 

show from this that 
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These results imply in particular that there are well-defined precise limit probabilities 

for the different submodels being chosen by the AIC; specifically, 

chn (8, TJ) = Pr{model 8 is chosen} 

---+ ch(8, TJ) = Pr{ a(8) is bigger than all other a(8')}, 

where a(8) = DtK-11f1Ks1fsK-l D and D are as in (7.1). As an illustration, assume we 

wish to select either the narrow model with only (3 or the fullest model with all of ((3, ry). 
Then 

a probability that increases with the distance between TJ and zero. 

It is worth pointing out that the AIC as developed here, using the partial likelihood, 
~ 

in a sense does not care about Ho or about how well the indirectly selected Ho,s estimator 

performs. Our FIC methods, to be developed now, may be geared towards good estimation 

performance for Ho, for example. 

7.2. The focussed information criterion. We have demonstrated in Sections 5 and 6 

that for focus estimands /-L((3,ry,Ho), with ensuing estimators /is = /-LC/3s,1s,Ho,s), the 

limiting risk can be expressed as 

for the relevant TO, wand K,. When the full (p + q)-parameter model is used, for example, 

[ls = Iq and the risk function is T6 + (w - K,)tK(w - K,), constant in TJ. The other extreme 

is to select the narrow p-parameter model, for which [ls = 0, leading to risk function 

T6 + {(w - K,)tTJp· 
In these risk expressions, quantities TO, w, K" [ls, K may all be estimated consistently, 

with ordinary fo precision, see the recipes of Section 6.3. The only quantity that can 

not be estimated consistently is TJTJt . For this quantity, about the best we can do is 

W - K = nnt - K, in that W ---+d DDt, a variable with mean TJTJt + K. Thus we have 

an asymptotically unbiased risk estimator 

for each candidate model 8. The focussed information criterion, or FIC, consists in select­

ing the model with smallest estimated risk. 

It is useful in practice to compute each of these risk numbers, since they have direct 

interpretation as estimates of sample size times mean squared error. One may also usefully 

display FIC* (8) = {iisk(8) In P/2, since these are estimates of root mean squared error. 

Statisticians are used to interpreting standard errors, i.e. estimated standard deviations, 

the ubiquitous companions to estimates of model parameters. Here we suggest supplying 

also the FIC* numbers, along with :Fie scores defined in the next paragraph. 
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As long as emphasis is on model selection we may simplify the above algebra somewhat, 

and give a crisper, but equivalent, version of the FIe. For this we subtract the constant 

76 which does not affect model comparison, and further subtract out the quantity (0 -

J:;,) t K (W - J:;,), which is also common to each risk estimate. These rearrangements lead to 

(7.4) 

in terms of estimates V; = (0 - J:;,)t1i and V;s = (0 - J:;,)tns1i; see CH (2003, Section 4). 

This conveys better the statistical balancing game between modelling bias (the first term) 

and estimation variability (the second term). The FIC sees to it that an optimal model 

is selected for the particular task at hand; different estimands p,({3", Ho) correspond to 

different w - ~ and different 1jJ. 

We have reached formulae (7.3)-(7.4) in the framework of Section 5, using in particular 

Lemma 3, covering a broad variety of situations. For the case of quantile survival time 

estimators we need to employ Lemma 4 rather than Lemma 3, with a more complicated 

limit distribution. However, as argued after Lemma 4, the same structure emerges when 

we work with As = ho(~o)As, which means that the FIC formulae above still work, with 

(' replacing 0 - J:;,. 

REMARK 7.1. The FIC as developed here resembles the FIC model selector developed 

in CH (2003) for general parametric models. That theory could however not be applied 

directly to the proportional hazards model, partly because of its semiparametric nature 

and partly because the partial likelihood does not involve the baseline hazard. _ 

REMARK 7.2. The risk estimate (7.3) is the sum of a variance and a squared bias 

estimate. These terms can with a little algebra in combination with (7.1) be expressed as 

and 
(B2)n(S) = (0 - J:;,)t(I - ns)(wt - K)(I - ns)t(0 - J:;,) 

= n{(0 - J:;,)t(J - ns);y}2 - (0 - J:;,)t(K - 1f~Ks1fs)(0 - J:;,), 

demonstrating also that (B2)n (S) typically will increase with n, with a size essentially 

determined by (w - ~)t(J - OS)'r/. It can nevertheless happen that the event 

takes place, in which case we choose to redefine (B2)n(S) as zero, to avoid estimating the 
------squared bias with a negative number. Thus we redefine risk(S) = Vn(S) and 

for those instances where the negligible bias event (7.5) takes place. _ 
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7.3. Securing good average performance. The FIG apparatus introduced above is at 

the outset tailor-made for optimal model selection when considering a single parameter 

of interest. One would not infrequently encounter focus parameters that depend on a 

covariate value, or a time point, that one next would wish to study across portions of the 

covariate space or time scale. We shall see now that the FIG machinery also yield methods 

for dealing with such problems. 

