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1 Introduction

Every finite positive Borel measure J1. on the unit circle gives rise to an orthonormal se­

quence {'Pn} of polynomials: Szego polynomials. The reciprocal polynomials {'P~} are

defined by 'P~(z) = zn'Pn(l/=). The (positive) leading cofficient of 'Pn(z) is called .'l:n, it

is easily seen that .'I:n = 'P~(O). The reflection coefficient On is defined by On = 'Pn(O)/ .'I:n.

The Szego polynomials and their reciprocals satisfy the coupled recurrence relations

(1.1)

'P~ (.:) (1.2)

(1.3)

The measure J1. satisfies the Szego condition J~",In J1.' (B)dB > --:c if and only if {.'I:n}

converges to a finite value .'I: and if and only if the series 2:~1 IOnl2 converges. vVhen these

equivalent conditions are satisfied, the sequence {Y.~} converges locally uniformly in the

open unit disk to the func:;ion

_. ) 1 . 1 J'" "iri ~ -
..\.: = -- PX: I ~, -, I. ~ -.p,- ,_ ,ri m J1. (B) dB1_" "1:" -;re -:; .•-

(lA)

vVhen the stronger condition L~=l 10nl < co is satisfied, the sequence {'P~} converges

uniformly on the closed unit disk, and the (continuous) limit function does not vanish. For

proofs and more details concerning these matters. see [12,13,14,15,16.18,23].

Polynomials are rational functions with a pole at infinity only. For some purposes it is

useful to work with orthogonal rational functions with prescribed poles outside the unit

disk. From a purely mathematical point of vie',v the theory of such orthogonal rational

functions was as far as we know initiated by Djrbashian about 1960 (see the survey paper

[11]). Independently, partly from an applied point of view, the same constructions were

used by Bultheel, Bultheel and Dewilde, Dewilde and Dym about 1980 (see [1,2,10]).

The basic features of a general theory of orthogonal rational functions are set forth in

[3,-1-,5.6,7,8] and in references found there. See also [20,21]. The theory is closely connected
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with the Nevanlinna-Pick interpolation problem. See e.g. [19, 20, 21], and for applications

[9].

In [8] the complex of conditions related to the Szego condition in the rational situation was

investigated under the assumption that aU the poles are contained in a compact subset

(in the extended complex plane C) of the exterior of the unit disk. It was established

that (when the Szego condition is satisfied) subsequences of the reciprocals {'P~} of the

orthogonal rational functions {<p,.,,} converge locally uniformly in the open unit disk to
functions

In particular the whole sequence {~~} converges to iio:. if the prescribed poles-converge to

1/0..

The main result of this paper is a theorem on uniform convergence of {'P~} on the closed

unit disk which generalizes the theorem referred to above for the polynomial case.

2 Orthogonal functions

vVe shal use the notations T = {= E C: i=i = I}, D = {= E C: 1=/ < I}, E =
C: 1=1> I}. The subs tar conjugate !. of a function! is defined by

!.(=) = /(1/=).

Let f.I. be a finite (positive) Borel measure on (-ii, ii]. An inner product is defined by

Let {an} be an arbitrary sequence of (not necessarily distinct) points in D. It is sometimes

convenient to use the notation 0.0 = O. The Blaschke factors (n are defined by

(2.3)
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(By convention, Tn = -1 when Ctn = 0.) The Blaschke products Bn are defined by

1'1

Bo(z) = 1, Bn(z) = II (;.(z) for n = 1,2, ....
k::::1

'vVedefine the spaces .en by

..en = Span {Bm : m = 0,1, ... , n}.

The elements of ..en are exactly the functions that may be written in the form

where
1'1

;r"n(z) = II(1 - CtkZ)
k::::1

(2.-t)

(2.5)

(2.6)

(2.7)

and Pn E ITn (the space of polynomials of degree at most n). In particular.en = ITn when

Ctn = 0 for all n.

For f E .c.n \ .en-1 we define the superstar conjugate r by

(2.8)

Observe that r E .en.

Let the sequence {<1>n : n = 0.1,2 .... } be obtained by orthogonalization of the sequence

{B.", : n = 0,1,2, ... } with respect to the inner product (2.2). Each <Pn has a decomposition

n.

