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1 Introduction

Every finite positive Borel measure x on the unit circle gives rise to an orthonormal se-
quence {p.} of polynomials: Szegd polynomials. The reciprocal polynomials {¢:} are
defined by ¢3(z) = z"p.(1/Z). The (positive) leading cofficient of v, (z) is called ., it
is easily seen that k» = ©3(0). The reflection coefficient 6, is defined by §, = ©(0)/%a.
The Szegd polynomials and their reciprocals satisfy the coupled recurrence relations

"cﬂ - 1
wa(z) = e [z 9n-1(2) + OHG’n-l("” (1.1)
En ar— el A
Eis) = [Onsgn=1(2) + ©5_1(3)] (1.2)
Rn=1
Yo = Y = Ko. (1.3)

The measure u satisfies the Szegd condition [T, In 4'(8)d0 > —oo if and only if {x.}
converges to a finite value x and if and only if the series 322, [6,|® converges. When these
equivalent conditions are satisfied, the sequence {{7;} converges locally uniformly in the

open unit disk to the function

1 L~ e 4z
N TS STy - [ s i / \
FiE) = \/q_”exp!_—_l:r ‘/;r S In p'(8) d6. (1.4)
When the stronger condition 372, |6 < co is satisfied, the sequence {w:} converges
uniformly on the closed unit disk, and the (continuous) limit function does not vanish. For

roofs and more details concerning these matters, see [12,13,14,13,16,13,23].
2 =) L

Polynomials are rational functions with a pole at infinity only. For some purposes it is
useful to work with orthogonal rational functions with prescribed poles outside the unit
disk. From a purely mathematical point of view the theory of such orthogonal rational
functions was as far as we know initiated by Djrbashian about 1960 (see the survey paper
[11]). Independently, partly from an applied point of view, the same constructions were
used by Bultheel, Bultheel and Dewilde, Dewilde and Dym about 1980 (see [1,2,10]).
The basic features of a general theory of orthogonal rational functions are set forth in
(3,4,3,6,7,3] and in references found there. See also [20,21]. The theory is closely connected
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with the Nevanlinna-Pick interpolation problem. See e.g. [19, 20, 21], and for applications
[9].

In (8] the complex of conditions related to the Szegd condition in the rational situation was
investigated under the assumption that all the poles are contained in a compact subset
(in the extended complex plane C) of the exterior of the unit disk. It was established
that (when the Szegd condition is satisfied) subsequences of the reciprocals {¢}} of the
orthogonal rational functions {@.} converge locally uniformly in the open unit disk to

; 1 —|ej? T e 4 2
=5_yE— e 1/ "2 1 4(8)dd], A € R.

functions

Talz) = m\/?[l —— exp[--zr- i

In particular the whole sequence {2} converges to m, if the prescribed poles converge to

l/&.

The main result of this paper is a theorem on uniform convergence of {¢}} on the closed
unit disk which generalizes the theorem referred to above for the polynomial case.

2 Orthogonal functions

We shal use the notations T = {: € C: jzs|=1}, D= {:€C:|z|<1}, E = {z¢
C : |z] > 1}. The substar conjugate f. of a function f is defined by

; T Iy v
F(2) = f(1/2). (2.1)
Let u be a finite (positive) Borel measure on (—=, 7). An inner product is defined by

<fg>= [ gl du(d) = [ He")g.(e*)du(d). (22)

J -

Let {a,} be an arbitrary sequence of (not necessarily distinct) points in D. [t is sometimes
convenient to use the notation cg = 0. The Blaschke factors (, are defined by
(aﬂ o -‘7) a:

a(2) = Ta——=, where 7, = —, n = 1,2,.... 2.3
al2) (1-m3) [atn (23)



(By convention, 7, = —1 when «, = 0.) The Blaschke products B, are defined by
Blz)y =L Bjz)=1T] Glz) brn=172,... (2.4)
We define the spaces £, by
L, = Span(Be : 1 = 0,1, 1) (2.5)

