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Abstract

We re-analyzed thirty data sets reported in the literature and
summarized by Smith and Minda (2000), based on Medin and
Schaffer’s (1978)5-4 structure. In their meta-analysis, Smith
and Minda (2000) focused on comparing the prototype and the
exemplar model. In our meta-analysis, we applied the vary-
ing abstraction model, a multiple-prototype model proposed
by Vanpaemel, Storms, and Ons (2005), that reduces to the
prototype and the exemplar model in special cases. While
we found a lot of heterogeneity in the best performing model
across data sets, overall, the exemplar model turned out to ac-
count for the data best. However, a slight modification of the
exemplar model improved performance in one condition, while
in another condition, a modification of the prototype model re-
covered the data best.

Although categorization is an essential and thoroughly
studied cognitive task, the debate about which model de-
scribes human category learning best hasn’t settled yet. Two
theories have been dominating this debate. According to the
prototype theory (Nosofsky, 1987; Reed, 1972), people store
an abstract summary of a category and categorize a new item
by comparing the item to the summary. According to the ex-
emplar theory (Medin & Schaffer, 1978; Nosofsky, 1986),
people do not make any abstraction at all. Instead, a category
is represented by stored memories of all previously encoun-
tered category exemplars. A new item is categorized by com-
paring it to all the category exemplars. Due to the influen-
tial studies of Medin and his colleagues, the focus has shifted
from prototype theory to exemplar theory (Medin, Dewey, &
Murphy, 1983; Medin & Schaffer, 1978).

The traditional representational assumptions are perfectly
viable with small categories and fairly similar stimuli. How-
ever, when categories are large, remembering all exemplars
seen, as the exemplar model claims, might not be possible.
And when stimuli are very dissimilar, taking the average, as
the prototype model claims, might be a strange thing to do.
Everyday natural language categories, such as fruits and fur-
niture, can be large, containing very dissimilar exemplars, so
in this context both traditional views are problematic.

Vanpaemel et al. (2005) presented a model called the vary-
ing abstraction model that tries to find middle ground between
both unrealistic representational assumptions. Therefore, the
varying abstraction model introduces a set of new models
which formalize the idea that people use multiple prototypes
to represent a category. The model is particularly useful to un-
cover if and which multiple prototypes are used to represent

a category. The present paper describes an elaborate applica-
tion of the varying abstraction model.

In a critical review, Smith and Minda (2000) summarized
and re-analyzed30 data sets that made use of (a certain in-
stantiation) of the so called5-4 category structure. This
category structure was introduced by Medin and Schaffer
(1978) and has been particularly influential in artificial cat-
egory learning studies, yielding ample evidence in support of
the exemplar model (Medin, Altom, & Murphy, 1984; Medin
et al., 1983; Nosofsky, Palmeri, & McKinley, 1994) (but see,
Smith and Minda (2000) who questioned the evidence). The
varying abstraction model puts new challengers to the exem-
plar model in the modeling arena. Not only the prototype
model, but also all multiple-prototype models of the varying
abstraction model family give a possible account of human
category learning. Both the experimental and theoretical im-
portance of the5-4 structure and the direct availability of the
data sets motivated us to analyze the30 data sets using the
varying abstraction model.

The purpose of this paper is twofold. First, we illustrate
how the varying abstraction model can be applied to uncover
the way people represent categories when making categoriza-
tion decisions. Second, we re-analyze data from a category
structure that has provided influential evidence for the exem-
plar model to investigate if this evidence still holds when the
exemplar model is challenged by more than one model.

This paper is organized as follows. First, we review the
varying abstraction model. Second, we briefly discuss the5-
4 category structure and the30 data sets. In the third section
the results of the varying abstraction model analysis of the30
data sets are presented.

The varying abstraction model
The basic idea of the varying abstraction model is (1) to make
up a partition1 for each category and (2) to construct for ev-
ery subset of the partition the prototype by averaging over
all the exemplars in that subset. These prototypes are called
the pseudo-exemplars and are used to represent the category.
Specifying, for all categories, a partition is enough to define
a model. Such a model is called a pseudo-exemplar model
and can be fitted to empirically obtained data. In a pseudo-
exemplar model, a stimulus is categorized based on its simi-

1A partition of a set S is defined as a collection of disjoint,
nonempty subsets of S whose union is S.