For concreteness of illustration, consider the estimand J-l = J-l(z) = exp{(x - xo)t{3 + 
(z - zo)t} discussed in Section 6.1, but now viewed as a function of z with levels Xo and x 
kept fixed. We wish to select a submodel S that provides optimal precision for estimates 

/1s(z), across many values of z. From Lemma 3, In{/1s(z) - J-l(z)} ---+d As(z), say, of the 

form given there, with w = w(z) calculated in (6.1). We infer from this that if Qn is some 

distribution of covariates z, tending to some limit Q, then under mild conditions 

say. Hence the average risk of using /1s(z), say riskn(S) = Epn(S), converges to 

risk(S) = Ep(S) = J [T5 + w(z)t{(I - 0.s )rrr/(I - 0.s )t + 0.sK0.~}w(z)] dQ(z) 

= T5 + Tr[{(J - 0.s )rJrJt(I - 0.s )t + 0.sK0.~} J w(z)w(z)t Q(dz)]. 

This can be estimated as in the previous subsection, plugging in consistent estimators of 

TO, 0.s , K, along with the distribution Qn for Q and W - K for rJrJt . This leads to a list 

of Iisk(S) numbers to be minimised over candidate models S. 

In the present case, with (6.1) for w(z), the crucial J w(z)w(z)t Q(dz) matrix becomes 

JlOJOr/ (x - xo) (x - xo)t JOr/ JQ1 + J (z - zo)(z - zo)t Q( dz) 

- JlQJo;/(x - xo)(2 - zo)t - (2 - zo)(x - xo)t JOr/ JQ1, 

where 2 = J z Q(dz). We could for example take Qn to be the empirical distribution of 

Zl, ... , Zn, and Zo to be the average of these, in which case the estimated J wwt dQ matrix 

becomes ho]Or/(x - xo)(x - xo)tYar/101 + Sn, with Sn being the empirical covariance 

matrix of the ZiS. 

The above FIG-averaging scheme is illustrated in Section 9.2 for the Danish skin cancer 

survival data. Note that the reasoning above is general in nature, and can be applied with 

appropriate variations to the task of finding the best subset S for best average estimation 

of the nine decile survival times Su- 1 (j/10 I x, z), for example. 
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8. Model average estimators 

The previous section developed the FIC, to be used for model selection purposes in con­

nection with any focus parameter !-L of interest. It is also of interest to understand the 

statistical behaviour of the resulting estimator-post-selection strategy. Such estimators 

take the form Ii = liCS), say, where S is the randomly selected submodel. This is a special 

case of a more general class termed compromise estimators in HC (2003a). This section 

develops theory for such model average strategies for the Cox model. 

8.1. Model average estimators. When several candidate models are being considered, 

as above, a natural idea is to form compromise estimators that weight across models in a 

suitable fashion. Specifically, consider now 

Ii= l::wn(SIT])lis, (8.1) 
s 

where the weights depend on T] = fo;:Yfull and sum to one. The AIC and FIC strategies 

are of this form, with weight 1 for the chosen submodel and 0 for the others. We may now 

state the following; the proof is in Section 11. 

LEMMA 5. Suppose regularity conditions used in Lemmas 1,2,3 continue to hold, and 

assume that the random weights wn(S I T7) used in the compromise estimator (8.1) are such 

that the vector of Wn (S I T]) tends in distribution to the vector of w(S I D), in terms of the 

limit D ofT] as in (7.1), where each w(S I D) has at most a finite number of discontinuities 

in D. Then 

vn(1i - !-Ltrue) ---+ A = Ao + (w - K)t{7'] - T](D)}. 

Here Ao rv N(O, T5) is independent of D rv Nq (7'], K), and T](D) = I":s w(S I D)nsD. 

As a consequence of this result, we may for any model average estimator compute its 

limit risk function under squared error loss as risk( 7']) = EA 2 = T5 + R( 7']), say, where 

One should note the broad generality here; the performance of almost every model average 

strategy can be precisely assessed, for large n, by evaluating the precision of the estimator 

(w - K)tT](D) for the estimand (w - K)t7'], in the limit experiment where D rv Nq (7'], K), 
and where all quantities are known apart from 7']. In particular performance of the AIC 

versus that of the FIC and so on can be studied, for different situations determined by K 

and w - K. 

8.2. Smoothed AIC and smoothed FIG. Lemma 5 is of course very general and allows 

a broad class of model average estimators. Among these we may single out two procedures, 

namely smoothed versions of the AIC and the FIC. Further options are discussed in HC 

(2003a). 
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For the smoothed AIC, use (8.1) with data-determined weights 

. ( ) _ exp(~AAICn,s) 
Wale S - 1 ' I:all S' exp( 2" AAICn,s') 

(8.2) 

in terms of the AIC scores (7.2). The sum in the denominator extends over all submodels 

under consideration; the list of these does not have to be extensive, as often some submodels 

might be ruled out on a priori grounds. The A of (8.2) is like a smoothing parameter, 

dictating the amount of smoothing between candidate models. If A is large, then the 

method is essentially equivalent to the AIC selection scheme; if A = 0 then all methods 

are weighted equally. Certain arguments discussed in Buckland, Burnham and Augustin 

(1997) and Burnham and Anderson (2002) on an ad hoc basis and more fully in HC (2003a) 

advocate taking A = 1 in (8.2). This is the value we take in our simulations and illustrations 

in Section 9. We use the same strategy to form a smoothed BIC, simply replacing the AIC 

scores in (8.2) with those of the BIC. 