The elements of £, are exactly the functions that may be written in the form

(2)
fls) = 28 2.6
() = B3 (26)
where

Ta(2) = g(l-a_kz) (2.7

and p, € I, (the space of polynomials of degree at most n). In particular £, = [], when

a, = 0 for all n.
For f € £, \ L., we define the superstar conjugate f* by
f75) = Balz)A(2). (2.3)

Observe that f* € L,.
Let the sequence {®, : n = 0,1,2,...} be obtained by orthogonalization of the sequence
{Bn:n =0,1,2,...} with respect to the inner product {2.2). Each ®, has a decomposition

B.(z) = 3 8V Bu(2). (2.9)

k=0

By calculating ®;(z) and substituting a, for = we see that

Folan) = o, (2.10)

We shall reserve the notation ®, for the monic functions, i.e. those for which 5(® = 1.
We set

hn =< B,, B, > 1 (2.11)
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and denote by p, the normalized functions:

ale) = waWalz) (2.12)

We thus have
<Pny Pn >=< g, 9 >= 1 (2.13)
#a(aa) = Ka, Bi(an) = 1. (214)

[t can be shown that o solves the extremum problem
mak{lflas)l: F € Lsi € fi.f 2= 1}k (2.13)

The sequence {L.} is nested, i.e. L, C Ln4y. It follows that the seqﬁeuce {me) =
{¢a(an)} is non-decreasing if @, = « for all n. This monotonicity property of {xn} does

not follow in general.

The functions , have all their zeros in D, while the functions 7} have all their zeros in
E.

The sequences {¢.}, {5} satisfy the following coupled recurrence relations:

1 —&a721=

"ﬂ r < - aﬂ-l \ > )
(2] = € Cacilz) + 0 ——— 27 _ (3] (2.16)
.Fnk K;n_l L':'n' I._«!i’:: L] 1( J 3 n l _a—;: 7-‘1—1( J] 1\ 7
n = 1,2
» Kn =— 3 — Qn_y 1 =Tz -
z) = =1 0 Dn1(2) + 3 o ol 2.17
Pn() n‘n—x nl-—&_:: nl() T Tz ..-;1( )] ( )
n= ;2
Qg = 0, ¥0o = Ko, 1.’.“6 = sp (2 18)
The recurrence coefficients 0,, =, are given by
(1 = Qa1 Ta) Pnl(Cn-
&; — -1 ;) ‘r"'t( n 1) (219)
'\l - |aﬂ'—ll ) Kin
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(1 - an—lo‘n)‘#’;(an—l) ;
[ = Jan-1lP) )

n — in

"

The coefficient ¢, is always different from zero. (Follows e.g. by substituting z = a,_; in
(2.17), taking into account that ] has no zeros in D.) Furthermore |6, < |€n].

The sequences {x.}, {6}, {en} are connected through the formula

2 n
Ko 2 iy i3 2 ”
"?(1 = lanl’) = H [leml® = |6m] ] (2.21)
Ka m=1l
K i ; ; AT
Clearly {r(.....__—“_...__z} converges to a finite value if and only if the infinite product
1 — | |
y1=lan
> _i [lem|? = [6m|?] converges (to a finite value different from zero).

For more exhaustive treatments of the concepts and results referred to, see [3,4,3,6,7,3].

3 Locally uniform convergence

We shall in the rest of this paper assume that the sequence {a,} converges to a limit « in

1

lim a, = a, aa € D. (3.1)
TLm—T

(More general results can be obtained by only assuming that all «, are contained in a
compact subset of D, by considering accumulation points and convergent subsequences.

Cf. [8].)
We recall that the measure u is said to satisfy the Szegé condition if
T
/ lnu'(8)df > —oc. (3.2)
(Here u'(#) denotes the derivative of u - and of the absolutely continuous part of u - with
respect to Lebesgue measure.)