<1>.",(=)= L b1n) Br.(z).
k::::O

By calculating <1>~(=)and substituting Ct.", for = we see that

(2.9)

(2.10)

'vVeshall reserve the notation (Pn for the monic functions, i.e. those for which b~n) = 1.
'vVeset

(2.11) .
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and denote by 'Pn. the normalized functions:

(2.12)

We thus have

It can be shown that 1'~solves the extremum problem

max {If(an)1 : J E [,n, < J, J > = I}.

(2.13)

(2.14)

(2.1.5)

The sequence {[,n} is nested, i.e. [,n C [,n+1' It follows that the sequence {x:n} =
{'P~(an)} is non-decreasing if an = a for all n. This monoto~icity property of {x:n} does

not foUow in general.

The functions 'Pn have all their zeros in D, while the functions 1'~have aU their zeros in
E.

The sequences {:p".}, {:p~} satisfy the following coupled recurrence ::elations:

1'n (=) 11:", ,_ = - an-1,~ (_'- --[en 1 __ Y:'1-1 -)II:n-1 • - an-
_ 1 - a",-1 = . (,,]J' 11"'1 - \+ Vn -1-==--- 1'" 11.-1 - J- a", __

n = 1,:2, ...

(2.16)

'P~(=) X:n [?'"" = - an-1 _ 1 - a"'-1= • ']= -in -- On 1 -_ 'Pn-1(=) + ~n 1 -_ '?n-1(=)X:n-1 -an- - an--
n=l,'2 ....

ao = 0, 'Po = 11:0, :Po = '~o·

(2.17)

(2.18)

The recurrence coefficients 511., ~n are given by

(1 - an-1~) 'Pn(an-d

(1 - Ian_tlZ ) II:n
(2.19)



(1 - ~an)cp~(an-d

~n = -In ( I 12)1 - an-l K:n
(2.20)

The coefficient ~n is always different from zero. (Follows e.g. by substituting:; = an-l In

(2.17), taking into account that 'P~ has no zeros in D.) Furthermore 16nl < lenl.

The sequences {K:n}, {6n}, {Cn} are connected through the formula

nII[leml2 - 16m12J.
m=l

(2.21)

Clearly { / II:n } converges to a finite value if and only if the infinite product
VI - lanl2

rr:=l (leml2 - 15mj2] converges (to a finite value different from zero).

For more exhaustive treatments of the concepts and results referred to, see [3,4-,5,6,7,8].

3 Locally uniform convergence

We shall in the rest of this paper assume that the sequence {an} COD.vergesto a limit a in
D:

lim an = a. a E D.
n--:<) , (3.1 )

(:vlore general results can be obcained by only assuming that all an are concained in a

compact subset of D, by considering accumulation points and convergent subsequences.

cr. [8].)

We recall that the measure fJ. is said to satisfy the Szego condition if
.",

J--: In/( 0) de > -':c. (3.2)

(Here fJ.'( e) denotes the derivative of J1. - and of the absolutely continuous part of fJ. - with

respect to Lebesgue measure.)

'vVenow state as a theorem some basic results connecting the Szego condition with behavior

of the sequences {K:n}, Un}, {en}:
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Theorem 3.1 The following conditions are equivalent when (3.1) is satisfied:

(A) {i'Cn} converges (to a finite value different from zero).

(B) IT:=1[ICm 12 - 115m12] con-r,'erges(to a finite value different from zero).

(C) The Szego condition (g.2) is satisfied.

Proof: Follows from [8, Theorem 6.10].

The Szego spectral factor a'!J.is defined by

1 j""e iB , -

f'J 7- "\
a'J.'\.':) = j2';;exp[--= iB. InfJ.lB;de].4 .. -;r e - .•.

(vVe may set a'J.' = 0 when the Szego condition (3.2) is not satisfied.)

vVe state a main result on convergence of the sequence {<p~}.

o

(3.3)

Theorem 3.2 Assume that (3.1) and (3.2) (hence the conditions (A), (B), (C)) are satis­

fied. Then {<p~} con'verges locally u.niformly in D to a function

Proof: Follows from [8, Theorem 6.10 and Theorem 6.1:2].
c

Corollary 3.3 Assume that

an = a for all n

and that

?O

~ I~ ",L iOn:- < :'C.
n=1

Then {<p~} con'verges locally u.niformly in D to the function 7i"~ given by (3.';').