2299



larity to a number of pseudo-exemplars, rather than to every
single exemplar in each category as is stipulated in the ex-
emplar model, or to a single prototype for each category, as
proclaimed by the prototype model. The varying abstraction
model is a family of pseudo-exemplar models.

In a typical categorization experiment, a participant has to
classify a stimulusSi in one of a limited number of categories.
The probability of categorizing stimulusSi in categoryCJ, out
of M possible categories, is computed as

piJ =
βJηiJ

∑M
K=1 βKηiK

. (1)

The crucial part of this equation isηiK . It denotes the similar-
ity of stimulusSi to categoryCK . Equation (1) prescribes that
a stimulus is classified in the category it is most similar to.
Further,βK are free parameters, interpreted as the response
bias towards categoryCK . They range from0 to 1 and satisfy
the constraint∑M

K=1 βK = 1.
The stimulus-to-category similarity is given by

ηiJ ≡ ∑
Fq∈DJ

ηiq. (2)

With Fq we denote a pseudo-exemplar, which is the average
of a subset of exemplars. Literally, such a pseudo-exemplar is
not an exemplar but formally it can be treated as an exemplar,
hence its name. The set of all pseudo-exemplars of the cate-
goryCJ is denoted asDJ. Further,ηiq denotes the similarity
between stimulusSi and pseudo-exemplarFq. This similarity
between stimulusSi and pseudo-exemplarFq is related to the
distancediq between these items via

ηiq = exp(−dα
iq). (3)

Two special cases are popular: the one whereα = 1, resulting
in an exponential decay function, and the one whereα = 2,
resulting in a Gaussian decay function. When the stimuli are
fairly discriminable, the exponential decay is favored over the
Gaussian (Nosofsky & Johansen, 2000).

To be able to conceptualize a distance between items, it
is assumed that stimuli can be represented as points in aD-
dimensional psychological space. The (psychological) dis-
tance between itemsSi andFq is calculated as

diq = c[
D

∑
k=1

wk|xik−xqk|r ]1/r . (4)

Here, x jk is the coordinate of itemSj or Fj on dimension
Dk. Further,wk are free parameters that are interpreted as
the proportion of attention allocated to dimensionDk. They
are called the weights and satisfy, for allk, 0 < wk < 1 and
∑D

k=1wk = 1. The parameterc is a free scaling parameter. It
reflects discriminability in psychological space and runs from
0 to ∞. Finally, r denotes the metric. The distance is called
city-block whenr = 1 and Euclidean whenr = 2. There is
some evidence that the city block distance is appropriate for
stimuli with integral dimensions, while for stimuli with sep-
arable dimensions the Euclidian distance is more appropriate
(Shepard, 1991).
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Figure 1: The two extreme partitions of a category correspond
the two traditional models (i.e., the prototype model and the
exemplar model). Any intermediate partition corresponds to
a new pseudo-exemplar model.

Finally, since a pseudo-exemplar is defined as the average
of a subset of exemplars, it is natural to define the coordinates
of pseudo-exemplarFq as

xqk =
1
Rq

∑
Si∈Bq

xik, (5)

whereBq denotes a subset in a partition of a category andRq
denotes the number of items in subsetBq. The coordinates
of the stimuli can be predefined by the experimenter, or can
be identified in a psychological space using multidimensional
scaling on pairwise similarity data for all the stimuli (Borg &
Groenen, 1997; Lee, 2001).

A set of N elements has two “extreme” partitions: one
when there is only 1 subset (ofN elements), and one when
there areN subsets (of1 element each). Figure 1 shows that
these extreme partitions pick out the traditional models and
that all other partitions pick out new, intermediate models. In
such a model, a category is represented by multiple proto-
types.

In sum, the varying abstraction model reduces to the tra-
ditional models when the two extreme partitions are chosen
for each category and introduces multiple-prototype models
when non-extreme partitions are picked.

