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bstract

For powder type self-compacting concrete (SCC) mixes, commonly used in Belgium, a shear thickening (Herschel–Bulkley) flow behaviour of
he fresh mixes is quite often observed.

A longstanding problem in rheometry is the so-called “Couette inverse problem”, where one tries to derive the flow curve τ(γ̇) from the torque
easurements T(N) in a (wide-gap) concentric cylinder (Couette) rheometer, with T the torque registered at the inner, stationary cylinder and N

he rotational velocity of the outer, rotating, cylinder.
In this paper, the Couette inverse problem is approached by means of the integration method in order to convert T(N) into τ(γ̇) for a wide-gap
Ro/Ri = 1.45) concentric cylinder rheometer. The approach consists in the decoupling of the flow resistance and the power-law flow behaviour
fter exceeding the flow resistance. The integration approach is validated by experimental verification with different powder type SCC mixtures.
y means of illustration, the results of one limestone powder type SCC mixture with different superplasticizer contents are shown in this paper.
2007 Elsevier B.V. All rights reserved.
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. Introduction to self-compacting concrete (SCC)

Placement of “traditionally vibrated” concrete (TC) requires
ompaction by vibration in its forms. However, durability prob-
ems related to bad compaction quality led to the introduction of
elf-compacting concrete in Japan at the beginning of the 1980’s
1]. SCC is able to flow and consolidate under its own weight,
ompletely filling the formwork even in the presence of dense
einforcement, whilst maintaining homogeneity and without the
eed for any additional compaction effort [2]. In order to com-
ly with this definition, fresh SCC mixes must possess following

ey properties:
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. Filling ability: The ease of flow of fresh concrete when
unconfined by formwork and/or reinforcement.

. Passing ability: The ability of fresh concrete to flow through
tight openings such as spaces between steel reinforcing bars
without segregation or blocking.

. Resistance to segregation: The ability of concrete to remain
homogeneous in composition while in its fresh state.

The first two properties, i.e. a sufficiently high flowability,
re achieved by using a high range water reducing (HRWR)
dmixture, mostly based on (modified) polyacrylates (PA) or
olycarboxylate ethers (PCE), also called a “3rd generation”
uperplasticizer. In order to achieve a sufficiently high resistance
o segregation, the viscosity of the mixture must be increased
ompared to TC. This can be done in three ways, mostly depend-

ng on readily available materials: (1) using a higher powder
ontent: “powder type SCC”, (2) using a viscosity modifying
gent (VMA): “VMA type SCC”, or (3) using both a higher
owder content and VMA: “Combination type SCC”. Besides
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Nomenclature

B Bingham
C/P cement/powder ratio by mass
Dmax maximum aggregate size (mm)
G* (complex) shear modulus (Pa)
GB flow resistance of B fluids (N m)
GHB flow resistance of HB fluids (N m)
�GHB 95% confidence interval half-width for GHB

(N m)
HB flow resistance of B fluids (N m)
HHB flow resistance of HB fluids (N m)
�HHB 95% confidence interval half-width for HHB

(N m)
HB Herschel–Bulkley
h height of the inner cylinder (m)
J flow index factor of HB fluids (−)
�J 95% confidence interval half-width for J (−)
K consistency coefficient (Pa sn)
�K 95% confidence interval half-width for K (Pa sn)
n flow index (−)
�n 95% confidence interval half-width for n (−)
N angular velocity of the outer cylinder (rps)
Np angular velocity beneath which a plug is formed

in the test material (rps)
Od Oldroyd number (−)
PCE polycarboxylate ether (superplasticizer)
r radial cylindrical coordinate (m)
Ri external radius of the inner cylinder (=0.100 m)
Ro internal radius of the outer cylinder (=0.145 m)
Rp plug radius, indicating the boundary between vis-

coplastic and solid state of the test material when
a plug is formed (m)

SF slump-flow (mm)
SP superplasticizer
T torque measured on inner cylinder (N m)
TW time after water addition (min)
U velocity of suspended particle (m/s)
vθ tangential velocity (m/s)
Vm matrix volume (l)
VP volume of suspended particles (>2 mm) (l)
W/C water/cement ratio by mass
W/P water/powder ratio by mass
z height cylindrical coordinate (m)

Greek letters
Φ initial particle volume fraction (−)

[=VP/(VP + Vm)]
γ̇ shear rate (s−1)
μ plastic viscosity of B fluids (Pa s)
θ angular cylindrical coordinate (rad)

τ shear stress (Pa)
τ0,B yield stress of B fluids (Pa)
τ0,HB yield stress of HB fluids (Pa)
�τ0,HB 95% confidence interval half-width for τ0,HB (Pa)
ω angular velocity (rad/s) [= vθ/r]
Ωo angular velocity of the outer cylinder (rad/s)

[=2πN]

Function
�̂ LerchPhi function

Others
N set of natural numbers

c
d
m
a
c
m
b
o
u
5

d
m

e
s
t
e
f
o
r
c
p
s

2

2

t
o
t
c
s
fl
a
c
[

∞ infinity

ement, the European “powder type SCC” (having a total pow-
er content of about 550–650 kg/m3) makes mostly use of
ineral additions like limestone powder, quartzite powder, fly

sh or silica fume in order to reduce heat generation during
ement hydration. The (North American) “VMA type SCC”
akes use of a VMA, mostly based on polyethylene-glycol or

iopolymers (like welan gum) and has a total powder content
f about 350–450 kg/m3. The “combination type SCC” makes
se of both a VMA and a total powder content of about 450–
50 kg/m3.