We now state as a theorem some basic results connecting the Szegd condition with behavior

of the sequences {#.}, {é.}, {ca}:



Theorem 3.1 The following conditions are equivalent when (3.1) is satisfied:

(A) {kn} converges (to a finite value different from zero).
(B) 2 _llem|® = |6m|?] converges (to a finite value different from zero).
(C) The Szego condition (3.2) is satisfied.
Proof: Follows from (8, Theorem 6.10].
1
The Szegd spectral factor o, is defined by
1o e ;
a.(z) = erexpi___-L-; /_w T In 4'(8)dd). (3.3)

(We may set o, =0 when the Szegd condition (3.2) is not satisfied.)
We state a main result on convergence of the sequence {}}.

Theorem 3.2 Assume that (3.1) and (3.2) (hence the conditions (A), (B), (C)) are satis-
fied. Then {p>} converges locally uniformly in D to a function

/ 1012
R S i
FLE = e :'\-.--—-—-—-———\. A€ R (34
a(2) (1 =Tz)ouiz) lute
Proof: Follows from [3, Theorem 6.10 and Theorem 6.12].
I
Corollary 3.3 Assume that
a, = a foralln (3.3)
and that
= A
> 16af® < . (3.6)

e

n=

Then {p,} converges locally uniformly in D to the function 7, given by (3.4).

Proof: It follows from (2.14), (2.20) and (3.3) that in this case [e,| = 1, and so (3.6) is
equivalent to condition (B). The result then follows from Theorem 3.1 and Theorem 3.2.
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For the sake of completeness we also include the following result.
Theorem 3.4 Assume that (3.1) and (3.2) (hence the conditions (A), (B), (C)) are satis-
fied. Then the reproducing kernels

ba(20) = 3 9m(2) Pml@) (3.7)

m=0

m

D to the function
1

converge locally uniformly for z,w

s(z,w) = : 3.3
) (1 = :W)ou(z)ou(w) Y
t.e.
= 1
Om(2)om(w) = —. 3.9
mz=0 ( (l . 31—‘-’-)0’:&(:)0‘#(1”) ( )
Proof: Follows from [8, Theorem 6.14].
a

4 Uniform convergence

We recall that we shall also in this section assume that (3.1) is satisfied. We shall prove
stronger convergence results for {< } under a stronger condition than (3.2). This condition

15
S I1 + a3l + [6m]] < oo (4.1)
m=1

We shall first establish that this condition is in fact stronger than (3.2).

Proposition 4.1 Assume that ({.1) is satisfied. Then the product

=3

[T leml® = 16m[°] (4.2)

m=1



converges absolutely.

Proof: First note that

leml =1 £ |1 + TnZm (4.3)
and

Il‘sml2 - ll s Haml = ll(!‘sm[ + 1) (4'4)

It follows from (4.1) that
lem] + 1 S M < 00, Y. |6a]® < 0. (4.3)

m=1

Together (4.1) - (4.4) give

Z I( [Emlz [6”&12[ < o0. (4.6)

m=1
From a basic convergence criterion for infinite products (see e.g. [17]) we then conclude

that the product

= . = ;
[T lleml® = 16a"T = TL 11 + (lemi® = 1 = 16n[*)] (+7)
ma=1 m=1

converges absolutely.

Corollary 4.2 dssume that (3.1) and ({.1) are satisfied. Then the conditions (A), (B),

(C) are satisfied.

Proof: Follows from Theorem 3.1 and Proposition 4.1.

We now prove our main result.

Theorem 4.3 Assume that (3.1) and (4.1) are satisfied. Then {©3} converges uniformly
on D U T. [t follows that v, has a continuous extension to D U T. Furthermore

min_ |m(z)] > 0 (4.3)
e DJT



(where 7, denotes the extended function).