The 30 5-4 data sets
In their seminal paper, Medin and Schaffer (1978) defined
two categories that have fueled the categorization research
ever since. The first category consists of five elements, while
the second category has four elements, hence it is commonly
referred to as the5-4 structure. Apart from these nine training
stimuli, there are seven transfer stimuli. All 16 stimuli vary
on four binary dimensions. Their logical structure is shown
is Table 1.
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Table 1: Medin and Schaffer’s (1978)5-4 structure

D1 D2 D3 D4
categoryA stimuli
A1 1 1 1 0
A2 1 0 1 0
A3 1 0 1 1
A4 1 1 0 1
A5 0 1 1 1
categoryB stimuli
B1 1 1 0 0
B2 0 1 1 0
B3 0 0 0 1
B4 0 0 0 0
transfer stimuli
T1 1 0 0 1
T2 1 0 0 0
T3 1 1 1 1
T4 0 0 1 0
T5 0 1 0 1
T6 0 0 1 1
T7 0 1 0 0

Smith and Minda (2000) summarized30 data sets that
made use of the5-4 structure, collected by different re-
searcher (see their appendix A). The30 data sets not only
differ in their exact instantiation of the5-4 structure, but also
in the specific instructions given to the participants, in the mo-
ment of measuring the transfer performance, etc. These dif-
ferences might facilitate the use of an exemplar or prototype
strategy, so it is useful to divide the data sets in subgroups.

There are six data sets from a study where participants
were trained on the individual dimension values that were
prototypical of each category. These six sets are 11, 12, 14,
15, 17 and 18. In a comment on Smith and Minda’s (2000)
article, Nosofsky (2000) argues that the category structure
tested in these sets does not conform to the5-4 structure. For
three data sets, participants were instructed to use a prototype
or rule-based strategy: the sets 4, 5 and 25. Sets 27, 28 and
29 are produced under deadline conditions. The sets 20, 21,
22 and 23 are from a study where transfer performance was
tested at different points in time. The number of the data sets
follows the chronological order, i.e. data set 20 was collected
at the earliest stage, data set 23 at the latest stage. Data set 19
averages these data. According to Smith and Minda (2000),
data set 23 does not reflect early learning and thus does not
disfavor an exemplar strategy. Further, data set 6 sampled ex-
emplars from an infinite pool without replacement. Finally,
data set 3 can be omitted since it is exactly the same as data
set 2. In short, for Smith and Minda (2000), the subgroup of
data sets that “most heavily favored exemplar processing” is
1, 2, 7, 8, 9, 10, 13, 16, 23, 24, 26 and 30 (p. 13).

In his comment, Nosofsky (2000) reduces this set further.
First, he argues that data set30should be in the deadline con-
dition subgroup too. Second, he leaves out data sets 8 and
9 because he argues that they are no appropriate instantia-

tions of the5-4 structure. It is not clear in which subgroup he
would put data sets 19, 20, 21, 22 and 23. All in all, accord-
ing to Nosofsky (2000), the “exemplar subgroup” is 1, 2, 6,
7, 10, 13, 16, 24 and 26.

According to Smith and Minda, data set 23 did not reflect
early learning, while data set 22 did, so it potentially disfa-
vored an exemplar strategy. However, after analysing data set
22, it became clear that such is not the case, hence, we con-
sider only data sets 20 and 21 as reflecting the early stages
of learning.2 Further, data sets 6 and 7 come from the same
study as data sets 8 and 9 and are dubious in the same respect
as these two sets. To be safe, we excluded these two sets as
well. Taking all remarks together, one can safely consider
data sets 1, 2, 10, 13, 16, 22, 23, 24 and 26 as good instantia-
tions of the5-4 structure that favor an exemplar strategy.

Results of the analysis of the 30 data sets
There are15possible partitions for a set of four elements and
52 for a set of five, hence there are780 different pseudo-
exemplar models. All these780 pseudo-exemplar models
were fit to all 30 data sets using maximum likelihood esti-
mation (Myung, 2003). There are two categories, so it was
assumed that the categorization responses follow a binomial
probability distribution with success probabilitypiJ , as ex-
pressed in equation (1). For the5-4 data, every pseudo-
exemplar model has five free parameters: three weights, one
bias parameterβA, and one scaling parameterc. Bothr andα
were set to1, as in Smith and Minda (2000).