The SCC mixture used in this paper is based on the “pow-
er type SCC” philosophy, using in Belgium readily available
aterials.
The flow behaviour of fresh SCC is mostly characterized by

mpirical test methods like slump-flow, V-funnel, L-box, sieve
tability, etc. [2,3]. Because test equipments are inexpensive and
ests are carried out easily, they are suitable for on site use. How-
ver, these tests have one major disadvantage: they provide no
undamental description of flow behaviour. For the knowledge
f the flow parameters, rheological measurements from a mate-
ials science approach by means of a rheometer, considering the
oncrete as a fluid (see below), are necessary. A detailed com-
arison between empirical and rheological data is beyond the
cope of this paper.

. Rheology and concrete technology

.1. Rheological models in concrete technology

On beforehand, it should be stated that fresh concrete is
reated here as a fluid and, as a consequence, fluid rheology meth-
ds are used to describe the concrete flow. In this approach, only
he motion of a “large” number of solid particles is taken into
onsideration, without going into the detailed motion of every
ingle one of them. In order to properly treat fresh concrete as a

uid, a certain degree of flow (i.e. a slump of at least 100 mm,
ccording to EN 12350–2:1999) must be achieved while the
oncrete stays homogeneous (i.e. no segregation may occur)
4].
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Fig. 1. Schematic cross-section of the ConTec Visco5: (1) top ring; (2) outer
cylinder, internal radius Ro = 145 mm; (3) sheared test material taken into con-
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der rheometer (Figs. 1 and 2). It is one of the most recent
updates of the BML viscometer [20], well designed for testing
both (self-compacting) concrete and mortar (maximum aggre-
gate size Dmax ≤ 22 mm). Most important improvements of the
G. Heirman et al. / J. Non-Newto

The rheology of fresh concrete, conceived as a viscoplastic
uid, can usually be described by the Bingham model, at least as
first approximation. In this model, the shear stress τ is assumed

o be linearly proportional to the shear rate γ̇ , after exceeding a
ertain Bingham yield stress τ0,B:

=
{

G∗γ(or γ̇ = 0) τ < τ0,B

τ0,B + μγ̇ τ ≥ τ0,B
(1)

Below the Bingham yield stress, the fluid behaves Hookean,
hile it behaves Newtonian above. G* and μ are called

he (complex) shear modulus (Pa) and the plastic viscosity
Pa s), respectively. It should be noted that the Bingham yield
tress is not necessarily a “true” yield stress [5–7]. The con-
ept of the Bingham (and Herschel–Bulkley, see below) yield
tress, however, can be considered as a useful engineering
ool in concrete science: it can be seen as the point at which
olid-like behaviour is first seen when decreasing the applied
tress.

For a considerable number of powder type SCC mixtures,
ommonly used in Belgium, the Bingham model results in neg-
tive values for the Bingham yield stress, which of course has no
hysical meaning. The effect is more pronounced when higher
uperplasticizer contents are added to the SCC mix, resulting in
lower yield stress [8,9].

In order to avoid the appearance of a negative yield stress, a
hear thickening model must be used to describe this material’s
ow behaviour. The Herschel–Bulkley approach is mostly used

o approximate the shear thickening flow behaviour of concrete
8–12]. In the last model, the relation τ(γ̇), after exceeding the
erschel–Bulkley yield stress τ0,HB, is described by a power-law

unction:

=
{

G∗γ(or γ̇ = 0) τ < τ0,HB

τ0,HB + Kγ̇n τ ≥ τ0,HB
(2)

Below the Herschel–Bulkley yield stress, the fluid behaves
ookean, while it is found that the fluid (i.e. the self-compacting

oncrete mix) behaves dilatant (or shear thickening: n > 1) above
he yield value [8]. K is called the “consistency coefficient”
Pa sn), where n denotes the “flow index” (−).

According to Cyr et al. [12], the shear thickening behaviour
f cement pastes could be linked (besides to the high polydisper-
ity of the particles [13]) to the presence of a superplasticizer.
wo possible explanations are given: (1) increasing the shear
ate enhances the disorder, not only between the cement parti-
les, but also within the polymeric chains of the superplasticizer,
nd thus increases the viscosity (see Hoffman [14–16] for more
nformation on the order–disorder theory); (2) increasing the
hear rate can locally tear off part of the absorbed polymer,
esulting in (a) an increased viscosity of the free water, and
o possibly making it shear thickening (according to Hoff-
an’s theory), and in (b) a higher probability of occurrence of

nterparticular bonds and flocs (which results in an increased

iscosity, according to Bossis and Brady’s clustering theory
17–19]).

Mineral additions as replacements of different amounts
f cement modify the intensity of shear thickening (indi-

F
V

ideration; (4) inner cylinder – free upper unit, external radius Ri = 100 mm; (5)
nner cylinder – fixed bottom unit.

ated by the flow index n), depending on their nature: the
henomenon can be increased, unaltered or decreased com-
ared to plain cement pastes [12]. Assuming an unaltered
ntensity for quartz powder “Silfill 3600 M” from Sibelco,
elgium (as found in [12]), the use of limestone powder

“Calcitec 2001 S” from Carmeuse, Belgium, and “Beto-
arb P2 Mq” from Omya Industries Inc., France) as mineral
ddition for powder type SCC results in a (slightly) ampli-
ed intensity, while fly ash (from Electrabel power station
Langerlo”, Belgium) seems to reduce the shear thickening
ntensity [8].