In a similar manner, the smoothed FIC uses (8.1) with weights 

(8.3) 

again with a parameter A determining the degree to which lower FIC scores should be 

compared to higher ones. The point of the scaling here, via the (&J - 'K,) t K (&J - 'K,) factor, is 

to make different situations similar with respect to the scale of the smoothing parameter 

A; (w - ~)t K(w - ~) is the constant risk of the minimax method in the limit experiment 

alluded to after Lemma 5. In our illustrations we have taken A = 1. Larger values would 

push the model average method closer to the FIC method, and values closer to zero would 

correspond to equal weights across the submodels considered. 

Variations exist, like using (8.2) and (8.3) involving say only the ten top marked 

models. Lemma 5 still applies and describes accurately the large-sample performance also 

of such model average schemes. Limit distributions are non-linear mixtures of normals, 

and as such non-normal; see the illustration of Section 10.6. 

9. Illustrations and applications 

In this section we illustrate our FIC and model average methods in simulations, where we 

find that the post-selection FIC as well as the smoothed FIC methods may perform well 

in comparison with for example the AIC and BIC regimes. Then we analyse the Danish 

skin cancer survival study that was described in Section 1.1. 

9.1. Results of a simulation study. Data ti are generated following a Cox proportional 

hazard regression model with constant baseline hazard ho (t) = 1. Covariates are generated 

from independent standard normal distributions. In each setting we use p = 2 protected 

variables and decide on f3 = (1, l)t. Censoring times are generated from an exponential 
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distribution with mean 10/9. In our settings this corresponds to an average proportion of 

uncensored observations about 52%. In setting (i) q = 4 and data are generated under 

the narrow model assumption, i.e. rJ = (0,0,0, O)t. Situation (ii) is as the first one but 

corresponds to the full model with rJ = (3, -3,3, -3)t. In setting (iii) a situation in between 

the narrow and the full model is taken with q = 6 but rJ = (0,0,3, -3,3, -3)t. In these 

situations we study four focus parameters. Focus parameter (a) is the relative risk of a 

subject with covariates at value 0.5, relative to the mean covariate values, i.e. f-L(x, z) = 
exp(x\B+zt ,) with each x and each z fixed at 0.5. Focus point (b) is Ho(t), the cumulative 

baseline hazard rate function at time t = 0.5. Our third focus (c) is the survival probability 

Su(t I x, z) for a subject with the same covariates and time values as in (a) and (b). The 

last focus point (d) is the median survival time ~(0.51 x, z), with again the same covariate 

values as in (a). 

For each of the sim = 1000 simulation runs we compute for all subsets the estimators 

of the focus parameters f-L in each of the 2q models, together with the values of AIC, 

BIC, as per formulae (1.2), and for each focus parameter the corresponding FIC. The final 

estimators are the post-model-selection estimators pAIC, pBIC, pFIC as well as model 

averaged, weighted, estimators wAIC, wBIC, wFIC, with model weights based on the 

values of the information criteria for that model, see Section 8.2. We compute the root 

mean squared errors {sim -1 2:.;::1 Ciij - f-Ltrue) 2 P/2, across the simulations. Two sample 

sizes are used, n = 150 and n = 300. The results are summarised in the Table 9.1 below. 

The winning criterion is in each situation identified with its score given in boldface. It 

should be noted that with sim = 1000 runs there is some simulation uncertainty that leaves 

some of the comparisons still open and the identified 'winners' not quite clear. 

wFIC pFIC wAIC pAIC wBIC pBIC 

Setting (i) 

n = 150 (a) 0.444 0.441 0.451 0.474 0.391 0.402 
(b) 0.089 0.089 0.089 0.090 0.088 0.089 
(c) 0.062 0.062 0.063 0.065 0.058 0.060 
(d) 0.046 0.042 0.047 0.049 0.043 0.044 

n = 300 (a) 0.276 0.276 0.281 0.302 0.247 0.248 
(b) 0.063 0.063 0.063 0.063 0.063 0.062 
(c) 0.043 0.043 0.043 0.045 0.040 0.040 
( d) 0.034 0.031 0.034 0.036 0.032 0.032 

Setting (ii) 

n = 150 (a) 0.503 0.530 0.600 0.645 0.596 0.681 
(b) 0.090 0.092 0.092 0.093 0.091 0.092 
(c) 0.069 0.076 0.077 0.080 0.078 0.086 
( d) 0.062 0.056 0.060 0.063 0.064 0.072 

n = 300 (a) 0.304 0.315 0.364 0.383 0.368 0.430 
(b) 0.063 0.064 0.064 0.064 0.064 0.064 
(c) 0.047 0.051 0.052 0.054 0.053 0.059 
(d) 0.041 0.037 0.041 0.043 0.043 0.048 
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Setting (iii) 

n = 150 (a) 0.572 0.582 0.674 0.739 0.625 0.725 
(b) 0.089 0.090 0.091 0.093 0.090 0.092 
(c) 0.071 0.075 0.080 0.086 0.079 0.088 
(d) 0.066 0.063 0.062 0.066 0.064 0.070 

n = 300 (a) 0.328 0.325 0.398 0.426 0.392 0.458 
(b) 0.063 0.064 0.064 0.064 0.063 0.064 
(c) 0.048 0.051 0.053 0.056 0.053 0.059 
(d) 0.042 0.038 0.041 0.044 0.042 0.047 