Proof: From the recurrence relation (2.17) follows

39‘ (:) ‘{M(l — Om— 1-') ra— I — Om-1 ‘:’m—l(
B = -y, : + Om ]. 4.9
Pyl 2] Em=1(l = @nz) (Fm l = ik Pnuale) (4.9)
W L2, s

Multiplication of (4.9) for m = 1,2,...n together with (2.18) gives

= (l =Tm12) Km e, = (2= am-1)Pm-1(2)
n ~Tm)[Em T Om RS y 4.10
79 .mI_Il 1 - arn-) Km—1 l‘ )[ (1 = am—lz)(p;'l—l(z)] ( )
hence
: ) - — . 7 (—am)oma(2)
WolZ) wm wemescmmm ~Ta) 1&n + Im 4.11
) L i m:_.l( = (1 —am=12)pm-1(2 ) g

We note that lm—"__ converges to e (with £ = lim, #,) uniformly on D U T. We
-0z -z

may write the product in (4.11) as

= — (z = amn-1)Pm-1(2)
(ma S & T 4 - - ] 4.12
m:l\ - [m U"—am 1')Um—-1(:)J ( J
- r —_— _ b (""am—- -( 1
- tL o {(~TaZm = 1] =~ g st _—— )1’}

{L - Qm-1~ ){"'.n—-l‘ ")

is analyticon D U T (since am-; € D and the zeros

| o Yen f-v‘: i
| 1= Xm—1)Fm-11<)
?( = . .|f=l for z € T. (4.13)

Consequently
b (3 il | ‘
it A 1R P e T (4.14)
(=T ()|
hence
b — (2 = am-1)@m-1(2) =
[(=Tm3m — 1) =m0 e 4.15)
S (- Qm—lz)(ﬂm-1(3)| (
S+ minl +|6n] for 2z DUT.



The assumption (4.1) together with (4.13) implies that the product in (4.11) and hence
{#2} converges uniformly on D U T to a continuous function, which on D coincides with
To. The limit function is different from zero since all the factors in the infinite product are
different from zero and a convergent infinite product is zero only if one of the factors are

zero.
a
Remark [t follows from (4.1) that |1 + mm3n] + 62| < 1 for sufficiently large m, say
m 2> M. Henceform > M:
— — (2 — Am-1)Pm-1(2)
11 + (=TmZm — 1) — Thmom 4.16
( ) - i(2) I (4.16)
> 1= ;ll + TmZm| + 16m|]
which means
( - Qm-1)Pm-1(2) -
Em -r- ol 1 14" ] é'm a1
)[ (l "'&m-l-')ﬁam-—L( )“ [ [l [ [ !]l ( )
Consequently
|2 Pz o (3_‘2711.-1)97’?1-1(:)
!1"1'1.].=T.‘n"k ) (1 = am—l‘:}lr:;!—lt:) | ( )
2 H HI - Lil + Tmim| + |o,n‘]1[
m=M
for z € D U T. Thus (recall (4.11))
M-1
: , — (2 = am-1)(Pm-1(2), ™
lim |@i(z)] > | —Tm)[Em + Om 4.19
dnlvisl 2 oogl I miER + S
{1 ={I1 + Tl + ,'Oml]}
If|1 + rmTm| + |6m]| < 1 for all m, then
%
S N il )
J_I_.%]‘rfl . F Tmim| + [ml]}- (4.20)
Corollary 4.4 4ssume that
an = a foral n (4.21)
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and that

AR (4.22)

n=l

Then {@;} converges uniformly on D U T, and

in_|ra(z)] > 0 ' 4.23
min_ |xa(2)| (4.23)

zeDu

where 7, denotes the continuous limit function on D U T).
J

Proof: It follows from (2.14), (2.20) and (4.21) that in this situation £, = —7m, hence
TmZm = —|™m|* = —1. Condition (4.1) then reduces to (4.20), and the result follows from

Theorem <.3.
il
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