.2. The Couette concentric cylinder rheometer in concrete
echnology

The “ConTec Visco5” used for the experiments in this paper
an be considered as an example of a Couette concentric cylin-
ig. 2. Detailed view of inner cylinder upper and bottom unit of the ConTec
isco5 (here: immediately after testing a SCC mixture).
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2πr2h
= τ0,B + μr

∂ω(r)

∂r
(5)

Assuming “no slip” boundary conditions, i.e.
r = Ri ⇒ ω ≡ 0 ∧ r = Ro ⇒ ω ≡ Ωo, the above equation can
be integrated as follows:
6 G. Heirman et al. / J. Non-Newto

onTec Visco5 are: increased torque signal sensitivity, reduc-
ion of signal noise during torque logging, increased rotation
peed span and increased criteria for accuracy of the cen-
re axes of the inner and outer cylinder, together with some

inor modifications on the inner cylinder. The outer cylinder
otates at angular velocity Ωo = 2πN (rad/s), while the inner
ylinder is stationary and registers the applied torque T (N m)
rom the test material, i.e. in our case the self-compacting
oncrete.

The measuring system consists of an outer cylinder
Ro = 145 mm), an inner cylinder unit (standard unit C-200:
i = 100 mm) and a top ring. To avoid slippage between the
ylinders and the test material, both the inner and outer cylin-
ers are fitted with protruding vanes (Fig. 1a) [21–23]. With
his, the dimensions Ri and Ro are relative to the extremities of
he vanes (Fig. 1a). For a viscoplastic material, it is assumed
hat the material is held in the space between the vane blades
o that it behaves like a rigid cylinder. Experimental observa-
ion supports this assumption and is in accordance with the
xperiences found in literature [23–26]. Any attempt to inves-
igate the flow between the vane blades is not done in this
ork.
The outer cylinder is well mounted on a rotating disk. The

nner cylinder is lowered into the outer cylinder by a screw–jack
ystem. The top ring can be fitted over the inner cylinder, in
rder to insure a constant height of the sheared test material.
he inner cylinder is constructed as a two component unit

Figs. 1b and 2): a bottom unit, which is fixed at the mount-
ng point of the inner cylinder, and an upper unit, which is free
o rotate against a load cell, registering the applied torque T
rom the rheological continuum. The arrangement of the two
omponent inner cylinder will virtually eliminate the effect of
D shearing at the bottom of the inner cylinder and therefore
equires no special correction regarding possible bottom effects
27].

. Shear rate and shear stress in a wide-gap concentric
ylinder rheometer

The shear rate in a rotational flow is defined as:

˙ = r
∂ω(r)

∂r
(3)

with r the radial cylindrical coordinate (m) and ω(r) the angu-
ar velocity at radius r (rad/s). A detailed derivation of this
quation can be found elsewhere [27,28]. In short, the following
ssumptions are made concerning the velocity profile in order
o obtain Eq. (3):

The flow between the two concentric cylinders is stable
(i.e. laminar, without secondary flows) and symmetrical in
z-direction.

The velocity profile is height independent because bottom and
top effects are eliminated by geometrical means (fixed bottom
unit of inner cylinder and top ring).
The flow is purely circular with angle independence, due to
the circular geometry of the Couette rheometer.

∫

Fluid Mech. 150 (2008) 93–103

The flow is steady state, i.e. time independent for the given
measurement, because each measurement is applied in equi-
librium conditions (equilibrium torque at each rotational
velocity).

The shear stress applied from the test material on the
nner cylinder can be determined from the decomposition
f the conservation of momentum in θ-direction and with
he help of Cauchy’s stress principle, expressing equiva-
ence between applied torque and shear stresses on the shell
27,28]:

(r) = T

2πr2h
(4)

with T the measured torque (N m) and h the height of the
onsidered cylindrical shell (m). The latter equation shows that
he shear stress of a fluid in a concentric rheometer depends only
n the rheometer geometry and not on the nature of the fluid (at
teady state).

The derivation of the flow curve τ(γ̇) from the torque mea-
urements T(N) is called the “Couette inverse problem”. In order
o solve the Couette inverse problem, three methods can be used:
a) the integration method: the type of constitutive equation is
pecified in advance and integrated to obtain the relation T(N),
hich is fitted to the experimental data, (b) the Tikhonov reg-
larization method, proposed by Yeow et al. [29] and (c) the
avelet–vaguelette decomposition method, proposed by Ancey

30].
The analytical solution of the Couette inverse problem is up

o now reserved for special fluid rheological behaviour, i.e. when
sing a narrow-gap rheometer geometry. For wide-gap concen-
ric cylinder rheometry, as it is the case for (self-compacting)
oncrete, a straight analytical solution is not available up till
ow [31,32].