(3.4)

Proof: It follows from (2.14), (2.20) and (3.5) that in this case lenl = 1, and so (3.6) is

equivalent to condition (B). The result then fonows from Theorem 3.1 and Theorem 3.2.
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For the sake of completeness we also include the following result.

Theorem 3.4 Assume that (S.l) and (!J.2) (hence the conditions (A), (B), (C)) are satis­

fied. Then the reproducing kernels

n

kn(z, w) = L 'Pm(Z) <Pm(w)
m=O

converge locally uniformly for z, wED to the function

1
) , ,

s(z,w = (1- zw)O',.(z)O',.(W)

Le.

Proof: Follows from [8, Theorem 6.14].

4 Uniform convergence

o

(3.7)

(3.8)

(3.9)

V.ie recall that we shall also in this section assume that (3.1) is satisfied. 'vVeshall prove

stronger convergence results for {<p~} under a stronger condition than (3.2). This condition
IS

':>0

L [11 + 7"m~ml + 16ml] < 00.

'vVeshall first establish that this condition is in fact stronger than (:3.2).

Proposition 4.1 Assume that (4-1) is satisfied. Then the product

II[lcml2 - 18m12]
m=1
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converges absolutely.

Proof: First note that

(4.3)

and

It follows from (4.1) that
00

leml + 1 ~ ~vI < CC, L 18m!2 <Xi.
m=l

Together (4.1) - (4.4) give

00

L 1(leml2 - 1) - 18ml21 < 00.
m=l

(4.4 )

(4.5)

(4.6)

From a basic convergence criterion for infinite products (see e.g. [17]) we then conclude

that the product
-:0 ~II [j~mI2 - 18ml2j = II[1 ~ (lcmi'2 - 1 - i8m!2)]

m=l m=!

can verges absolutely.

(4.7)

Corollary 4.2 Assume that (.J.1) and (4.1) are ,:;atisfied. Then the conditions (A): (B):

(C) are satisfied.

Proof: Follows from Theorem 3.1 and Proposition 4.1.
o

vVe now prove our main result.

Theorem 4.3 Assume that (3.1) and (4.1) are satisfied. Then {<p~} conve'rges uniformly

on D U T. It follows that 1ia has a continuous extension to D U T. Furthermore

=E~~T !1ia(=)1 > a
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(where 7C:. denotes the extended junction).

Proof: From the recurrence relation (2.1 T) follows

<p~ (;;)

<P~-l ( z)
(4.9)

:vIultiplication of (4.9) for m = 1,2, ...n together with (2.18) gives

hence

(4.10)

(4.11)

We note that ~~ converges to 1 ~_ (with ~ = limn ~n) uniformly on D U T. vVe1 - Cin Z - Ci ;;

ma.y write the product in (4.11) as

Consequently

is analytic on D U T (since Cim-l E

(4.12)

D and the zeros

(4.13)

hence

D U T. (4.14)
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The assumption (4.1) together with (4.15) implies that the product in (4.11) andhence

{y~} converges uniformly on D U T to a continuous function, which on D coincides with

iTa. The limit function is different from zero since all the factors in the infinite product are

different from zero and a convergent infinite product is zero only if one of the factors are
zero.

o

Remark It follows from (4.1) that 11 + 'im$ml + IOnl < 1 for sufficiently large m, say

m > .''11. Hence for m ~ l\iI:

(4.16)

which means

(4.17)

Consequently

(4.18)

X)

2: II I{l - [11 -:- 'im$ml -+- !5ml]} I
m=.H

for:: E D U T. Thus (recall (4.11))

Corollary 4.4 Assume that

an = a for all n
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and that

Then {<p~} converges uniformly on D U T, and

min I (
zeDuT 1I"a z)1 > 0

(where ;ra denotes the continuous limit function on D U T).

(4.22)

(4.23)

Proof: It follows from (2.14), (2.20) and (4.21) that in this situa.tion ~m = -im, hence

TmSm = -lim!2 = -1. Condition (4.1) then reduces to (4.20), and the result follows from
Theorem -L3.

o
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