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Abstract: In this article, we present a fragment model potential approach for the description of the
crystalline environment as an extension of the use of embedding ab initio model potentials (AIMPs).
The biggest limitation of the embedding AIMP method is the spherical nature of its model potentials.
This poses problems as soon as the method is applied to crystals containing strongly covalently
bonded structures with highly nonspherical electron densities. The newly proposed method addresses
this problem by keeping the full electron density as its model potential, thus allowing one to group
sets of covalently bonded atoms into fragments. The implementation in the MOLCAS 7.0 quantum
chemistry package of the new method, which we call the embedding fragment ab inito model potential
method (embedding FAIMP), is reported here, together with results of CASSCF/CASPT2 calculations.
The developed methodology is applied for two test problems: (i) the investigation of the lowest ligand
field states 2A1 and 2B1 of the Cr(V) defect in the YVO4 crystal and (ii) the investigation of the lowest
ligand field and ligand–metal charge transfer (LMCT) states at the Mn(II) substitutional impurity doped
into CaCO3. Comparison with similar calculations involving AIMPs for all environmental atoms,
including those from covalently bounded units, shows that the FAIMP treatment of the YVO4 units
surrounding the CrO4

3- cluster increases the excitation energy 2B1f
2A1 by ca. 1000 cm-1 at the

CASSCF level of calculation. In the case of the Mn(CO3)6
10- cluster, the FAIMP treatment of the

CO3
2- units of the environment give smaller corrections, of ca. 100 cm-1, for the ligand-field excitation

energies, which is explained by the larger ligands of this cluster. However, the correction for the
energy of the lowest LMCT transition is found to be ca. 600 cm-1 for the CASSCF and ca. 1300
cm-1 for the CASPT2 calculation.

I. Introduction

When using the molecular orbital (MO) approach for the
description of local properties of crystals, one has to take

special care because of their periodic nature. The MO method
of choice is normally applied to a representative part of the
structure, usually a part of the unit cell, but the effects of
the infinite environment cannot be ignored. All proposed
solutions are based on the principles of localization and the
separability of a many-electron system into subsystems. One
of the simplest solutions was pioneered by Sugano and
Shulman.1 They surrounded the structure with point charges
to reproduce the electrostatic potential. In the field of organic
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crystal research, this principle was extended to the super
molecule2 (SM) and quantum mechanics/molecular mechan-
ics (QM/MM)-based3 models, which are of value in geo-
metrical analysis. For the study of inorganic crystals,
however, accurate SM-based models quickly become com-
putationally too expensive because they include the nearest
neighbors into the wave function. Crystals containing metals
need to be described using larger basis sets and more accurate
multiconfigurational expansions of the wave function. It is
also beneficial to be able to limit any electron correlation
treatment to the central part of the system.4

The embedding ab initio model potential (AIMP) method,5

which proved to be successful in many applications,6

addresses this by replacing the nearest neighbors by a set of
frozen electron densities. These densities are represented by
spherical model potentials centered on the atomic positions.
Herein lies its major limitation: the environment cannot
always easily be divided into spherical ions. When strongly
covalently bonded structures are present, the resulting
electron density is anisotropic and not accurately represent-
able either by a set of spherical densities or a single large
spherical density. A natural following step would be the
generalization of the embedding AIMP method to covalently
bounded groups of atoms (which we call fragments).

The fragment approach has a long history in quantum
chemistry, and many versions of this approach have been
proposed in the past. For instance, in the integrated ab initio
plus molecular mechanics geometry optimization (IMMOM)
method,7 the chemical groups linked to the active site through
a single bond are replaced by the hydrogen atom, while
nonbonded interactions of the active site with other atoms
in the molecule are described by the MM force field. More
rigorous approaches are based on the theory of separability
of many-electron systems consisting of weakly interacting
parts8,9 for which effective group potentials (EGPs) can be
rigorously introduced. Thus, Katsuki10 and Mejias Romero
and Sanz11 have developed EGPs for chemical groups linked
to the active site by intermolecular interactions, without
taking into account charge transfer effects. These effects are
incorporated in the effective fragment potential (EFP)
approach, which includes a small basis set on the fragment,
simulating the covalent interactions of some fragment
electrons with the active site, while the interactions with other
electrons of the fragment are described by a model potential.
Ohta et al.12 have proposed an EFP for the NH3 groups which
included only the lone pair orbital of the nitrogen in the basis
set. von Arnim and Peyerimhoff13,14 have developed an EFP
version for small chemical groups where the short-range part
of the potential is stored in an intermediate atomic orbital
basis set and the long-range part of the potential is simulated
by multipole expansions. Another version of this approach,
proposed by Colle et al.,15,16 uses the nonlocal representation
for the short-range part of the fragment potential, including
the short-range part of the Coulomb interaction, expressed
via molecular orbitals of the fragment. An alternative
approach is the EGP method introduced by Durand and
Malrieu,17 which is a shape-consistent potential aimed at the
reproduction of the active valence orbitals of the fragment,
rather than its entire effect on the active site, as was the goal

of the EFP. The EGP method was developed by the Toulouse
group18 and proved to be often a reliable tool of fragment
calculations of the molecules.19

