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Abstract: We discuss a new method for handling random acoustic excitations. The
idea is to approximate the cross power spectral density matrix of the response by

a low rank matrix. We illustrate the low rank approximation can be computed
efficiently by the implicitly restarted block Lanczos method. We give a theoretical

explanation.

1 Introduction

Vibro-acoustic simulations often require handling random excitations. This is, for
example, the case for acoustic diffuse fields (as encountered in reverberant test

chambers) and turbulent boundary layer excitations (as involved in aerodynamic
noise studies).

The mathematical framework for modelling such distributed excitations is the

concept of (weakly) stationary random process. Such processes are usually char-
acterized, in the frequency domain, by power spectra and are practically defined

by referring to a reference power spectrum and a suitable spatial correlation func-
tion.

In the time domain, a random process x has a mean zero over one period of time ;

the auto-correlation function R(τ) is the mean value of the product x(t)x(t + τ)
over one period of time. The power spectral density (PSD) is the Fourier transform
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of the auto-correlation function and is the characterization of a random process
in the frequency domain. If x is a vector of excitations, the random process is

determined by the cross power spectral density matrix Sx(ω). Its (i, j) entry is
the cross correlation function for the entries i and j in x respectively. The diagonal

elements are the auto correlation functions for the entries of x. The matrix Sx(ω) is
Hermitian positive semi-definite. See [1] [2] [3] [4] [5] for the theoretical background

of random processes.

Let in the frequency domain, x be the excitation vector and y the output vector,
where y = Hx with H the receptance matrix (the inverse of the dynamic stiffness

matrix Z). Then

Sy(ω) = H̄(ω)SxH
T (ω) , (1)

which is Hermitian positive semi-definite. In a simulation, we are often interested

in a few diagonal entries of Sy or the sum of the diagonal entries. In many cases,
Z(ω) = K−ω2M where K, and M are the stiffness and mass matrices respectively.

In general, Z is a complex symmetric or unsymmetric matrix. For theoretical
reasons, we assume that Z takes the form K − ω2M .

In a finite element context, the random excitation x is usually defined on a part
of the boundary surface. Let n be the number of dofs in the finite element model

and m be the number of dofs along the loaded discrete surface. Usually, m � n.
Then, we could write Sx = BSpB

T where B is an n × m prolongation matrix

of rank m that maps the excitation dofs onto global dofs, and Sp is an m × m
positive definite matrix. The PSD matrix Sy has dimensions n × n, where n can

be very large. Note that it is not feasible storing Sy, since it is a dense matrix of
very high dimensions : n can be of the order of 100, 000. On the other hand, Sp

can be stored explicitly, since its size is typically much lower, e.g. of the order of
m = 1, 000, . . . , 10, 000. The goal is to approximate

Sy ≈ WDW ∗ , D ∈ Rr×r , W ∈ Cn×r (2)

with D a diagonal matrix and r as small as possible. The number of columns of
W is the rank of the approximation. Operations on Sy use the factored form (2).

In order to reduce the storage and computational costs, we want r to be as small
as possible, i.e. r � n and if possible r � m. In this paper, we compare different
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techniques. We assume that the multiplication of H is relatively cheap and easy :
this assumes an efficient linear system solver with Z.

Here is the plan of the paper. In §2, we present the pseudo load case method, which

has shown good performance for low frequencies and in particular for diffuse fields
[6]. Experience for turbulent boundary layers using the Corcos [7] and Goody [8]
models has shown that r approaches m, especially for higher frequencies, and the

computational and storage costs of the method become high. In §4, we present new
methods based on the Lanczos method. The motivation is given by the spectral

analysis of Sy in §3. Numerical examples using the software ACTRAN [9] are
shown in §5.

2 Pseudo load case method

The first technique approximates Sp by the truncated dominant eigendecompo-
sition PDP ∗ where D ∈ Rr×r and P ∈ Cm×r. Next, we compute W = H̄(ω)L

as the solution of Z̄W = L, where L = BP can be considered as a matrix of r
pseudo load cases. Sy is then approximated by (2).

