
MiTS: Middleware for Travelling Sensor Nodes

Bart Elen, Wouter Joosen, Sam Michiels and Pierre Verbaeten

Distrinet - Department of Computer Science - K.U.Leuven

3000 Leuven, Belgium
Bart.Elen@cs.kuleuven.be

Abstract
In this paper, we consider a sensor network application

as a composition of environments (physical and option-

ally logical clusters of sensor nodes) that each have a

relatively static topology and sensor nodes that migrate

through these environments. We call the latter travelling

sensor nodes.

We illustrate why travelling sensor nodes are needed in

many challenging sensor node applications. We sketch

the requirements for the system software of these travel-

ling sensor nodes and we outline our approach to archi-

tecting an adaptive middleware layer for such sensor

nodes.

This paper reports on a starting project in which we start

from the observation that the current operating system

and virtual machines for sensor nodes do not contain all

the needed support for highly mobile nodes. A specific

middleware solution therefore is required. We mainly

present a first inventory of the requirements and a high-

level architecture of such middleware.

Keywords

Wireless sensor networks, middleware, mobility, adapta-

bility and distributed networks

1. Introduction
Sensor networks are a relatively new technology that

makes it possible to monitor a wide area, a large collec-

tion of goods or a population of people or animals. Sen-

sor networks are built with an often large number of co-

operating wireless sensor nodes. Those nodes can operate

unattended and are very limited in power, computational

capacity and memory. A typical sensor node is built

around a low-power microcontroller running at a few

MIPS with a few kilobytes of RAM. Sensor nodes can

use multi hop communication to save energy and are eas-

ily utilized as an ensemble [1][2].

We define ‘travelling sensor nodes’ in this paper as sen-

sor nodes that are able to leave their local environment

(typically a sensor sub-network) and to join other envi-

ronments, also and even if the other sensor networks are

managed by a different entity.

We believe that travelling sensor nodes are required by

network applications in major sectors such as the trans-

portation sector, the automotive sector, agriculture, health

care etc. We clarify this briefly.

• Imagine an application in agriculture: Wireless sen-

sor nodes will be implanted in animals to collect in-

formation about their growth and health. Each time

an animal is sold it may become part of the sensor

network of its new owner.

• Imagine an application in health care: Chronically ill

people who are discharged from the hospital after an

operation or after a serious medical crisis will wear

smart clothing that will monitor their health, that will

monitor how they react on their medication and that

can call for help when and if needed. Each time such

a monitored patient enters a doctor’s practice, for in-

stance in a hospital, the sensor based smart clothing

may become part of a local sensor network in the

hospital.

An example for the transportation sector will be given in

section 2.

Sensor networks that dynamically integrate travelling

sensor nodes must have special properties. The environ-

ment sensor network will be one autonomic system, man-

aged by a network manager who has to make all required

network management decisions. But since the infrastruc-

ture of this network is dynamically extended by integrat-

ing sensor nodes with different owners who have put dif-

ferent software on these nodes, some new challenges must

be addressed: travelling sensor nodes are facing both net-

work heterogeneity, application heterogeneity and net-

work service heterogeneity.

We further demonstrate the challenge of enabling coop-

eration between travelling sensor nodes and the heteroge-

neous environments they operate within. These sensor

networks differ from each other in terms of network size,

node mobility, node density, connection stability and

other properties. A wide variety of applications is de-

ployed, each requiring network services such as position

determination and time synchronisation. A lot of service

implementations are available for most of these services.

In a short example we will further illustrate that the net-

work service implementations required by the travelling

sensor node do depend on its actual environment. This

environment is determined by both the network properties

of the available sensor network, the service requirements

of the applications (both on the hosting network as well

as on the travelling sensor node) and by the availability of

network service implementations for each service.

The sensor nodes on state-of-the-art sensor networks do

not face the same heterogeneity because they only have to

function in one specific environment. Such sensor nodes

can be programmed with all service implementations that

are needed for that specific environment. This is different

for travelling sensor nodes that will join multiple sensor

networks and will be confronted with a high level of het-

erogeneity. The actual state-of practice would require

travelling nodes to be reprogrammed when migrating into

another environment. There are two problems with this

current (state-of-the-art) solution. First, reprogramming

requires user interaction. Secondly, a sensor network ad-

ministrator will often not be authorized to program visit-

ing travelling sensor nodes. In our opinion, a much better

solution would be based on travelling sensor node that

self-adapt to the changing environment.