In this article, we propose the embedding fragment ab inito
model potential (embedding FAIMP) method, which is
basically an extension of the conventional embedding AIMP
over polyatomic groups. It uses exact potentials in the sense
that a multiatom fragment can be treated as a single entity
and is represented by its full electron density. When used
with single atom fragments, the method is functionally
identical to the embedding AIMP method. The details of the
method are presented in the next section, and the details of
its implementation into the MOLCAS-7.0 quantum chemistry
software are given in section III. Then, in section IV, we
apply this method for two substitutional impurity problems.

II. Method Description

The FAIMP method assumes some of the approximations
of the AIMP method and improves other ones. In particular,
FAIMP assumes the frozen environment approach (typical
of embedding techniques), which makes it applicable only
to the calculation of local properties, namely, those which
depend strongly on the local geometry and electronic
structure of a reference cluster and depend only secondarily
on the electronic structure of the environment. The frozen
environment approach is a basic assumption in the AIMP
embedded cluster method, and although improvements
including lattice relaxation and polarization have been
explored,6 it has been found that it is very accurate when
applied to very ionic hosts where monatomic ions are easily
distinguished. It is reasonable to expect that the frozen
environment approach should equally apply to more complex
hosts where ionic interactions also occur among fragments
(which can be monatomic but also polyatomic ions), whereas
covalent interactions may occur within the polyatomic
fragments. In these cases, the existing covalent interactions
within the polyatomic fragments should be adequately treated
at the stage of generating the effective embedding potential,
so that the effective potential corresponds to the electronic
structure of a polyatomic density instead of corresponding
to a set of monatomic electronic densities (examples of hosts
of this type are YVO4 and CaCO3, treated in section IV).
Otherwise, the interactions between the reference cluster and
the external fragments are subject to the same approximations
and, presumably, to the same accuracy, as in previous
applications of the AIMP embedded cluster method. Con-
sistently, the frozen fragment electronic structure would
generate polyatomic Coulomb, exchange, and projection
operators which can either be calculated explicitly, this being
the alternative in the present implementation, or be subject
to further approximation along the usual AIMP recipes for
representing local and nonlocal operators, this being the target
of future implementations. This latter step should result in
significant savings in the evaluation of the FAIMP one-
electron integrals in the cluster basis set.

II.1. The Energy Expression. For the derivation of the
embedding FAIMP Hamiltonian, we consider a central
cluster surrounded by a frozen environment consisting of

Embedding Fragment ab Initio Model Potentials J. Chem. Theory Comput., Vol. 4, No. 4, 2008 587



multiatom fragments. The many-electron nonrelativistic
Hamiltonian of this system with Nclus + Nenv electrons reads

Htot ) ∑
i

Nclus+Nenv {-1
2

∇ i
2 -∑

K

ZK

|ri -RK|} + ∑
i>j

Nclus+Nenv
1
rij

+

∑
K>L

ZKZL

|RK -RL|
(1)

Within the theory of separability of many-electron systems
(group-function theory),8,9 the total wave function for the
system is written as a generalized antisymmetric product of
group wave functions. Each group wave function can be a
single or multiconfigurational expansion with the added
limitation that the number of electrons in each group is
constant. This means any electron correlation or electron
transfer between groups is ruled out. If the group wave
functions fulfill the strong orthogonality condition,20 the
effective electronic Hamiltonian for a single group G can
be written as

Heff
G )HG +∑

i
∑
L∉ G

ZL

|ri -RL|
+∑

i
∑
j∉ G

1
rij

(2)

It includes the interactions of the electrons of the group with
the nuclei (core-attraction) and electrons (Coulomb repulsion
and exchange) of all other groups. In practice, this equation
cannot be used as-is, however, as its rigorous application would
lead to variational collapse of the active electron orbitals onto
the frozen orbital space of the fragments because the orthogo-
nality conditions are not imposed. They can be applied following
the procedure by Huzinaga and Cantu.6,8