. Integration approach of the Couette inverse problem
or a Bingham fluid: the “Reiner–Riwlin” equation

Eq. (1), for τ ≥ τ0,B, can be rewritten, using Eqs. (3) and (4),
s:
Ro

Ri

(
T

2πr3h
− τ0,B

r

)
dr = μ

Ωo∫
0

dω(r) (6)
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The solution of this integral (see Appendix A) results in the
ell-known “Reiner–Riwlin” equation:

= 4πhτ0,B(
1
R2

i
− 1

R2
o

) ln

(
Ro

Ri

)
+ μ8π2h(

1
R2

i
− 1

R2
o

)N ≡ GB+HBN (7)

here GB and HB are, respectively, the flow resistance and the
iscosity factor for a Bingham fluid. So:

0,B = GB

4πh

(
1

R2
i

− 1

R2
o

)
1

ln(Ro/Ri)
(8)

nd

= HB

8π2h

(
1

R2
i

− 1

R2
o

)
(9)

Eq. (7) is the solution of the inverse (wide-gap) Couette prob-
em for a Bingham fluid, since the following steps can be made in
rder to derive the flow curve τ(γ̇) from the torque measurements
(N):

Determine GB and HB by a linear least square curve fitting
of the experimental data T(N) into T = GB+HBN (keeping in
mind that a steady state flow and no appearance of slip nor
plug are required).
Determine τ0,B and μ, according to Eqs. (8) and (9), respec-
tively, and fill in their values into Eq. (1) (for τ ≥ τ0,B).

When changing the “outer” boundary condition into
′ = r ⇒ ω ≡ vθ(r)/r, Eq. (6) can be solved for the velocity profile
n the gap of the Couette rheometer:

θ(r) = Tr

4πhμ

(
1

R2
i

− 1

r2

)
− τ0,Br

μ
ln

(
r

Ri

)
(10)

Using Eq. (3), the corresponding shear rate can be calculated
s:

˙ (r) = T

4πr2hμ
− τ0,B

μ
(11)

It may be clear from the latter two equations that, contrary
o the shear stress (Eq. (4)), the velocity profile and shear rate
epend on both the rheometer geometry and the nature of the
uid (at steady state).

It should be noted that the boundary conditions, as mentioned
n Eq. (6), are only valid when no plug is formed during the
heological measurements. With a plug, a solid state arises (γ̇ ≡
). The material in the solid state rotates inside the rheometer as a
igid body (vθ(r) = rΩo). When applying a stepwise decreasing
otational speed sequence (see Section 6.3), the condition γ̇ =

, and so plug, will begin at the outer cylinder and propagate
owards the inner cylinder as the angular velocity Ωo (=2πN)
s further decreased [27]. The location of the boundary between
he viscoplastic and the solid state is defined by the plug radius

t
n

o

Fluid Mech. 150 (2008) 93–103 97

p, which can be calculated as:

p =
√

T

2πhτ0,B
(12)

For Rp < Ro, i.e. when a plug is present, the outer boundary
ondition of Eq. (6) must be replaced by “r = Rp ⇒ ω ≡ Ωo”,
lthough this latter condition may be incorrect due to possible
lippage in the transition zone from viscoplastic to solid state.

hen slippage occurs, the rheometer measures a smaller torque
han expected.

. Integration approach of the Couette inverse problem
or a Herschel–Bulkley fluid

.1. Integration approach of the Couette inverse problem
or T = GHB + HHBNJ

Since Eqs. (3) and (4) are not depending on any rheological
odel, they can also be used in the case of a Herschel–Bulkley
uid. So Eq. (2), for τ ≥ τ0,HB, can be rewritten as:

T

2πr2h
= τ0,HB + K

(
r
∂ω(r)

∂r

)n

(13)

The same “no slip” boundary conditions as mentioned for
he Bingham fluid can be applied, resulting in the following
ntegration of Eq. (13):

Ro

Ri

((
T

2πr2hK
− τ0,HB

K

)1/N 1

r

)
dr =

Ωo∫
0

dω(r) (14)

Unfortunately, the solution of this integral (see Appendix B)
ontains the LerchPhi function �̂ (x, 1, a) which is a single-
alued, continuous but non-polynomial function on the x-plane
ut along the interval x ∈] −∞, 1[ (for fixed a, −a /∈ N) [33]:

⎡
⎢⎢⎣
(

T

2πR2
i hK

− τ0,HB

K

)1/n [
n − �̂

(
1 − T

2πR2
i hτ0,HB

, 1,
1

n

)]
−

(
T

2πR2
ohK

− τ0,HB

K

)1/n [
n − �̂

(
1 − T

2πR2
ohτ0,HB

, 1,
1

n

)]
⎤
⎥⎥⎦

= 4πN (15)

imilar to the Bingham fluid, the latter equation should prefer-
bly be transformed into the general form:

= GHB + HHBNJ (16)

with GHB the flow resistance, HHB the viscosity factor and J
he flow index factor for a Herschel–Bulkley fluid.

For n = 1, the applicability of Eq. (15) is established by Heir-
an et al. [28], resulting in the same “Reiner–Riwlin” equation

s found above (Eq. (7)). However, for n �= 1, no analytical

ransformation into the general form can be found, due to the
on-polynomial character of the LerchPhi function.

Note that, similar to a Bingham fluid and applying the same
uter boundary condition r′ = r ⇒ ω ≡ v�(r)/r, the velocity dis-
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ribution across the gap is given by:

θ(r) = r

2

⎡
⎢⎢⎢⎢⎣

(
T

2πR2
i hK

− τ0,HB

K

)1/n [
n − �̂

(
1 − T

2πR2
i hτ0,H(

T

2πr2hK
− τ0,HB

K

)1/n [
n − �̂

(
1 − T

2πr2hτ0,HB

It should be noted that also for a Herschel–Bulkley fluid,
teady state flow and no appearance of slip or plug are required
n order to fulfil the boundary conditions as given in Eq. (14).
n case of plug, the same outer boundary condition correction
s seen for a Bingham fluid (Section 4) can be made (see also
ection 6.3).