TABLE 9 .1. Root mean squared errors over 1000 simulation runs of the post model 
selection and model averaged estimators based on FIC, AIC and BIC for focus 
parameters (a) relative risk, (b) cumulative hazard, (c) survival probability and 
(d) median. Setting (i) corresponds to rJ = (0,0,0, O)t, (ii) to rJ = (3, -3,3, -3)t 
and (iii) to rJ = (0,0,3, -3,3, -3)t. 

In setting (i) the narrow model is the true model. It is known that the BIC is a 

consistent model selector and that it often works well for models with a small number of 

parameters. Hence it is expected to do well for this situation, as is indeed seen from the 

simulation results. It should be noticed that especially for focus parameters (b) and (d) 

the differences with the FIC values are only minor. For settings (ii) and (iii) where there 

are four more non-zero parameters in the true model than in the narrow model, BIC is no 

longer preferred. The smoothed FIC is clearly the best choice for setting (ii), where the 

wide model is true, while for the median as a focus point, the post-FIC selector gives the 

best results. The picture is more undecided for setting (iii) in between narrow and full 

model. For the smaller sample size for focus (c) the post-AIC gives the smallest simulated 

mse. Overall, model averaging tends to yield smaller simulated mse than post-model 

selection. Considering only the post-model selection estimators, we see that the pBIC 

performs well for the simplest setting where all extra parameters are zero. For setting (ii) 
the pFIC is the best, with the same conclusion for setting (iii), where all three criteria 

perform about equal for focus (b). 

9.2. Survival analysis for malignant melanoma. Here we examine the data set de­

scribed in Section 1. As already motivated, we include Xl in every model, and select 

amongst the other variables Zl, . .. ,Z6 using an all subsets search. The seven hazard re­

gression coefficient estimates were 0.535 (0.277) for /31, 0.036 (0.052) for /1, 0.321 (0.192) 

for /2, -0.707 (0.314) for /3, -0.995 (0.324) for /4, 0.334 (0.241) for /5, 0.017 (0.008) 

for /6, with the estimated standard deviation (standard error) in parentheses, computed 

using the full model. In particular variables Xl, Z2, Z3, Z4, Z6 might be considered to have 

a reasonably clear influence on life-times, as measured by the ratios estimate divided by 

standard error. Coefficients /1 and /5 would however not be seen as significantly different 

from zero in most analyses. We shall nevertheless see that variable Z5 often will be selected, 

by different criteria, for different purposes. 
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The model selection methods applied are AIC, BIC and four versions of FIC, each 

corresponding to a particular focus parameter. FI C 1 corresponds to /-Ll = exp{ (x - xo) t f3 + 
(z - zo)t"(}, relative risk of a man, with average tumour thickness amongst all men partici-

pating in the study, infection infiltration level Z2 = 3, epithelioid cells not present (Z3 = 2), 

ulceration present (Z4 = 1), invasion depth Z5 = 1, and average men's age in the study, as 

compared to that of women with averages of thickness of tumour and age computed over 

the subgroup of women in the study, and the other covariates remaining the same. The first 

set of covariates for men defines the variables level (x, z), while the second set corresponds 

to (xo, zo). FIC2 computes the FIC values for /-L2 = Ho(t) at time t = 1584 days which 

corresponds to the time where the estimated Kaplan-Meier survival probability reaches 

0.85. The third focus, which defines FIC3, is the survival probability at time t = 1584 for 

the same set of covariates (x, z) as for the first focus parameter, i.e. /-L3 = Su(t I x, z). The 

final focus parameter is /-L4 = ~(0.10) = Su- 1 (0.90 I x,z), the time at which at least 90% of 

the patients with covariate level (x, z) are still alive. 

Table 9.2 shows the 20 highest ranked score values for each of the criteria in question, 

after having searched through all 26 = 64 candidate models, along with the selected Zj 

variables; '245' means that variables Z2, Z4, Z5 are included, etc. Note that the values are 

sorted in importance per criterion. 