This procedure is very efficient when Sp can be approximated by a low rank
matrix, and when the computation of P and D is cheap. This assumes that there

are only a few large eigenvalues of Sp. Unfortunately, the latter is not really true
for turbulent layers or higher frequencies, as we will show by numerical examples.

Computing P and D is not expensive when r � m. We can use the (block)
Lanczos method with implicit restarting [10] [11]. When r approaches m, the

Lanczos method is no longer most efficient. In this case, we use the QR method
[12], e.g. as implemented in LAPACK [13].

3 Spectral analysis

The spectral properties are best illustrated by an example. Consider some results

from a plate excited by a boundary layer following the Corcos model [7]. Figure 1
shows the spectra of Sx and Sy for two frequencies. We notice the following: the
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spectrum of Sx becomes denser for the higher frequencies. The spectrum of Sy

drops to zero much faster than the spectrum of Sx.

We now give a formal explanation for this behaviour. We assume that Z takes the
form

Z = Udiag(ζi)U
−1

where U are the eigenvectors of the undamped eigenvalue problem

KU = MUΩ2 (3)

and

ζi = κi − ω2 .

It is not valid for all applications that we aim to solve, but it gives a sufficient

explanation for undamped structures and acoustic cavities.

The matrix Sp becomes more and more diagonally dominant for higher frequencies

since the excitation becomes more spatially uncorrelated. This explains why the
eigenvalues of Sp lie closer to each other for higher frequencies : it also makes
the pseudo load case method more expensive. There is an interesting physical

interpretation here : although the excitation is spatially uncorrelated, the response
is highly correlated in space, since Sy has a few very large eigenvalues.

An eigenvalue bound can be developed as follows. Define the n × m matrix
B̃ = Z̄−1B, then Sy = B̃SpB̃

∗. Note that B̃ is a rank m matrix. Then, the eigen-

value problem Syu = λu has exactly m non-zero eigenvalues. Only the non-zero
eigenvalues are of interest to us.

Lemma 1 (Reduced Eigenvalue Problem Lemma) If (λ, u) is an eigenpair

of Sy with λ 6= 0, then λ is an eigenvalue of

B̃∗B̃Spv = λv .

Proof. It follows that when λ 6= 0, u lies in the range of B̃ : there is a unique v

so that u = B̃v. When λ = 0, it follows that u lies in the nullspace of B̃∗.

Multiplying Syu = λu on the left by B̃∗ produces
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B̃∗B̃SpB̃
∗u=λB̃∗u

B̃∗B̃Spv =λv

with v = B̃∗u 6= 0, which proves the lemma. 2

The following lemma may help understand what we see in Figure 1.

Lemma 2 Let the eigenvalues of A = B̃∗B̃ and Sy be ordered in descending order.

Then

λj(A)λm(Sp) ≤ λj(ASp) ≤ λj(A)λ1(Sp) .

The spectrum of Sp does not vary in the same way as the spectrum of Sy. The

difficulty here is that we do not know the eigenvalues of A. The eigenvalues of A
are the squared singular values of B̃ = Z̄−1B. Since Z̄−1B is dominated by the

modes nearest ω, it is to be expected that the number of large singular values of
B̃ is small. Hence, we have

B̃ =
n∑

j=1

uju
∗
jB

ζj

. (4)

Usually, the sum is made over the terms with smallest ζj, i.e. for the κj ’s near ω.
This is also the approach that is followed by the modal truncation method. So,

we can find an s so that

B̃ ≈ B̃s =
s∑

j=1

uju
∗
jB

ζj

.

Define

Es =
n∑

j=s+1

uju
∗
jB

ζj

so that B̃ = B̃s + Es.

If M is a lumped mass, i.e. M is a diagonal matrix, then u∗
jui = 0 for j 6= i. So,

B̃∗B̃ = B̃∗
sB̃s + E∗

sEs .

Theorem 1
‖ASp − B̃∗

sB̃sSp‖2

‖ASp‖2
≤
‖Es‖

2
2

‖B̃s‖2
2

κ2(Sp)
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Proof. For the denominator, note that ‖A‖2 ≥ ‖B̃s‖
2
2 since B̃∗

sB̃s and E∗
sEs

are both positive (semi) definite terms. Also, ‖ASp‖2 ≥ ‖A‖2σmin(Sp). For the
nominator,

ASp − B̃∗
sB̃sSp = E∗

sEsSp

so,

‖ASp − B̃∗
sB̃sSp‖2 ≤ ‖Es‖

2
2‖Sp‖2 .