As most solutions of the many-electron Hamiltonian are
based on orbital expansions, we assume for simplicity that
we are dealing with a closed-shell Hartree–Fock (HF)
calculation. In this case, the orbitals are solutions of the
following Fock equation:

Ftot|�i〉 ) {-1
2

∇ 2 -∑
K

ZK

|r-RK|
+∑

j

(2Jj -Kj)} |�i〉 ) εi|�i〉

(3)

Now, when we split the system into cluster and environment
electrons, subject the orbitals to the following orthogonality
conditions:6,8

〈�i
env|�j

env〉 ) δij 〈�i
clus|�j

env〉 ) 0 〈�i
clus|�j

clus〉 ) δij

(4)

and minimize the total energy under the variational restriction
that �env remain frozen, we obtain

{ F tot - [∑env

|�env〉〈 �env|F tot +F tot ∑
env

|�env〉〈 �env|]} |�clus〉 )

ε
clus|�clus〉 (5)

Then, if we choose the frozen environment orbitals to be
eigenfunctions of Ftot, we obtain a Huzinaga-Cantu-like
equation: 6,8

{ F tot +∑
env

(-2ε
env)|�env〉〈 �env|} |�clus〉 ) ε

clus|�clus〉

(6)

Combining this with group-function theory, we obtain the
following Hamiltonian for the central cluster:

H eff
clus )H clus + ∑

i

Nclus

∑
L∈ env

ZL

|ri -RL|
+ ∑

i

Nclus

∑
j

Nenv
1
rij

+

∑
F

Nfrag

∑
o∈ F

occ

(-2εo)|�o
F〉〈 �o

F| (7)

with �0
F being an occupied orbital of fragment F and Nfrag

the number of fragments in the system.
The first two correction terms are trivial to implement,

but the last term (the projection operator) needs to be
rewritten in linear combination of atomic orbitals (LCAO)
form, based on the expansion �o

F ) 2∑λ∈ F coλλ �o ) ∑λ∈F

coλλ and the expression for the energy-weighted density
matrix Wλσ ) 2∑o∈ F

occ
εocoλcoσ :

Hµν
proj )∑

F
∑
o∈ F

occ

(-2εo)〈µ|�o
F〉〈 �o

F|ν〉

)∑
F

∑
o∈ F

occ

∑
λσ∈ F

(-2εo)coλcoσ〈µ|λ〉〈 σ|ν〉

)-∑
F

∑
λσ∈ F

Wλσ
F 〈µ|λ〉〈 σ|ν〉 (8)

Noting that, in this and the following expressions, the
indices µ and ν loop over the basis functions of the cluster
and the indices λ and σ loop over the basis functions of the
fragments F (which means both indices should always point
to basis functions of the same fragment),21 the complete
electronic energy can be written in LCAO form:

E clus,eff )E clus +∑
µν

Dµν{ ∑
L∈ env

〈µ|
ZL

|r-RL|
|ν〉 +

∑
λσ

Dλσ
F (µν||λσ)-∑

λσ
Wλσ

F 〈µ|λ〉〈 σ|ν〉} (9)

where the density matrices of the cluster and the fragments
are defined as

Dµν ) 2∑
o∈ S

occ

coµcoν (10a)

and

Dλσ
F ) 2∑

o∈ F

occ

coλcoσ (10b)

respectively. When expression 9 is applied to fragments
consisting of single atoms, the resulting energies are com-
parable to those obtained using the electronic embedding
AIMP Hamiltonian. The energy of the AIMP embedded
cluster, however, also contains an effective nuclear repulsion
term between the nuclei in the cluster and in the environment:

Enuc
AIMP ) ∑

K∈ clus
∑

L∈ env

ZKZL

RKL
(11)

II.2. First Derivatives of the Energy. In order to
determine the first derivative of the full FAIMP Hamiltonian,
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one first has to determine all constant terms: the fragments’
orbital energies and coefficients and the fragment atoms’
Mulliken charges. This leads to the following expression for
taking the derivative with respect to the positions of the atoms
of the central cluster {R}:

∂E clus,eff

∂R
) ∂E clus

∂R
+ ∑

K∈ clus
∑

L∈ env

ZKZL

∂RKL
-1

∂R
+

∑
µν

Dµν{ ∑
K∈ env

∂

∂R〈µ|
ZK

|r-RK|
|ν〉 +∑

λσ
Dλσ

F ∂

∂R
(µν||λσ)-

∑
λσ

Wλσ
F ∂

∂R
〈µ|λ〉〈 σ|ν〉} [+∑

µν

∂Dµν

∂R { ∑
L∈ env

〈µ|
ZL

|r-RL|
|ν〉 +

∑
λσ

Dλσ
F (µν||λσ)-∑

λσ
Wλσ

F 〈µ|λ〉〈 σ|ν〉} ] (12)