For ease of reference, all pseudo-exemplar models dis-
cussed in this section are listed in Table 2. The nota-
tion used is the following: model 597 is characterized by
the sequences 12332 and 1231, indexing subset member-
ship of exemplars A1 A2 A3 A4 A5 and B1 B2 B3 B4 re-
spectively. As such, model 597 is defined by the partition
{{A1};{A2,A5};{A3,A4}} for category A and the partition
{{B1,B4};{B2};{B3}} for category B. Hence, in this spe-
cific pseudo-exemplar model, category A and B are each rep-
resented by three pseudo-exemplars.

Table 2: Pseudo-exemplar models discussed in this paper. Mn
means model number.

mn A1 A2 A3 A4 A5 B1 B2 B3 B4
1 1 1 1 1 1 1 1 1 1
166 1 2 1 2 2 1 1 1 1
597 1 2 3 3 2 1 2 3 1
750 1 2 3 4 3 1 2 3 4
765 1 2 3 4 4 1 2 3 4
780 1 2 3 4 5 1 2 3 4

Results for individual data sets
There was no single pseudo-exemplar model that outper-
formed all other pseudo-exemplar models for all30data sets.
There were25 different winning pseudo-exemplar models.

2In fact, it will turn out that data set 22 is one of the two data
sets where the exemplar model outperformed all the other pseudo-
exemplar models.
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Model 597 was the best in two cases (sets 4 and 6), model
750 in three cases (sets 1, 16 and 19) and model 780 (the ex-
emplar model) in two cases (sets 22 and 23). All other data
sets had a unique best fitting pseudo-exemplar model (except
sets 2 and 3, which are identical). The prototype model was
never the best.

In both traditional models, all categories are assumed to
have the same representation: every category is represented
by one prototype, or by all exemplars. In contrast, the vary-
ing abstraction model incorporates models in which only one
category has a prototype or an exemplar representation.

There were two data sets where the best model had an ex-
emplar representation for category A (sets 22 and 23). In
contrast, there were nine data sets where a model with an
exemplar representation for category B did best (1, 11, 14,
16, 19, 24, 30, and of course 22 and 23 again). As far as a
prototype representation is concerned, only for data set 17, a
model where category A had a prototype representation did
best, while there were two data sets where a model with a
prototype representation for category B did best (sets 15 and
29).

Because of the heterogeneity among the winning pseudo-
exemplar models, there is no obvious conclusion to draw
from the individual results from the 30 data sets (except per-
haps the heterogeneity itself). We tried to interpret the re-
sults across all30data sets by calculating, for all 780 pseudo-
exemplar models, its averaged position over the 30 data sets.

Results averaged across data sets

Averaging the positions of the pseudo-exemplar models
across all 30 data sets led to a most remarkable finding.
Although the exemplar model was only the best pseudo-
exemplar model for two data sets, overall, the exemplar
model outperformed all other 779 models. Its average posi-
tion was 82.6. The prototype model reached place 155, with
an average position of 251.7. Also when we limited ourselves
to the appropriate data sets (i.e., excluding sets 6, 7, 8, 9, 11,
12, 14, 15, 17 and 18), the exemplar model was the winning
pseudo-exemplar model (with an average position of 29.4).
The prototype model reached place 305, with an average po-
sition of 344.8.

To understand this unexpected finding we looked at the av-
eraged performance of the pseudo-exemplar models for the
different subgroups of data sets. The first subgroup was the
“exemplar subgroup” 1, 2, 10, 13, 16, 22, 23, 24 and 26.
Also for this subgroup, the exemplar model was overall the
best (average position 6.22). The prototype model ranked at
place 396 (average position 400.4).