vars AIC vars BIC vars FICI vars FIC2 vars FIC3 vars FIC4 

23456 -527.15 45 -542.72 0 2.84 5 4.70 5 0.12 0 0.029 
3456 -528.29 14 -542.98 2 4.11 25 5.78 45 0.15 5 0.038 
12346 -528.59 345 -544.04 26 4.17 235 5.81 6 0.15 56 0.038 
123456 -528.69 24 -544.71 25 4.30 56 5.86 46 0.15 15 0.039 
2346 -529.57 4 -544.89 256 4.35 356 5.87 16 0.15 25 0.039 
13456 -529.65 3456 -544.91 6 4.63 2 6.05 146 0.15 156 0.040 
2345 -529.94 124 -545.05 456 4.85 35 6.06 56 0.15 256 0.040 
1234 -530.45 134 -545.42 14 5.22 125 6.23 456 0.15 3 0.042 
1346 -530.51 456 -545.47 145 5.22 156 6.31 156 0.16 23 0.042 
345 -530.74 245 -545.49 146 5.26 1356 6.32 1456 0.16 13 0.042 
12345 -531.08 234 -545.61 1456 5.26 3456 6.37 15 0.17 123 0.042 
2456 -531.26 146 -546.07 34 5.59 1235 6.46 2 0.17 1256 0.042 
1246 -531.34 34 -546.11 346 5.78 26 6.65 25 0.18 36 0.043 
124 -531.76 2346 -546.18 345 5.82 236 6.65 24 0.18 236 0.043 
1345 -531.79 145 -546.52 23 5.94 126 6.73 245 0.18 136 0.043 
12456 -532.10 2345 -546.55 5 5.94 1236 6.74 12 0.18 1236 0.043 
134 -532.13 346 -546.83 12 6.01 2346 6.79 124 0.18 125 0.049 
456 -532.18 1234 -547.06 134 6.10 456 7.01 125 0.18 1346 0.053 
245 -532.20 246 -547.08 1345 6.11 2456 7.23 1245 0.18 345 0.055 
234 -532.32 23456 -547.09 45 6.13 23456 7.25 145 0.21 2345 0.056 

TABLE 9.2. Values of the information criteria AIC, BIC and FIC for four focus 
parameters: (1) relative risk, (2) cumulative hazard, (3) survival probability, and 
(4) 10% quantile ~(0.10) = Su-1 (0.90). The table shows the 20 largest AIC 
and BIC values and the 20 smallest FIC values for each of the focus parameters. 
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The values are sorted for each criterion and for each focus parameter, and 'vars' 
indicate the selected variables among Zl, ... , Z6. 

The AIC model choice method yields a model with the five variables Z2, Z3, Z4, Z5, 

Z6; only tumour thickness Zl is not selected. The BIC on the other hand selects only 

variables Z4 (ulceration) and Z5 (invasion depth). Note that variable Z4 is present in all 

the 20 best BIC models. With the FIC there is not one single answer for the 'best model', 

as explained in Sections 1 and 7; the model chosen by FIC depends on the focus. The 

relative risk as a focus parameter lets FIC point to the narrow model, followed by models 

with variables Z2 and then {Z2' Z6}, and so on. In the second example, to estimate the 

cumulative hazard Ho(t) at time t = 1584, only variable Z5 (invasion depth) is selected, 

with second best model being {Z2' Z5}. The picture is somewhat different when studying 

the survival probability, focus /-L3' Here variable Z5 is again the most important, followed 

by the model {Z4' Z5}, and so on. Note that variable Z6 (age) shows up quite frequently in 

the list of the best FIC3 models, whereas variable Z5 (invasion depth) appears to be the 

most important one for FIC2. For the 10% quantile, that is Su- 1 (0.90 I x, z), we find the 

narrow model, including none of the extra variables, as the best FIC4 choice, with models 

{zs} and {Z5, Z6} as second best. 

The fact that different models are selected for different purposes should not lead to 

confusion; it should rather be seen as a way of strengthening the biostatistician's ability 

to produce more precise estimates or predictions for a specific patient or patient group. 

In the next table we study the model selection problem for focus parameter (3), the 

survival probability for a patient with covariates (x, z), in more depth. We observe in 

particular that for the ten best models, according to FIC3, the estimates of the focus 

parameter /1s = &i(t I x, z) are quite variable, ranging from 0.209 (variables 5, 6) to 0.590 

(variables 4, 5). For other situations the estimates for the best say ten models may be more 

homogeneous than for this particular case. Note that one version of the smoothed FIC 

method described in Section 8.2 is to take a weighted average of the ten best candidate 

estimates /1s of Table 9.3, with weights as given there. 

While the arguably most important output from such a FIC analysis would be this 

list of the most important models, along with FIC scores and the list of corresponding /1 
estimates, it is also often fruitful to examine the bias and standard deviation components 

that combine to give the risk estimate (7.3). As we saw in Section 7, this risk estimate is 

directly related to the FIC formula (7.4), and sorting models by the FIC score is equivalent 

to do the sorting by risk estimate. The bias can be estimated in a couple of different ways. 