The last set of terms contains the derivative of the cluster’s
density matrix. Because the fragment orbitals are also
eigenfunctions of Fclus (see eq 5), these terms should be
added to similar terms occurring when determining the
derivative of Eclus in the Hartree–Fock case.23 This means
they are also included in the term

-∑
µν

Wµν

∂Sµν

∂R
(13)

already calculated in ∂Eclus/∂R. This means that eq 12 is in
principle only valid when the set of terms in square brackets
is removed.

III. Implementation Details

The Hamiltonian of the considered system in the environment
of fragments, represented by their full molecular density, can
be expressed as follows:

Hµν
FAIMP )Hµν -∑

E
〈µ|

ZE

|r-RE|
|ν〉 +

∑
M

∑
ab∈ M

Dab
M [(µν|ab)- 1

2
(µa|νb)] +
∑
M

∑
A∈ M

(-2εA)〈µ|A〉〈 A|ν〉

where µν are the basis functions of the central cluster and
ab are the basis functions on atoms E of each fragment M
used to compute the fragment orbitals A and the density
matrices Dab

M. In the derivation of the energy expression,
an all-electron description of the cluster is assumed. The
energy expression is equally valid for usage with effective
core potentials6 if the core potential Hamiltonian is used
instead of Hclus. The same argument can be used for the
fragments. They can also be constructed using ECP-type
basis sets. As in the regular case, only interaction integrals
are calculated, so constant one-center contributions are
omitted. Finally, the relativistic effects can be included in
the same fashion as in the AIMP approach.6

The FAIMP energy and first derivatives are implemented
in the MOLCAS 7.0 package.24 After the geometry of the
system is read, where the fragments are specified just as one
center (which is normally taken to be an obvious location
like the symmetry center or the center of mass), fragments

are expanded (new atoms created from the fragment’s atoms)
according to the specifications in the fragment density library,
and all other data for the fragments are read. Several routines
are modified/added to the SEWARD module from MOLCAS
suite of programs to evaluate the fragment-related integrals
(Figure 1), beside the regular integrals Hµν:

1.Nuclear attraction integrals between the cluster’s elec-
trons and the fragment nuclei of the expanded fragment
atoms:

∑
E

ZE

rµ -RE

2.Projection integrals, which are assembled from energy-
weighted density matrix Wλσ

M and the two overlap integrals
〈µ|λ〉 and 〈σ|ν〉 and contracted afterward. The results are
added to the one electron Hamiltonian:

Pµν
FAIMP )∑

M
∑
A∈ M

(-2εA)〈µ|A〉〈 A|ν〉

)∑
M

∑
A∈ M

(-2εA)〈µ|∑
λ∈ M

cAλλ〉〈 ∑
λ∈ M

cAλλ|ν〉

)-∑
M

∑
λ∈ M

∑
A∈ M

2εAcAλcAσ〈µ|λ〉〈 σ|ν〉

)-∑
M

∑
λσ∈ M

Wλσ
M 〈µ|λ〉〈 σ|ν〉

3.Two-electron interaction integrals. A relative efficiency
is obtained with proper prescreening at this stage, by
eliminating the intracluster and intra- and interfragment
integrals and calculating only the cluster-fragment integrals.
These are added locally to the one-electron Hamiltonian:

∑
M

∑
ab∈ M

Dab
M [(µν|ab)- 1

2
(µa|νb)]

With all one- and two-electron integrals computed, the
SCF module computes a HF electronic density, from which
a small utility (MAKEFAIMP) generates the fragment AIMP
basis set. The resulting so-called FAIMP basis set can be
included in the Fragment library, but it is not a regular basis

Figure 1. Flowchart of the FAIMP procedure implemented
in the MOLCAS-7.0 package.
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set. It consists of a standard name (X.FRAGMENT.author.0s.
0s.0e-FAIMP-compoundName-etc), the name of the standard
basis sets of the participating atoms, relative (to the position-
ing center that is specified in the input) coordinates of the
fragment atoms, orbital energies and coefficients of the
occupied fragment orbitals, and Mulliken charges on each
atom of the fragment from the calculated SCF wave function.
The fragment AIMP generated in this way for a particular
crystalline environment can be used in other crystals as well,
but when generated for the specific environment, it will give
better results. It is, though, a good idea to use FAIMP from
other crystals as a starting point for the considered environ-
ment. The possibility to perform geometry optimization is
implemented in the ALASKA module, where the first
derivatives are calculated in the way described above.