Experimental results, including the 95% confidence intervals
or the model parameters (GHB, HHB and J), the predicted model
(N) and the unknown torque T, for different powder type SCC
ixtures can be found in [8]. Besides, experiments revealed that

he integration approach of the Couette inverse problem and
he superposition of a flow resistance with a power-law flow
ehaviour are “commutative”: a reliable approach of the Cou-
tte inverse problem of the additive function T = GHB + HHBNJ

an be found as the sum of the solutions of the Couette inverse
roblem of both subfunctions T′ = GHB (the flow resistance) and
′′ = HHBNJ (the power-law, Ostwald-de Waele, flow behaviour
fter exceeding the flow resistance).

The experiments proved that the “decoupling of terms” could
e extended from the linear to the nonlinear case for (see
8] for all experimental results): Ro/Ri = 1.45; 1 < J < 1.81 and
.9·10−4 < Od < 33.4. Od is the Oldroyd number, expressing the
atio of the plastic, Herschel–Bulkley yield, stress to viscous
tresses, given by:

d = τ0,HB

K(U/d)n
(18)

with d the suspended particle diameter (m) and U its (tangen-
ial) velocity (m/s).

The maximum diameter is given by the maximum aggregate
ize Dmax (= 14 mm for all SCC mixtures under consideration).
he minimum diameter is arbitrary set at 2 mm. It should be
oted that, dealing with fresh concrete, the distinction between
atrix and suspended particles is in fact a matter of choice,

n contrast to the more traditional suspensions of spheres sub-
erged in a Newtonian liquid. For concrete, the matrix is defined

ere to be the 0–2 mm mortar inside it, in accordance with
allevik [27] and Barnes et al. [34].
In Sections 5.2 and 5.3, the integration approach for the Cou-

tte inverse problem of each subfunction will be given. In Section
.4, the integration approach for obtaining the flow curve τ(γ̇)
f a Herschel–Bulkley fluid is presented.

.2. Integration approach of the Couette inverse problem

or the flow resistance T′ = GHB

For T′ = GHB, experiments proved that the same conversion
quation as found for the flow resistance of a Bingham fluid
Eq. (8)) can be used. Besides, it was found before that the shear

H
t

•
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1,
1

n

)]
−

,
1

n

)]
⎤
⎥⎥⎥⎥⎦ (17)

tress of a fluid depends only on the rheometer geometry and
ot on the nature of the fluid:

0,HB = GHB

4πh

(
1

R2
i

− 1

R2
o

)
1

ln(Ro/Ri)
(19)

.3. Integration approach of the Couette inverse problem
or T′′ = HHBNJ

In the case of no flow resistance (GHB ≡ 0), the constitutive
quation to be specified in advance simplifies to the (Ostwald-de
aele) power-law model:

T ′′

2πr2h
= K

(
r
∂ω(r)

∂r

)n

(20)

Also here applying the same “no slip” boundary conditions
s mentioned for the Bingham fluid, the following integration
f Eq. (20) is found:

Ro

Ri

((
T ′′

2πr2hK

)1/n 1

r

)
dr =

Ωo∫
0

dω(r) (21)

The solution of this integral (see Appendix C) results in:

′′ = 22n+1πn+1hK

nn(1/R
2/n
i − 1/R

2/n
o )

n Nn ≡ HHBNJ (22)

o:

= J (23)

nd

= HHB

22n+1πn+1h
nn

(
1

R
2/n
i

− 1

R
2/n
o

)n

(24)

.4. Integration approach of the Couette inverse problem
or T = T′ + T′′ ≡ GHB + HHBNJ

As stated above, the integration approach for the Cou-
tte inverse problem of the additive function T = GHB + HHBNJ

onsists of the sum of the solutions of the Couette inverse prob-
em of both T′ = GHB and T′′ = GHBNJ. In this way, a reliable
pproach of the ultimate flow curve τ(γ̇), after exceeding the
erschel–Bulkley yield stress τ0,HB, can be derived from the
orque measurements T(N) as follows:

Determine GHB, HHB and J by a nonlinear least square curve
fitting of the experimental data T(N) into T = GHB+HHBNJ
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(keeping in mind that a steady state flow and no appearance
of slip nor plug are required).
Determine τ0,HB, according to Eq. (19).
Determine n and K, according to Eq. (23) and (24), respec-
tively, for T′′ = T − GHB = HHBNJ.
Fill in the values of τ0,HB, n and K into Eq. (2) (for τ ≥ τ0,HB).

Similar to the “Reiner–Riwlin” equation, the analytical solu-
ion for a Herschel–Bulkley fluid can also be expressed as:

= 4πhτ0,HB

(1/R2
i − 1/R2

o)
ln

(
Ro

Ri

)

+ 22n+1πn+1hK

nn(1/R
2/n
i − 1/R

2/n
o )

n Nn ≡ GHB + HHBNJ (25)

Note that Eq. (25) is valid for both shear thickening (or dila-
ant, n > 1) and shear thinning (or pseudoplastic, n < 1) fluids.

. Experimental results

.1. Materials and mix design

River aggregates (river gravel 4/14 and river sand 0/5), sup-
lied by Gralex (Belgium), are used because of their most
avourable, rounded shape for SCC production. They were
ven dried before use. The use of a maximum aggregate size
max = 14 mm is in accordance with the required minimum
ap size (=3Dmax) for concrete rheometry, provided by Ferraris
t al. [4], to avoid interlocking of the aggregates, which will
revent flow (see also [27] for more information about the bar-
ier restraint of inner and outer cylinder). A HeidelbergCement
roup (CBR) portland cement (CEM I 52.5 R HES according to
N 197-1:2000) and a Carmeuse finely ground limestone addi-

ion (Calcitec 2001 S) are used as “powder”. The temperature of
he mixing water, having a four to five times higher specific heat
apacity than the other mixing materials, was set at 20 ◦C. As
CE superplasticizer, SIKA ViscoCrete-20 GOLD CON. 40%
as used for the experiments shown in this paper.