Surprisingly, for the three data sets produced under pro-
totype/rule instructions, the result was much alike the result
for the exemplar subgroup. Again, the exemplar model out-
performed all other pseudo-exemplar models (average posi-
tion 12.3). The prototype model reached place 357 (average
position 363.3). This observation coincides with Nosofsky’s
(2000) finding that performance on stimulus A2 versus stimu-
lus A1 under prototype/rule instructions is qualitatively iden-
tical to performance in the exemplar condition (see his figure
2, his “standard tasks” correspond more or less to our “ex-
emplar subgroup”, his “instructed tasks” correspond to our
“prototype/rule subgroup”)

For the two data sets collected at early stages of learning,
the exemplar model did, somewhat surprisingly, very well. It
reached place 5 with an average position of 19.0. The proto-
type model reached place 640 only, with an average position
of 528.0.

The only condition where the exemplar model performed
poor was the deadline condition. For this subgroup, the ex-
emplar model reached place 81 (average position 138.0). The
prototype model outperformed the exemplar model, reaching
the second place (average position 13.00). Including data set
30 in the deadline condition subgroup, as Nosofsky (2000)
suggested, gave a better result for the exemplar model (it
climbed to place 59, with an average position of 106.3) and
a worse result for the prototype model (it fell to place four,
with an average position of 24.0), but the observation that the
exemplar model performed poor did not change.

In short, the exemplar model did not only perform well
for the “exemplar condition” data sets, as one could expect,
but also, rather unexpectedly, in some “prototype conditions”
data sets, i.c. the data sets with prototype/rule instructions
and the data sets reflecting early learning. This explains why
the exemplar model was the best model across all data sets.

For two conditions, the varying abstraction model uncov-
ered one or more pseudo-exemplar models outperforming the
exemplar model and prototype model. In the early learning
condition, the winning pseudo-exemplar model (model num-
ber 765, average position 8.0) was only a slight modification
of the exemplar model (see table 2). The opposite pattern
was found for the data sets produced under deadline condi-
tions. Now, the pseudo-exemplar model outperforming all
other pseudo-exemplar models (model number 166, average
position 4.3) was a modification of the prototype model (see
table 2). The inclusion of data set 30 did not affect the ob-
servation that model 166 did best for these data sets (average
position 6.5).

It is instructive to go beyond the winning model only and
broaden the view by looking at the other models with a good
averaged performance. There were four models in the overall
top 20 where category A had an exemplar representation and
12 models in the overall top 20 with an exemplar representa-
tion for category B. Only one model with a category A proto-
type representation entered the overall top 20, no model with
a prototype representation for category B did that well. This
pattern was exactly mirrored in the “exemplar subgroup”, ex-
cept for the fact the one model with a prototype representation
for category A disappeared from the top 20.

In the two conditions where the exemplar model did sur-
prisingly well (i.e., the prototype/rule instructions and the
early stages of learning), a high number of pseudo-exemplar
models with an exemplar representation for category B were
in the top 20: seven and nine respectively. Three models of
the top 20 had an exemplar representation for category A in
the prototype/rule subgroup, two such models were present in
the early learning subgroup. This time, a prototype represen-
tation for category A never entered the top 20, but one model
with a prototype representation for category B was in the top
20 for the prototype/rule subgroup.

It is apparent that this scheme breaks down for the 20 best
models that account for categorization under deadline con-
ditions. The prototype representation for category A was
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present in three top 20 models, and for category B in 2 top
20 models. The exemplar representation for category A was
never present in the top 20 and for category B in two top 20
models only. These findings are in sharp contrast with the
other subgroups.

General Discussion
Three conclusions regarding category learning behavior on
the 5-4 structure can be formulated based on our analyzes.

First, overall, the exemplar model gave the best account of
the 30 5-4 data sets, even when challenged by 779 other mod-
els. When we look at the representations for category A and
category B separately, the analysis of the individual sets and
the analysis of the averaged performance suggests the same
conclusion: especially for category B, there was an advantage
to have an exemplar representation. This exemplar advantage
was also present, but to a lesser extent, for category A. There
are two obvious reasons to explain this difference. First, there
are 52 pseudo-exemplar models with an exemplar representa-
tion for category B, while there are only 15 pseudo-exemplar
models with an exemplar representation for category A. Sec-
ond, as noted by Smith and Minda (2000), category B is more
ambiguous than category A, which might induce the need for
an exemplar representation.