The fragment AIMP method was designed to be a gene-
ralization of the AIMP method,5,6 and the same iterative
procedure is used to obtain the fragments’ orbital energies
and coefficients so that (energy-weighted) density matrices
are obtained that correspond to fragments in a perfect
crystalline environment. The iterative procedure uses re-
stricted Hartree–Fock calculations to obtain the basis sets.
Methods incorporating electron correlation can be used too,
though the equations are not formally valid for them and
have not been tested. The starting point (when no FAIMPs
are available to start with) is a single-point SCF calculation
of each multiatom molecular fragment that can be considered
as a single entity in the crystalline structure. The resulting
total density of the fragment from the first single-point
calculation is taken as the embedding fragment’s basis set
for the subsequent run. By alternating the different fragments
on the position of a central cluster and employing densities
from the previous steps as input for the embedding fragments,
a new and improved electron density is generated. The central
cluster is usually embedded in a few shells of FAIMP and
eventually a few shells of point charges. The self-consistent
iterative procedure continues until convergence (usually
∼25–30 steps) and is implemented as a shell script, which
can be concisely summarized as follows:

while [SCF Energy not converged]
do
for EachFragment in AllFragmentTypes
do
Molcas (SEWARD) compute integrals
Molcas (SCF) calculate SCF wavefunction
MAKEFAIMP generate FAIMP basis set out of the SCF

wavefunction
done
done

The described implementation of the FAIMP method in
the MOLCAS 7.0 package still lacks two essential features.
First, it is not yet in the AIMP representation6 but is still
represented by a collection of bielectronic Coulomb and
exchange integrals between cluster and fragment orbitals.
In order to achieve the AIMP representation, the short-range
Coulomb and exchange interaction should be represented via
nonlocal operators, as it was proposed, for instance, for EFP
by von Arnim and Peyerimhoff.13,14 Second, the symmetry
is not yet implemented for the FAIMP procedure.

The FAIMP is particularly suitable for ionic hosts formed
by polyatomic ions or charged fragments, as commented
upon above. Consequently, the fragment group functions are
expected to be naturally localized within the fragment volume
(the same is true for the reference cluster, as commented
upon above). Thus, the basis set used to obtain the fragment
molecular orbitals can be restricted to include only the bases
of the atoms forming the fragment. This natural localization
allows for the use of smaller fragment basis sets than the
ones that would be presumably needed if standard Hartree–
Fock calculations with (partly frozen) localized orbitals
would be performed. The latter would be superior, however,
in cases where the environment is not naturally localized,
as it has been demonstrated in the study of defects and
chemisorption in metallic surfaces.25

IV. Illustrative Calculations

In order to assess the importance of the FAIMP approach
for the treatment of the effects of covalently bonded groups
on the electronic structure of transition metal clusters, we
made test calculations for two substitutional impurity sys-
tems: (i) YVO4:Cr5+ and (ii) CaCO3:Mn2+. In both of these
cases, no geometry optimization has been done. The main
goal of these calculations was the comparison of FAIMP
and AIMP approaches.

IV.1. Cr(V) Impurity in YVO4 Crystal. Cr(V)-doped
yttrium vanadate (YVO4) is a member of a class of
compounds with a potential use as tunable solid-state lasers.
In this system, chromium has a high oxidation state, which
has only been found to be stable in a tetraoxo coordination.
If the CrO4

3- structure was in a pure tetrahedral environment,
it would have an 2E ground state and a 2T2 excited state
several thousand wavenumbers higher in energy. The YVO4

crystal, however, exhibits a distortion with an elongation
along the binary axis26 (in contrast with a more common
compression along this axis),27 lifting the degeneracy of the
2E state. For the case of CrO4

3-, crystal field theory (CFT)
predicts the 2B1 state (dx2–y2) to be the ground state. EPR28

and optical absorption29 experiments, however, predict an
2A1 (dz2) ground state. This is surprising, even more so
considering the fact that the splitting of the 2T2 state does
occur as predicted by CFT.29

A number of explanations for this phenomenon have been
proposed. It was suggested that it is due to strong covalency
in the Cr-O bonding28 or strong interactions with Y3+ ions
in the second coordination sphere of chromium as revealed
by DFT calculations.29 A recent study by Pascual et al.30

used CASSCF calculations on the CrO4
3- cluster in com-

bination with the AIMP method for the description of the
crystalline environment. Their findings are in agreement with
experiments regarding structure and ordering of the states.
They concluded that the ordering is 76% due to direct and
indirect embedding effects and 24% due to strong covalency.
In order to do this type of calculation, the VO4