What we may term the 'direct bias estimate' is to plug in estimates in the bias formula in 

Lemma 3 of Section 5, i.e. using biass equal to (w - "K)t (I - ns)ij / fo. We divide by fo 
here to give an estimate for the genuine bias of /1s at sample size n. The alternative way is 

as spelled out in Remark 7.2, with biass equal to the signed square root of (B2)n(S)/ fo. 
It is with this second version, via the correct estimate of the squared bias, that we have 

the Pythagorean combination of biass and ses giving mses / yin. 
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The FIC reflects the bias-variance trade-off phenomenon, as seen here by having 

larger biases for simpler models and larger standard errors for more complex models, even 

though the standard errors and resulting mean squared error estimates are fairly close on 

this particular situation. 

vars p,s ses biass (mses/n) 1/2 FICs 

5 0.430 0.047 0.020 0.047 0.119 
45 0.590 0.047 0.026 0.048 0.149 
6 0.374 0.048 0.011 0.048 0.151 
46 0.534 0.048 0.015 0.048 0.151 
16 0.464 0.048 0.017 0.048 0.152 
146 0.553 0.048 0.018 0.048 0.152 
56 0.209 0.049 -0.003 0.049 0.154 
456 0.363 0.049 0.004 0.049 0.155 
156 0.325 0.049 0.006 0.049 0.159 
1456 0.431 0.049 0.009 0.049 0.159 

23456 0.225 0.052 -0.003 0.052 0.228 
45 0.590 0.047 0.026 0.048 0.149 

TABLE 9.3. For focus parameter (3), the survival probability Su(t I x, z), we 
give for each of the ten best models according to FIC, as well as for AIC (one 
but last line) and BIC (last line) the variables in the model, the estimate fi, 
classical standard error pretending this is the true model, estimated bias, root 
mean squared error, and the value of FIG. 

We take the FIC analysis of this dataset one step further by examining the average FIC 

and risk criteria developed in Section 7.3 to select models with good performance across 

user- and context-defined portions of the covariate space. Specifically, we study focussed 

model selection for the relative risk of a man, with average tumour thickness amongst all 

persons participating in the study, infection infiltration level Z2 = 3, epithelioid cells not 

present (Z3 = 2), ulceration present (Z4 = 1), invasion depth Z5 = 1, compared to the risk of 

women with covariate information (xo, zo) as given earlier in this section; this corresponds 

to a certain p,(x, z, xo, zo) parameter, with x = 2 for man vs. x = 1 for women. The present 

task is to find the best submodel for best average performance, weighted across all ages Z6. 

Following the method of Section 7.3 we compute, for all 205 subjects in the study, with 

ages ranging from 4 to 95, and for each of the 26 = 64 models S, the values of FIC and 

the corresponding (mses/n)1/2. The resulting 205 x 64 FIC values can be analysed by 

patient. Summarising this we have the following situation: 

Variables: 1 24 26 2 35 3 46 4 5 0 
Times selected: 10 37 3 7 7 12 12 35 10 72 

This corresponds to individual selection per patient, or per age. As there clearly is a differ­

ence in individual model choice, for an overall model we follow the approach of Section 7.3 
-----and compute both the average FICs and the average risk(S) values, taken over all 205 

patients, and next order the resulting 64 averaged values. Results for the five best models 
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are given in Table 9.4. We see that the overall model with variables Z2 and Z6 is deemed 

the best choice. This application points yet again to the importance of first thinking about 

the use of the selected model before blindly applying a model selection criterion. 

vars avg FIC1 (mses/n)1/2 

26 24.92 30.079 
456 25.44 30.088 
346 26.23 30.102 
126 26.37 30.104 
1346 26.39 30.105 

TABLE 9.4. For focus parameter (1), the relative risk as specified in the text, we 
give for each of the five best models according to averaged FIC the variables in 
the model, the value of the averaged FIC, and of the averaged risk. 

The picture does not always have to be so diverse. If we carry out the same exercise 

for focus parameters P,2, the FIC2 best model is chosen in all of the 205 cases, and the 

model for best average performance coincides with the individual best models. This gives 

a good overall model for P,2, independent of age. 

10. Concluding remarks 

We end our article with some comments and remarks, some of which might point to further 

research work. 

10.1. 'Protected' versus 'open'. Our framework uses p 'protected' covariates, desig­

nated to always be inside the chosen models, along with q 'open' covariates that mayor 

not may not be included in the final models. Deciding which is which is context-related 

and up to the statistician. For the analysis of Section 9.2 we could have chosen to use both 

sex Xl and age Z6 as protected, for example, leaving the FIC and model average machinery 

to work with Zl, Z2, Z3, Z4, Z5 as open. The R software programmes we have developed make 

it easy to work through each desired combination. One may also choose not to pinpoint 

any protected covariates at all, i.e. using p = 0 and leaving it all to data to decide which 

covariates should be included for what purposes. Our Lemmas 1-5 can be extended to 

cover the required p = 0 case. 

For the Danish melanoma data set we chose to use infection infiltration level Z2 as 

well as invasion depth Z5 as unperturbed covariates, on their original scale, viz. 1,2,3,4 for 

Z2 and 1,2,3 for Z5. These could also be broken down into sub-covariates, via indicator 

variables, and they could be taken as 'ordered' or not. This would mean more modelling 

robustness but also more parameters, in fact 1 + 9 instead of 1 + 6 regression parameters. 

We could still run our programmes searching for ex- or inclusion of Zl, ... , Z6, i.e. over the 

appropriate 26 subsets of the 29 . 