The specific gravities of the aggregates and the powders are

etermined according to EN 1097-6:2000 and EN 1097-7:1999,
espectively. The results are listed in Table 1. The specific gravity
f the superplasticizer is taken from its technical data sheet.

able 1
pecific gravity (SG) of materials (−) and mix composition of SCC24 (kg/m3)

onstituent material SG (−) Composition (kg/m3)

iver gravel 4/14 2.64 698
iver sand 0/5 2.64 853
EM I 52.5 R HES 3.13 360
imestone addition 1 2.70 240
ater 1.00 165

uperplasticizer PCE 1.08 4.5 + 1.5 + 1.5

/C 0.46
/P 0.6
/P 0.28

t
t
w
A
d
9
a
i
i
t
o
T

(
v
(
v

Fig. 3. Grading curves of powders and aggregates for SCC24.

The grading curves of the aggregates are determined accord-
ng to EN 933-1:1997 and EN 12620:2002, while the grading
urves of the powders are determined by means of laser
iffraction, using the Sympatec HELOS/QUIXEL apparatus
measuring range 1.8–350 �m). The results are shown in Fig. 3.

The Blaine fineness, determined according to EN 196-6:1991
nd corrected to 20 ◦C, of both cement and limestone addition
re 600 and 338 m2/kg, respectively.

The mix composition of the SCC mixture under considera-
ion (denoted as SCC24) is given in Table 1. The air content,
etermined according to EN 12350-7:2000, and the density ρ of
he fresh concrete mixture SCC242 are 1.9% and 2377 kg/m3,
espectively.

.2. Mixing procedure

A 50 l batch was mixed in a 50-l laboratory paddle-pan mixer
EIRICH, type SKG1). First, all the dry material was put in the
ixer. Then mixing was started. Water was added during the
rst 15 s. One minute later, the mixer was paused for 15 s and

he PCE superplasticizer (SP) was added. After SP addition,
he mixing continued for 2 min. After mixing, the slump-flow
as measured according to the European guidelines for SCC [2,
nnex B.1] (using the Abrams cone with internal upper/lower
iameter of 100/200 mm and height of 300 mm; base plate of
00 mm × 900 mm × 2 mm, made of stainless steel with smooth
nd plane surface, deviation of flatness <3 mm) and the rheolog-
cal properties were determined with the ConTec Visco5 (placed
n a climate room at 20 ± 2 ◦C and 54 ± 5% R.H.). After testing,
he concrete was poured back into the mixer, an extra amount
f SP was added and the concrete was mixed for another 2 min.
his test sequence is repeated for each further measurement.

For each test under consideration, the amount of SP added

PCE, in m%, relative to the cement mass), the initial particle
olume fraction (Φ) [34], the time after the addition of water
TW, in min) and the slump-flow (SF, in mm; i.e. the average
alue of the largest diameter of the flow spread of the concrete
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Table 2
PCE-content (m%), initial particle volume fraction Φ (−), time after water
addition TW (min) and slump-flow SF (mm) for each rheometry test under
consideration

PCE (m%) Φ (−) TW (min) SF (mm)

SCC242 1.25 0.473 54 610
S
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Table 3
Results for the T(N) model parameters

GHB

(N m)
�GHB

(N m)
HHB

(N m sJ)
�HHB

(N m sJ)
J (−) �J (−)

SCC242 2.19 0.04 14.75 0.11 1 0
SCC244 1.07 0.06 12.38 0.14 1.30 0.03
SCC246 0.43 0.04 10.70 0.17 1.65 0.03

F
fi

r
T

E
p

τ(γ̇) for Herschel–Bulkley fluids is done by filling in τ0,HB, K and
CC244 1.67 0.472 120 690
CC246 2.08 0.471 182 830

nd the diameter of the spread at right angles to it) are given in
able 2.

.3. Rheological test results and validation of the proposed
onversion method

To obtain the flow curve T(N) with a maximum of steady
tate data points, the rotational velocity N is decreased in 10
teps (0.63 → 0.06 rps) of each 25 s (100 registration points),
fter a pre-shearing period of 10 s at 0.60 rps (in accordance
ith Wallevik [27], in order to finish thixotropic breakdown,

nd so to create uniform start conditions for all experiments).
or each velocity step, the average of torque T and rotational
elocity N measured at the last 15 s can be seen as one (T,N)
ata point. If the torque for a certain point did not reach steady
tate, the point was omitted in further regression analysis. As
n illustration, all registered rotational velocity and torque data
oints for the specific mix SCC242 are shown in Fig. 4 (first
oint, at N = 0.63 rps, omitted in further analysis due to non-
teady state flow).