The proof follows from that κ2(Sp) = ‖Sp‖2/σmin(Sp). 2

The theorem tells that if B̃ can be well approximated by a matrix of rank s, so
can Sy.

The roles of A and Sp can be interchanged, if Sp can be approximated by a matrix

of low rank s.

Since the spectrum of Sy is mainly dominated by the spectrum of A, the spectrum
decays as

(κ2
j − ω2)−2 .

Let κj be ordered following increasing distance to ω. This implies that, if we want
an error norm

‖Sy −WrDrW
∗
r ‖2 ≤ τ‖Sy‖2 ,

that, roughly speaking, r is determined so that

|κ2
r+1 − ω2|−2 ≤ τ |κ2

1 − ω2|−2 .

Since the function (κ2−ω2)−2 decays slower when κ is further away from ω, smaller

τ may require a much larger r.

In brief, we can conclude that, to some extent, the eigenvectors of (3) play a role
in the low rank approximation of Sy in a similar way as modal damping. The

situation may be somehow better, since only the modes that have a contribution
on the faces with the random excitation, will be taken into account.

4 Lanczos method for Sy

In this section, we show two algorithms using the Lanczos method for computing
a low rank approximation of Sy. Since Sy is positive definite, the partial eigende-
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composition of rank r is the best approximation to Sy among all matrices with
rank r, where the error is measured in the two-norm.

The Lanczos method [14] is an iterative method for the computation of eigenvalues

and eigenvectors of a Hermitian matrix. We do not explain the details of this
method here, but refer to the literature. In this paper, we use the implicitly

restarted block Lanczos method (IRBLM) [10] [11] [15] implemented in ACTRAN
[9]. This method computes a relatively small eigenbasis while keeping the memory
consumption small. Our implementation uses a stopping criterion that is based

on a tolerance on the approximation on Sy. The most expensive operation is the
multiplication Y = SyX where X and Y are matrices with a small number of

columns. This requires:

• a solve with ZT ,
• a matrix product with BT ,
• a matrix product with Sp,

• a matrix product with B, and
• a solve with Z̄.

The storage requirements can be high, since vectors of size n have to be stored ;

this number should be at least 2r to make the IRBLM efficient.

The spectrum of Sy consists of n −m zeroes and m positive eigenvalues. We are

not interested in the nullspace of Sy. So, if we find an easy way to work with the
m dimensional range space only, we reduce the dimension of the problem from n

to m and also the size of the Lanczos vectors.

Recall Lemma 1. The eigendecomposition of ASp is

ASpY =Y Λ (5)

SyU =UΛ (6)

where Y = B̃∗U . Multiplication of (5) on the left by B̃Sp shows that the columns
of Û = B̃SpY are eigenvectors of Sy :

B̃SpB̃
∗(B̃SpY ) = (B̃SpY )Λ .

Since Sy is Hermitian, U ∗U = I. Since A and Sp are Hermitian positive definite,
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Y ∗A−1Y and Y ∗SpY are diagonal.

As a conclusion, (5) can be viewed as a symmetric eigenvalue problem in a sub-

space with inner product (y, x) = x∗Spy. This allows us thus to use the Lanczos
method with Sp inner product to compute Λ.

Once Λ and Y have been computed, we can compute Û . A normalization is still
required to obtain U .

5 Numerical examples

We compare the following methods :

PLQR the pseudo load case method where the QR method is used to decompose Sp,

PLL the pseudo load case method where the Lanczos method is used to decompose
Sp,

DL the direct Lanczos method, i.e. the Lanczos method applied to Sy,
RL the reduced Lanczos method, i.e. the Lanczos method applied to ASp.