10.2. Pretesting, backward and forward selection. A simple pretesting approach is 

sometimes followed for covariate inclusion. For the skin cancer data one might include those 
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Zj for which IWn,jl = l:Yj/se(:Yj)I exceeds say 1.645, corresponding to test significance level 

of 0.10 per coefficient; this yields the {Z2' Z3, Z4, Z6} model, with Zl and Z5 excluded. One 

might likewise have attempted versions of 'forward' and 'backward' selection strategies. It 

is important to realise that each of these methods is covered by Lemma 5 of Section 8, 

with appropriate non-normal limit distributions. This also makes it possible to compare 

performances via the risk function R( 7J) given there. A systematic study of this sort would 

be useful. A tentative and partial conclusion from some evidence presented in CH and HC 

(2003) is that the AIC and the FIC will tend to outperform the pre-test regime, and that 

the smoothed versions wAIC and wFIC often are even better. 

10.3. Two cultures. There are at least two uses of statistical modelling of the Cox re­

gression variety (and more general models); they may be used primarily for interpretation, 

perhaps of a biomedical nature, like finding that high blood pressure is associated with 

higher risk, and they may be used primarily as a vehicle for producing precise estimation 

of quantities like median survival time, relative risk, survival probabilities, etc. Though 

these uses are not fully orthogonal, see e.g. the discussion in and to Breiman (2001), the 

viewpoint of the present article has (again, primarily) been the second one, aiming for as 

precise estimation and prediction as possible. 

10.4. Even more submodels. We have studied estimators of the form J-L(Ho,s,fis,:Ys), 
but may in principle use different covariate subsets for the Ho part and the ((3, ,,) part. The 

techniques of our paper allows extensions to be made to cover the required simultaneous 

distribution of all 22q combined estimators, and would lead to a somewhat more general 

FIC, and so on, but we abstain from pursuing this here. 

10.5. Bayesian model averaging. Section 8 dealt with the large class of compromise or 

model average estimators, with Lemma 5 being a 'master theorem' giving the limit distri­

bution of all such estimators. It can be further generalised in the direction of 'generalised 

ridging' estimators, as in HC (2003a, Section 8 and 9). These take the form 

((3S,1s) = (fis, E(S I 17):Ys) with shrinking factor E(S I 17) E [0,1]' 

with consequent /is = J-L((3S,1S, Ho,s), and may be particularly useful when the number q 

of extra covariates is becoming large. It turns out that a class of Bayesian model averaging 

methods, as worked with from several perspectives in Volinsky, Madigan, Raftery and 

Kronmal (1997), Clyde (1999), Hoeting, Madigan, Raftery and Volin sky (1999), Volinsky 

and Raftery (2000), becomes first-order equivalent to a special subclass of such generalised 

ridge estimators. Their performance can thus be studied along with those of the frequentist 

model average schemes of Section 8.2. 

10.6. Confidence intervals and tests. Our article has developed methods for selecting 

'the right' variables in applications with the Cox regression model, with different optimal 

subsets for different contexts and uses. The methodology has also extended to averages over 
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candidate models and has reached precise descriptions of the large-sample distributions 

involved. These descriptions can e.g. be used to illustrate the 'overoptimism' involved 

when one applies the standard output from Cox regression analysis too simplistically, as 

when one sets a 95% confidence interval for a parameter based on the AlC selected model, 

without taking into account the extra uncertainty associated with the model selection step. 

See Section 4 of HC (2003a) for concrete illustrations of this. The same phenomenon affects 

the significance levels of tests, where a tentative 5% test might in reality have a size much 

bigger. 
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FIGURE. For the second focus estimand /102 of Section 9.2, which is the cumulative 
hazard rate function for the Danish skin cancer survival data, the Egure displays 
densities for the limit distributions A for Fn(/12 - /102), for four different estima­
tors. These are the FIC method (solid line), the AIC method (dashed line), the 
smoothed FIC method (dot-dashed line), and the smoothed AIC method (dotted 
line). The densities are computed as kernel estimates based on 10,000 simula­
tions from the four appropriate versions of A as per Lemma 5 of Section 8, at the 
position if = Fn9full in the '17 parameter space. 

What we have not touched directly, so far, is the application of the large-sample 

results to supply 'real' confidence intervals and 'real' significance tests. This is not easy, 

partly because the required limit distributions of Fn(/1 - /10) are non-linear mixtures of 

many normals. This is illustrated in the Figure, for four estimation strategies, for the 

case of the second focus estimand /102 in the Danish skin cancer survival study discussed in 

Section 9.2. Confidence intervals and tests with correct levels of confidence and significance 

for large samples can be constructed based on assessment of these limit distributions, in 

several ways; see the 'better confidence' recipe and the general discussion in HC (2003a, 

Section 4). 
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11. Proofs of lemmas 

Proof of Lemma 1. We start from Taylor expansion 

which with appropriate analysis of the error term involved leads to 

Introduce the martingales 

Mi(t) = Ni(t) -it }i(u) exp(x~j3 + Z;TJ/vn) dHo(u) for i = 1, ... , n. 