A second conclusion is that there was a lot of heterogeneity
in the set of best pseudo-exemplar models. While the exem-
plar model was overall the best model, it was only the best
in two of the 30 data sets. Only one model, model number
750, gave the best account of more than two data sets. This
heterogeneity among the best fitting models reflects the fact
that the data sets themselves are very different in nature. The
only aspect that is shared by all sets is the category structure
used. The instantiation of this structure and the exact experi-
mental conditions are different for many data sets. The exact
instructions given to the participants, the moment of measur-
ing transfer and the amount of time allowed are only a few of
the most obvious factors influencing a categorization strategy.
Interestingly, even when only the two traditional models are
contrasted, the analysis of the 30 data sets does not univocally
select one of the two models. In 9 cases (the data sets 6, 8, 9,
12, 14, 17, 27, 28 and 29), the prototype model outperformed
the exemplar model, so it not surprising that there is no best
fitting pseudo-exemplar model for all 30 data sets.

Finally, in the early learning condition, the varying abstrac-
tion model uncovered a slight modification to the exemplar
model that recovered the data best. For the deadline con-
dition data, the exemplar model was clearly not the appro-
priate model. The varying abstraction model uncovered a
prototype-resembling model that accounted for the data best.
The winning pseudo-exemplar models uncovered have, in
both cases, a strong intuitive appeal. If people use an interme-
diate representation, one would expect that this representation
closely resembles the exemplar representation in cases where
the exemplar model performs well, and a prototype resem-
bling representation in cases where the prototype model per-
forms well, while the opposite pattern would be suspicious.
These examples illustrate how the varying abstraction model
can be used as a tool to find the middle ground between the
two extreme and often unrealistic representational assump-
tions by identifying models with an intermediate representa-
tion.

A few remarks should be made with respect to these con-
clusions. Fitting and comparing all the pseudo-exemplar
models of the varying abstraction model family is an exten-
sion of comparing the fit of the exemplar and prototype mod-
els only. Therefore, all concerns that have been raised against
this endeavor hold in this case too. The two most severe con-
cerns regard generality and model complexity.

Smith and Minda (2000) suggested that the 5-4 category
structure is not theoretically neutral, in the sense that the 5-
4 category structure “may encourage exemplar-memorization
processes because of its poor coherence, its difficulty, and
its small, memorizeable exemplar sets” (p. 3). Therefore,
the data and results obtained based on the 5-4 structure may
only generalize narrowly. Maybe the exemplar strategy is a
specialized categorization strategy, suitable for, for example,
small and difficult categories, but not a general one. If it is
the case that category representation is sensitive to category
structure, the varying abstraction model might prove to be a
useful tool when researchers set out to explore the “space of
category structure” more intensely. Relevant dimensions in
this space could be, among others, category size and category
complexity (Feldman, 2003).

Second, all pseudo-exemplar models have been evaluated
on their ability to account for the data only. Recently, math-
ematical psychologists have raised the issue that selecting
computational models by looking at their goodness-of-fit
alone is problematic (Pitt & Myung, 2002). Model complex-
ity, which is the inherent flexibility of a model, should be
taken into account as well. Pitt, Myung, and Zhang (2002)
found that the exemplar model is aboute60 ≈ 1.8 times as
complex as the prototype model.3 This difference in model
complexity, however moderate, suggests that more trustwor-
thy results could be achieved when complexity is taken into
account. Comparing the performance of all pseudo-exemplar
models using a combined measure for goodness-of-fit and
complexity is important work for the future.

Conclusion

Our study illustrated how the varying abstraction model can
be applied to gain additional insight in human categorization
behavior when analyzing data from a thoroughly studied cat-
egory structure. The model goes beyond the strict prototype-
exemplar dichotomy by uncovering plausible intermediate
pseudo-exemplar models that outperform the traditional mod-
els. The analyses gave overall support to the exemplar model,
but at the same time indicated a modification of the exemplar
model that accounts best for the data reflecting early learning
and a modification of the prototype model that accounts best
for the data produced under deadline conditions.
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