3- ions had
to be modeled as V5+ and O2- ions, imposing spherical
electron densities. A FAIMP description of the crystal is
more in line with the nature of the crystal, as the entire
fragment can be described as a single entity.
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In the present study, the Cr(V) impurity in the YVO4

crystal has been modeled by the CrO4
3- central cluster

surrounded by one layer of Y3+ and VO4
3- fragments and

eight layers of point charges in a I41/amd crystalline structure
reoriented to conform to a D2d site symmetry (Figure 2). The
geometry of the CrO4

3- cluster was taken from ref 30 for
the ground state 2A1, where it was optimized in the embedded
AIMP CASSCF calculation. The fragment densities were
constructed and optimized for three entities: one for yttrium
and two for two orientations of the vanadate ion, as the
current MOLCAS implementation does not provide auto-
matic rotation of fragments and their density matrices. The
point charges have the values of the net charge of the
fragments located at their fragment centers. The frontier
charges were scaled according to Evjen’s method31 in order
to attain a zero-charged environment.

For the description of the central CrO4
3- cluster, two basis

sets were used: The first was an ANO-RCC basis set,32

contracted to [7s6p4d3f2g] for chromium and [4s3p2d1f] for
oxygen and designated as “RCC” in the discussions. The
second employed basis set, accompanying the core CG-

AIMP by Barandiarán and Seijo,33 was augmented with three
f functions34 and contracted as [4s4p5d1f] for chromium and
[2s3p1d] for oxygen and referred to as “ECP”. These are
the same basis sets as used in a previous AIMP study by
Pascual et al.,30 thus allowing us to directly compare the
present FAIMP results to these AIMP results. For the
fragments, we constructed the FAIMP densities from three
atomic basis sets, more specifically, an ANO-DK3 basis set35

for all atoms (denoted as “DK3”), an ANO-RCC basis set,
using a DZP contraction for all atoms (denoted as “RCC”),
Cowan-Griffin relativistic core model potentials with a
[3s3p4d] contraction of Barandiarán’s AIMP36 for yttrium,
a [3s3p4d] contraction of Seijo’s AIMP37 for vanadium, and
a [2s4p1d] contraction of Barandiarán’s AIMP33 for oxygen
(denoted as “ECP”). The combinations of cluster basis and
fragment basis sets will be denoted as RCC + DK3, RCC
+ RCC, and ECP + ECP. The FAIMP basis sets for the
fragments were optimized to a convergence criterion of ∆E
< 10-8 Hartree, which was achieved in 20–25 iterations,
compared to an average of seven iterations for the atomic
AIMP method.

The relative energies of the 2A1 and 2B1 states of the
CrO4

3- cluster were determined using the aforementioned
combinations of basis sets using the CASSCF/CASPT2
method.38–40 The active space consisted of the 3d orbitals
of chromium and the 2p orbitals of the four oxygens for a
total of 25 electrons in 17 active orbitals. The dynamical
correlations were computed at the CASPT2 stage by cor-
relating all but 1s of oxygen and 1s, 2s, and 2p electrons of
Cr and V atoms. All ab initio calculations were performed
with the MOLCAS 7.0 software.

The results for the first excitation energy are shown in
Table 1. The calculated energies show a stronger dependence
on the basis set in the case of a cluster embedded in the
crystal than in the gas phase. This is especially the case for
the CASPT2 calculations. The CASSCF excitation energy
for the ECP + ECP basis can be compared directly with a
similar AIMP calculation in ref 30, which gave a value of
1650 cm-1 for the direct 2B1 f

2A1 gap. As we can see
from Table 1, this result differs from the FAIMP calculation
by ca. 1000 cm-1. Although we cannot check the accuracy
of these predictions by confronting them with experimental
results, the obtained difference in the two approaches is large
enough to justify the need for the FAIMP method in this
case.