Curve fitting, according to Eq. (16), of the steady state (T,N)
ata points is done by means of nonlinear regression analy-
is, using the stats toolbox of MATLAB® R2006a. For each
teady state, the last 60 registration points of both T and N are
sed for the regression analysis. In the case of Bingham (linear)

ehaviour, as it is for SCC242 (see below), the flow index factor
quals unity: J ≡ 1. The results for the model parameters (GHB,
HB and J) as well as their 95% confidence interval half-widths

re given in Table 3 (only the results for SCC24 are shown here,

ig. 4. Registration of rotational velocity and torque data points for SCC242.

n
f

F
a

ig. 5. Flow curves T(N) for SCC24 (straight line: nonlinear least square curve
tting,+: Eq. (15), no plug, ©: Eq. (15), plug).

esults of other powder type SCC mixtures can be found in [8]).
he resulting flow curves T(N) are represented in Fig. 5.

In order to obtain the flow curves τ(γ̇) (straight lines in Fig. 6),
qs. (19), (23) and (24) are used in order to calculate the model
arameters τ0,HB, K and n. The results are given in Table 4.

The validation of the proposed method to convert T(N) into
in Eq. (15) and calculating the corresponding rotation speed N
or certain values of torque T. The results are represented in Fig. 5

ig. 6. Flow curves τ(γ̇) for SCC24 (straight lines) and narrow-gap (NG)
pproximation (point markers, according to Eqs. (26) and (27)).
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Table 4
Results for the τ(γ̇) model parameters

τ0,HB (Pa) �τ0,HB (Pa) K (Pa sn) �K (Pa sn) n (−) �n (−)

SCC242 196.44 3.47 78.37 0.58 1 0
S
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CC244 95.72 5.28 28.24 0.35 1.30 0.03
CC246 38.96 3.21 8.89 0.15 1.65 0.03

y the cross markers (+). It may be clear that Eq. (15), using the
roposed τ(γ̇) model parameters, results in the same T(N) curve
s found by nonlinear least square curve fitting, according to Eq.
16).

For both SCC244 and SCC246, a plug was formed during
he lowest rotation speed (0.06 rps). The plug rotation speed Np,
eneath which plug occurs, was found to be equal to 0.086 and
.093 rps, respectively (see Appendix D for the determination of
p). In those cases, the outer boundary condition of Eq. (14) is

eplaced by “r = Rp ⇒ ω ≡ Ωo”, keeping in mind the possibility
f slippage in the transition zone from viscoplastic to solid state.
he results are represented in Fig. 5 by the circle markers (©). In
oth cases it can be concluded that no substantial slip occurred
n the transition zone.

A disadvantage of both Eqs. (7) and (25) is that no infor-
ation is given about the shear rate/shear stress region actually

ested by the T(N) measurements. For this purpose, the follow-
ng approximation formulae can be used for “point by point”
onversion of T(N) into τ(γ̇) [35]:

= R2
o + R2

i

4πhR2
oR

2
i

T (26)

˙ = R2
o + R2

i

R2
o − R2

i

2πN (27)

The results of the latter equations are shown in Fig. 6 by the
oint markers (♦, � and �). Note that those equations are not
epending on any rheological model. However, they assume a
inear velocity distribution across the gap between the two con-
entric cylinders, which cannot be generalized for a wide-gap
oncentric cylinder rheometer. When using this kind of rheome-
er, the assumption of a linear velocity distribution (Fig. 7) can
nly be used for preliminary design calculations. When more
ccurate calculations are required, this assumption should be
ept in mind, especially when a plug is formed in the test material
27,28]. For a more accurate approach, the equations presented
n Section 5 of this paper should be used in order to define the
ltimate flow curve τ(γ̇).

It should be mentioned explicitly that the determined model
arameters τ0,HB, K and n (and thus the ultimate flow curve
(γ̇)) are only valid for the shear rate region actually tested by
he T(N) measurements. Using Eq. (27) with 0.06 < N < 0.63 rps,
shear rate region 1.1 < γ̇ < 11.2 s−1 is found for the rheometer
eometry used. The experiments revealed a higher probability of
ccurrence of experimental errors outside this shear rate region:
Lower shear rates can introduce the appearance of plug and
thus of possible slippage in the transition zone from viscoplas-
tic to solid state (resulting in smaller torque measurements

b
c
p
T

ig. 7. Velocity distribution across the gap in the ConTec Visco5 for N = 0.44 rps.

than expected). Besides, structural reconstruction (coagula-
tion and hydration of the cement particles) becomes more
and more an influencing parameter at lower shear rates, due
to the shear dependency of kinetics of dispersion and coagu-
lation of the cement particles, possibly resulting in different
rheological response and parameters obtained.
Higher shear rates can introduce experimental errors due to
e.g. particle migration (see [27] for further information on this
topic).

However, the shear rate region actually tested is believed to
pproach the range of in situ shear behaviour of SCC during cast-
ng: γ̇ = 10 s−1 when leaving the concrete truck and γ̇ = 1 s−1

t the end of concrete flow in the mould. Note that those val-
es are only rough estimators of actual in situ shear behaviour
assuming a 10 cm thick concrete layer flowing at a speed of 1
nd 0.1 m/s, respectively) since to date no exact method is estab-
ished in order to measure “true” in situ shear rates of concrete
ow.

Higher shear rates can be needed for describing the flow
ehaviour of SCC during pumping, but it should be noted that a
lippage layer will always be formed inside the pipe, so the shear
ate is assumed to remain within certain limits. Note that shear
hickening could be harmful for pumped SCC, since flowing
ould be impaired in the pipes. For those applications, a proper
CC mix design is required. It should be based on rheological

ests, resulting in a complete flow curve in the range of the shear
ehaviour in the pipe in order to cover the in situ flow ability of
he material.