5.1 A coarsely discretized problem

The mesh is a quarter cylinder as shown in Figure 2, consisting of 690 solid

shell elements and 5138 nodes. The distributed random excitation is related to a
turbulent boundary layer acting on the external cylindrical boundary. The number
of dofs is n = 15, 414 and the number of dofs along the randomly loaded boundary

is m = 2, 193. Table 1 shows the rank r for the pseudo load case (PLQR) and the
Lanczos (DL) methods in function of the frequency. The rank r was determined

so that the error on the rank r approximations to Sp and Sy respectively have a
relative error bounded from above by τ = 10−4. For the DL and RL methods, we

then have

‖Sy −WrDrW
∗
r ‖2 ≤ τ‖Sy‖2

and for the PLQR and PLL methods, we have

‖Sp − PrDrP
∗
r ‖2 ≤ τ‖Sp‖2 .
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The computations were carried out on an Opteron running the Suse 9.2 linux
operating system. We used the QR method for the decomposition of Sp, since, as

you can see from Table 1, r approaches m for the higher frequencies.

From Table 1, we see the impressive difference in r between the two approaches
for the same tolerance. Note that there is no visual difference between the results

computed by the two methods.

5.2 A finer discretization

For a comparison in performance, we compare the results for the same problem,
but with a finer mesh. The mesh consists of 2760 solid shell elements and 19933

nodes. The number of dofs is n = 59, 799 and the number of dofs along the
randomly loaded boundary is m = 8, 525. We compared the two methods for the
frequencies 100 and 400. Table 2 summarizes our results. We used 140 Lanczos

vectors in the implicitly restarted block Lanczos method with a block size 5.
It is absolutely normal that both Lanczos methods compute the same number

of eigenvalues since Sy and ASp have the same spectrum. The reduced Lanczos
method is more expensive, since an additional step is required to compute the

eigenvectors of Sy from the eigenvectors of ASp. An other interesting conclusion,
when we compare Tables 1 and 2, is that the number r does not change for the DL

method when the mesh is refined. The computation time for the pseudo-load case
methods is mainly due to the QR method for PLQR and the Lanczos method for
PLL. Note that the PLL method becomes significantly more expensive for higher

frequencies.

5.3 Comparison for different tolerances

We compare for the same problem the influence of the tolerance τ . Table 3 com-
pares the ranks and computation times for the PLL and DL methods. We use a

low frequency for the PLL method and a large frequency for the the DL method.
It follows that the increase of the number of vectors is exponential.
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6 Conclusions

The evaluation of the random vibro-acoustic response of mechanical structures has

been studied by addressing the specific issues related to the distributed nature of
the excitation. Both direct and reduced Lanczos methods have been investigated in

this context and show excellent convergence properties for the studied problem. In
particular, we found that the direct decomposition of Sy leads to a faster method,

requiring a smaller rank than the pseudo load case method.

The conclusions only hold for problems where the pseudo load case method pro-
duces a large r. It is an open question whether the proposed method performs

better for other types of random excitations than the one used in the numerical
example.
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Fig. 1. Spectra of Sx and Sy for a low frequency and a high frequency

Fig. 2. Mesh of the quarter cylinder
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Table 1
Number of rank r for the quarter cylinder problem

frequency PLQR DL

100 364 40

110 411 41

120 441 40

130 474 41

140 512 41

150 569 41

160 616 40

170 648 39

180 689 36

190 741 32

200 793 24

210 826 7

220 873 19

230 928 22

240 964 21

frequency PLQR DL

250 1015 10

260 1062 24

270 1109 28

280 1155 55

290 1199 40

300 1244 19

310 1297 57

320 1345 63

330 1389 26

340 1444 50

350 1486 23

360 1528 41

370 1589 4

380 1627 69

390 1670 100

400 1717 77

Table 2
Number of rank r for the quarter cylinder problem

Pseudo-load methods Direct methods

PLQR PLL DL RL

100Hz

rank r 425 425 40 40

time (min) 214 16 2.7 5.5

400Hz

rank r 2383 2383 78 78

time (min) 232 248 3.3 6.3
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Table 3
Comparison of r and computation times in function of the tolerance τ

PLL DL

100Hz 400Hz

τ r time (min.) r time (min.)

10−2 32 2.5 12 2.2

10−3 141 5.0 36 2.8

10−4 425 15.6 78 3.1

10−5 — — 141 3.1
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