IV.2. MnII Impurity in Calcite. Divalent manganese in
calcite is one of the most investigated substitutional impuri-
ties in molecular crystals. Calcite is the rhombohedral form
of CaCO3 and belongs to the space group D3d

6.41 There are
two nonequivalent Ca(II) sites in the calcite corresponding
to the alternation of the orientations of the CO3

2- ions in
the successive carbonate planes. The manganese(II) ions
substituting the calcium(II) ions in calcite are octahedrally
coordinated to six nearest-neighbor oxygen atoms of carbon-
ate ions (Figure 3, bottom). Detailed structural investigations
by X-ray standing waves and extended X-ray absorption fine
structure (EXAFS) have shown42 that the Mn-O distance
is found to be the same as in the isostructural MnCO3 (2.18
Å). Since this is shorter than the Ca-O distance in calcite

Figure 2. Schematic representation of the cluster CrO4
3-

(bottom) embedded into one layer of VO4
3- FAIMP (small

balls) and one layer of Y3+ AIMP (large balls) (middle) and
eight layers of point charges (top). The view is along the 4-fold
symmetry axis.
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by 0.18 Å, in order to match other interatomic distances
revealed by EXAFS, the relaxation of neighboring CO3

2-

ions was supposed, the main feature being the rotation of
Mn-O(1)-C planes by 20°.42 The recent ligand-field (LF)
simulations of optical transitions and EPR in CaCO3:Mn2+ 43

have further refined the geometry of six oxygens surrounding
the manganese ions; however, the structural changes were
found to be rather small. In the following, we adopted a
simplified structural model for the manganese impurity,
which only included the relaxation of the Mn-O bond
by 0.18 Å, while all other nuclear coordinates were left
unchanged.

We performed CASSCF/CASPT2 calculations of the
Mn(CO3)6

10- cluster (Figure 3, bottom) with Cowan-Griffin
relativistic core model potentials with a [3s3p4d] contraction
for Mn,33 a [2s3p1d] contraction for carbon, and a [2s4p1d]
contraction for oxygen. The embedding into the calcite lattice
was simulated by two layers of FAIMPs (or atomic AIMPs
for performance comparison with the AIMP method) on
CO3

2- ions and two layers of AIMPs on Ca2+ ions around
the central cluster (Figure 3, middle) and seven layers of
point charges replacing these two types of ions (Figure 3,
top). For the CO3 fragments, two different FAIMPs were
constructed and optimized corresponding to two orientations
of the carbonates in the calcite crystal. The five unpaired
electrons on the MnII impurity make the 6A1 ground state,
relative to which the first 24 quartet LF excited states were
calculated. For the LF states, a minimal active space was
employed, consisting of five 3d orbitals of manganese and
an additional five double-shell orbitals, that is, five electrons
in 10 orbitals of active space. Dynamical correlation effects
were computed at the CASPT2 stage by correlating all
electrons (the core–electrons were represented by ECP). To
reduce the computational effort for these calculations, the
virtual space was reduced by 200 orbitals out of a total of
470 functions. Besides LF excitations, the lowest ligand-to-
metal charge transfer (LMCT) state was evaluated as well
with both atomic AIMPs and FAIMPs in the same environ-
ment and with an enlarged active space. The relatively large
size of the ligands leads to a closely spaced manifold of
molecular orbitals; therefore, in order to have converged
CASSCF and CASPT2 calculations, it was necessary to use
a rather extended active space of 35 electrons in 20 orbitals.

The results of the calculations are shown in in Table 2.
The first column in the table shows the free ion Mn(II)
parentage of the LF terms, which is meaningful given that
the weak ligand-field scenario is realized in the complex
Mn(CO3)6

10-.43 The trigonal symmetry of the cluster and
the environment require that the T terms split into nonde-
generate A and double degenerate E representations of the
trigonal symmetry group, which can be easily recognized in
the results. Comparison with the assigned transitions of the
optical absorption spectra for Mn2+ ions in shells43 shows
differences with the calculated values in Table 2 of several
thousand wavenumbers. This is probably explained by the
nonoptimized geometry of the impurity center and the poor

Table 1. Relative Energies (in cm-1) of the Lowest 2B1 and 2A1 Terms in the CrO4
3- Cluster for Different Combinations of

Basis Sets Specified in the Text

RCC + DK3 RCC + RCC ECP + ECP

CASSCF CASPT2 CASSCF CASPT2 CASSCF CASPT2

gas phase -1461 -826 -1461 -826 -1415 -823
crystal 1112 1936 1346 2276 658 1184
∆G-C 2573 2762 2807 3102 2073 2007

Figure 3. Schematic representation of the cluster Mn-
(CO3)6

10- (bottom) embedded into two layers of CO3
2- FAIMP

(large balls) and two layers of Ca2+ AIMP (small balls)
(middle) and eight layers of point charges (top). The view is
along the 3-fold symmetry axis.
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treatment at the CASPT2 level, which we were enforced to
adopt. Another source of errors is the insufficient basis set
on the manganese ion which, in particular, leads to the
overestimation of the excitation energies to states with
different spin multiplicities.44 However, this drawback is not
expected to affect much the assessment of the FAIMP
method for this system.