These are orthogonal with variance functions (Mi' Mi)(t) = J; }i(u) exp(xlj3 + ZITJ/ vn) 
dHo(u), see e.g. Andersen et a1. (1993). We may then write 

( ynUn(j3,O) ) = n~1/2 t {T{ ( Xi ) - En,s(u, j3, O)} dMi(u) 
ynVn,s(j3,O) i=l Jo Zi,S 

+ n- 1/ 2 t, [ { U,~ ) -En,s(u, (:I, 0) }Yi(u) cxp(xl/H zlry/Vri) dHo(u) 

The first term is an integral of a previsible function with respect to a martingale, is therefore 

itself a martingale evaluated at infinity, and with total variance matrix 

n-1 t, [ { C~,~) -En,s(v, (:!,O)}{ (z:,J -En,s(u, (:1,0) r 
}i(u) exp(x~j3 + Z;TJ/vn) dHo(u), 

which is seen to converge in probability towards Js. After some algebra and analysis the 

second term may be written 

and this is seen to converge to the matrix with first p rows equal to JOlTJ and the next lSI 
rows equal to JrsJ11TJ. This proves the lemma. _ 

Proof of Lemma 2. With some Taylor approximation analysis one finds that dH o,S (u) 

may be expressed as 
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plus terms of order Op(n-I), and which with some further efforts becomes 

This leads to 

n l / 2{dHo s(u) - dHo(u)} = n- I/ 2 ~~=I dMi(u) _ En (u,{3, O)t (Vn(fjs~- (3)) dHo(u) 
, G~O\u,{3,O) Vn'Ys 

+ G~O) (u, {3, O)-IG~I~(U, (3, O)t dHo(u)rJ + op(l) , 

---+d dW(u) - e(u,{3,O)t (g~) dHo(u) + e2(u,{3,O)trJdHo(u), 

which proves the lemma. _ 

Proof of Lemma 3. It is helpful to translate Bs and Cs to other representations that 

better reveal the underlying bias and variance balance. Going back to the proof of Lemma 

1, let us write 

Let next VI = JIOU + J l1V = K(V - JlOJor/U). One may show that 

VI rv Nq(O, K) independently of U rv Np(O, Joo ). 

Further algebra leads to 

Bs = (J0o,s J OI + J Ol ,S1rsJl1 )rJ + JOo,sU + JOI,sVS 

while similarly 

= Jrx/ JOl(I - nS)rJ + Jar/ U - Jar/ JOI1r~Ks1rs(V - JlO Jar}U) 

= Jar/ J OI (I - nS)rJ + Jar/ U - Jar} JOInS VI, 

We may also use this in conjunction with Lemma 2 to derive an alternative expression for 

As(t), which better identifies the bias and variance parts. 

We are now in a better position to work with /is. It is not difficult to derive repre­

sentation (5.3) from Lemmas 1 and 2, via the delta method. Using the expressions found 

for Bs and Cs, we may isolate the bias and the random parts of As. The random part 

may after some algebra be expressed as 
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with variance as indicated above. Similarly the non-random parts may be collected together 

and expressed as b~r], where one indeed finds b s = (I - n~) (w - rio). _ 

Proof of Lemma 4. An essential ingredient in our proof is that the earlier process 

convergence result An,s(t) = y'n{Ho,s(t) - Ho(t)} -----+d As(t), from Lemma 2, implies 

as a process in u, in the Skorokhod topology over each compact interval. That this is true 

follows from general inversion results and techniques presented and discussed in Doss and 

Gill (1992) and Burr and Doss (1993). 

We now work with 

f,s - ~true = H o1(J(iJs,-:;s,ro,se)) - H OI (J((3,r]/vn)) , 

= H o1(J(iJs,-:;s,ro,se)) - Hol(J(iJs,-:;s,ro,se)) , 

+ HOI (J(iJs, -:;s, fo,se)) - HOI (J((3, 0)) + HOI (J((3, 0)) - HOI (J((3, r]/vn)), 

which decomposes our An,s into three different sources of variation. With proper Taylor 

expansion arguments one finds 

An,s = r n,S(J(iJs, -:;s)) + (HOI)' (J((3, 0) ){f(iJs, -:;s) - f((3, O)} 

- (HOI)' (J((3, 0) ){f((3, r]/ vn) - f((3, O)} + op(l), 

which by Lemmas 1 and 2 must have a limit distribution with representation 

As = rs(J((3,O)) + (HOI )'(J((3,O)){(%;)tBs + (:;s)tcs } - (HOI)'(J((3,O))(%;)tr] 

= hO(~O)-I[-As(~o) + {(%;)tBs + (:;s)tcs } - (%;)tr]l. 

In particular, the factor ho (Ho I (J ((3,0))) enters each of the contributions here, and will be 

of no consequence when the task is to compare limiting risk for different subset models S. 

The statement of Lemma 4 follows from these results, upon using representations for 

Bs and Cs arrived at in the course of proving Lemma 3 above. _ 

Proof of Lemma 5. There is joint convergence in distribution of all (An,s, ij, wn(S I ij) 
to that of (As, D, w(S I D)), as can be seen from previous proofs. Also, from representation 

(5.5), As = Ao + (w - rio)t(r] - nsD). The statement of the lemma follows from this. See 

also corresponding discussion in H C (2003a, 2003b). _ 
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