. Conclusions

An integration approach of the Couette inverse prob-
em is proposed in order to describe the Herschel–Bulkley

ehaviour of self-compacting concrete, observed in a wide-gap
oncentric cylinder rheometer. Although the Couette inverse
roblem can not analytically be solved for the additive function
= GHB + HHBNJ, a reliable approach can nevertheless be found
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s the sum of the solutions of the Couette inverse problem of both
ubfunctions T′ = GHB (the flow resistance) and T′′ = HHBNJ (the
ower-law flow behaviour after exceeding the flow resistance).
he equations needed for the conversion of the flow curve T(N)

nto τ(γ̇) are mathematically derived in this paper. Before con-
erting the T(N) data, attention must be paid to steady state flow
nd to the appearance of slip or plug in order to eliminate those
experimental errors” from the test results.

Experimental validation shows that the proposed conver-
ion method can be used to describe the rheological behaviour
f powder type self-compacting concrete mixtures, commonly
sed in Belgium and with different superplasticizer contents
dded, in its fundamental rheological variables. Such approach
ight overcome the evaluation problems encountered in the

henomenological consistency test methods, commonly used
n concrete technology.
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ppendix A. Integral solution of the Couette inverse
roblem for a Bingham fluid

The integral from Eq. (5) is:

Ro

Ri

(
T

2πr3h
− τ0,B

r

)
dr = μ

Ωo∫
0

dω(r) (A.1)

r:

T

2πh

Ro∫
Ri

dr

r3 − τ0,B

Ro∫
Ri

dr

r
= μΩo = μ(2πN) (A.2)

nd thus:

T

4πh

(
1

R2
i

− 1

R2
o

)
− τ0,B ln

(
Ro

Ri

)
= μ(2πN) (A.3)

earranging the latter equation for T:

= 4πhτ0,B

(1/R2
i − 1/R2

o)
ln

(
Ro

Ri

)
+ μ8π2h

(1/R2
i − 1/R2

o)
N (A.4)

ppendix B. Integral solution of the Couette inverse
roblem for a Herschel–Bulkley fluid

The integral from Eq. (13) is:
Ro

Ri

((
T

2πr2hK
− τ0,HB

K

)1/n 1

r

)
dr =

Ωo∫
0

dω(r) (B.1)
T
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r:
Ro

Ri

((
T

2πr2hK
− τ0,HB

K

)1/n 1

r

)
dr = Ωo = 2πN (B.2)

First, the left-hand side of the latter equation is rewritten as:

Ro∫
Ri

((
αT

r2 − β

)1/n 1

r

)
dr with

α = 1

2πhK
and β = τ0,HB

K
(B.3)

o solve Eq. (B.3), the following substitution is used:

= αT

r2 − β ⇒ dχ

dr
= −2

αT

r3 ⇒ dr

r

= − r2dχ

2αT
= −1

2

dχ

χ + β
(B.4)

o, Eq. (B.3) becomes:

1

2

χo∫
χi

χ1/n

χ + β
dχ ≡ −1

2

[
χ1/n

[
n − �̂

(
−χ

β
, 1,

1

n

)]]χo

χi

(B.5)

here �̂ denotes the “LerchPhi” function. By resubsitution of
q. (B.5), Eq. (B.2) becomes:

⎡
⎢⎢⎣
(

T

2πR2
i hK

− τ0,HB

K

)1/n [
n − �̂

(
1 − T

2πR2
i hτ0,HB

, 1,
1

n

)]
−

(
T

2πR2
ohK

− τ0,HB

K

)1/n [
n − �̂

(
1 − T

2πR2
ohτ0,HB

, 1,
1

n

)]
⎤
⎥⎥⎦

= 4πN (B.6)

ppendix C. Integral solution of the Couette inverse
roblem for an Ostwald-de Waele fluid

The integral from Eq. (20) is:

Ro

Ri

((
T ′′

2πr2hK

)1/n 1

r

)
dr =

Ωo∫
0

dω(r) (C.1)

r:

T ′′

2πhK

)1/n
Ro∫
Ri

dr

r(2+n)/n
= Ωo = 2πN (C.2)

nd thus:

T ′′

2πhK

)1/n (n

2

)( 1

R
2/n
i

− 1

R
2/n
o

)
= 2πN (C.3)
Rearranging the latter equation for T′′:

′′ = 22n+1πn+1hK

nn(1/R
2/n
i − 1/R

2/n
o )

n Nn (C.4)
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ppendix D. Calculation of plug rotation speed Np for a
erschel–Bulkley fluid

When plug (γ̇ = 0) starts at the outer cylinder, the following
quation holds for a Herschel–Bulkley fluid:

2
p ≡ R2

o = T

2πhτ0,HB
(D.1)

Note that the latter equation is similar to Eq. (12), because
he shear stress is only defined by the “yield” stress when γ̇ = 0
or both a Bingham and a Herschel–Bulkley fluid.

Filling in Eq. (25) into Eq. (D.1) results in:

2
o = 2

(1/R2
i − 1/R2

o)
ln

(
Ro

Ri

)

+ 22nπnK

τ0,HB(1/R
2/n
i − 1/R

2/n
o )

n
nn

Nn
p (D.2)

with Np the plug rotational speed (rps), beneath which a plug
s formed in the test material. From the latter equation, Np can
e calculated as:

p =
( n

4π

)( 1

R
2/n
i

− 1

R
2/n
o

)

× n

√√√√(R2
o − 2

(1/R2
i − 1/R2

o)
ln

(
Ro

Ri

))
τ0,HB

K
(D.3)
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