The comparison of the results obtained by FAIMP and
AIMP methods shows differences which do not exceed 100
cm-1 for the calculated energies, which are much lower than
the differences obtained for YVO4:Cr5+ in the previous
section. This is due to the fact that the ligands in the present
case are much larger and, therefore, screen efficiently the
short-range potential of the fragments. This is not expected
to be so in the case of LMCT excitations. Indeed, as the last
line of Table 2 shows, the effect of FAIMP is much stronger,
giving the difference with the AIMP method of about 600
cm-1 for the CASSCF and 1300 cm-1 for the CASPT2
calculation. This excitation corresponds to the transfer of one
electron from a doubly occupied ligand orbital delocalized
over two oxygens of the carbonate, one of them being the
closest to the manganese ion (Figure 4a) and the other to
the singly occupied 3d orbital of manganese (Figure 4b).
As Figure 4a shows, there is a direct overlap of the ligand
orbital with the nearest-neighbor CO3 group from the first
layer of the embedding, which makes its energy sensitive to
the interaction with this group.

V. Conclusions

The fragment AIMP method is a useful generalization of the
AIMP method. It permits a more accurate description of the

(crystalline) environment of a molecular system without
imposing limits on the frozen densities used to represent this
environment. This opens the door for a more accurate
treatment of the local states and the related spectroscopy in
carbonates, sulfates and many natural minerals, molecular
solids, and so forth. The method is also more flexible in its
choice of basis sets for the fragments’ atoms. These basis
sets are also easier to construct. When used with single atom
fragments, the method essentially reduces to the AIMP
implementation. The main downside of this method is the
fact that it is computationally more expensive, albeit only in
the calculation of the one-electron integrals for the cluster.
In subsequent calculations, FAIMP corrections are present
in the one-electron matrices and do not increase the
computational time in any way. The limiting step in the
calculation of the FAIMP integrals is the contraction of
the fragment density matrices with the two-electron interac-
tion integrals. Test calculations for YVO4:Cr5+ and CaCO3:
Mn2+ systems show that the corrections introduced by
FAIMP treatment compared to the conventional AIMP
method are important.

Consistent with the frozen environment approximation,
nonlocal properties of perfect or imperfect crystals should
not be the target of the FAIMP method as it is presented
here. Furthermore, the extent or definition of the reference
cluster should be consistent with the frozen environment
approximation in the calculation of local properties. For
dealing with more covalent hosts or very extended defects,

Table 2. Energies (cm-1) of LF and LMCT Excited States
of the Mn(CO3)6

10- Cluster Calculated with AIMP and
FAIMP Methods

AIMP FAIMP

Oh CASSCF CASPT2 CASSCF CASPT2

ligand field 6S 6A1 0 0 0 0
4G 4T1 25256 22740 25325 22788

25428 22947 25577 23075
25428 22951 25577 23068

4T2 28619 26936 28606 26905
28894 27300 28996 27414
28896 27308 28996 27410

4E 30055 28818 30059 28800
30056 28809 30059 28808

4A1 30167 28871 30189 28896
4D 4T2 35502 32240 35546 32271

35502 32248 35546 32267
35634 32423 35723 32501

4E 37407 34260 37337 34190
37407 34263 37337 34196

4P 4T1 38466 35373 38358 35239
38731 35768 38754 35771
38732 35761 38754 35718

4F 4T1 49819 45764 49846 45760
49819 45766 49846 45759
50067 46060 50139 46110

4A2 50578 45857 50605 45926
4T2 52655 49187 52602 49104

52656 49179 52603 49112
52814 49356 52810 49355

LMCT 6A 56739 94942 56157 93673

Figure 4. The ligand orbital (a) and the metal orbital (b)
involved in the lowest LMCT of the Mn(CO3)6

10- cluster.
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other alternative methods, which can be used along a building
block route or as embedding methods, should be preferred.25,45

As already mentioned, the described implementation of the
FAIMP method in the MOLCAS 7.0 package still lacks two
essential features: (i) the AIMP representation of bielectronic
and projection operators and (ii) the account of symmetry of
the supermolecule (cluster + fragments). These are tasks for
further development. Their accomplishment would greatly
facilitate the use of the FAIMP method for embedded calcula-
tions, especially for the geometry optimization of impurity
systems, which is done routinely for the AIMP method.
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