We therefore argue that a middleware solution is needed

to adapt the network services on the travelling sensor

node to the current environment of the node. This mid-

dleware will hide the heterogeneity of the environment

for the applications. This approach enables cooperation

between the sensor nodes from different networks. We

are working on a new, adaptive middleware called MiTS

(Middleware for Travelling Sensor nodes) that fulfils

these requirements. In section 2 of this paper, we present

the example mentioned above. This way, we elaborate on

the requirements for MiTS. Section 3 enumerates the ma-

jor functionalities of MiTS. In section 4, we compare our

findings with the state-of-the-art in sensor node system

software and we overview a number of other open prob-

lems that we need to tackle moving forward. We summa-

rize in section 5.

2. Requirements from a real-world example
Large containers that are used for global transport will be

equipped with sensor nodes which collect information

about the container: location, content, status etc. In a

multi-model transportation environment, containers will

migrate between harbours, ships, trains and trucks. This

clearly exemplifies the concept of a changing environ-

ment – which we assume to be equipped with sensor net-

work technology as well. We will use the container trans-

port application to clarify the key properties and chal-

lenges that do arise when supporting travelling sensor

nodes. In the next paragraphs, we briefly discuss the kind

of mobility of a travelling sensor node, the heterogeneity

of the environments it must deal with and the adaptability

it requires from the middleware.

Mobility
The large containers that are used for global transport

encounter warehouses, ports, trucks, boats and trains

while travelling to their destination. All those locations

can be equipped with a local sensor network to collect

information about the containers. Each time the container

arrives at a new location, its sensor nodes migrate to a

new environment.

Heterogeneity
Travelling sensor nodes do encounter a lot of heterogene-

ity. The various applications, the available network ser-

vices and the network properties can differ from sensor

network to sensor network.

Network heterogeneity
In the container sensor network case is there the sensor

network of a port which can contain tens of thousands of

containers while the sensor network of a train will involve

substantially less containers. In warehouses, containers

will be moved, while containers typically stay immobile

on a boat. Another example is the node density which

may vary with the environment.

Application heterogeneity
A wide variety of applications run on sensor nodes. One

application may identify the products inside the container

with the help of RFID [3][4] while another application

can be used to localize ‘lost’ containers in ports [5].

Other examples of applications for container sensor net-

works are protecting containers against unauthorized ac-

cess [6] and checking that the container did not become

too hot, cold or humid and whether is has been dropped

or bumped against [3].

A lot of those applications use network services such as:

• Route discovery: to discover the correct paths on the

sensor network.

• Position determination service: to find the current

location of the container.

• Flooding service: to flood alarm messages and que-

ries over the network.

• Time synchronization service: to make it possible to

order events on the sensor network.

• Election service: for electing the sensor node that has

to do a task or receives a certain responsibility.

Network service heterogeneity
A lot of different implementations are available for most

network services on sensor networks. Examples of this

are LEECH and TEEN for route discovery [7], simple

flooding and SBA for flooding [8], APS and SPA for

location determination [9], and RBS and GPS for time

synchronization [10]. There is currently no standardiza-

tion for those network services on sensor networks and

our experience with fixed networks and ad hoc networks

indicates that there will always be multiple network ser-

vice implementations for those network services.

Service implementation selection
Which network service implementations are best fitted for

installation on the sensor node depends heavily on the

current environment of the node. As an example will we

take a closer look at the dependency of the routing dis-

covery services on the sensor networks.

Figure 1. Service implementation selection

On the small sensor network of a train, a simple route

discovery service such as DSDV [11] can be used. The

much larger sensor networks of ports require a better

scalable route discovery service which, as stated in [12],

can be realised with a hierarchical route discovery service

such as LEACH [13]. If an application is deployed on the

port’s sensor network that does require QoS, a route dis-

Service requirements of

applications on node

Select network service

implementations

Service implementations

on network

Network

properties

Service require-

ments on network

Service implementation

availability

covery service with QoS support such as SPEED [14]

will be preferred. The network service that is used on the

network will only be installed on the travelling sensor

node when its applications require it.

The middleware must be self-adaptive. The service im-

plementations that it contains must be adapted to its envi-

ronment This environment is determined by both the ser-

vice requirements of the applications on the node and by

the service implementations that are used on the network

(Figure 1). The service implementations on the network

are determined by both the network properties, the ser-

vice requirements of the applications on the network and

by the availability of service implementations.

3. Platform Support
We argue that cooperation can be made possible between

travelling sensor nodes and environments of different

sensor networks by hiding the heterogeneity of the envi-

ronment for the applications with adaptive middleware.

We outline our approach to architecting the MiTS mid-

dleware which must address the following deployment

tasks:

• First, it will detect the service requirements of its

applications.

• It will discover the network service implementa-

tions used on the local sensor network.

• Then will it adapt the network services running on

the nodes to its current environment by installing,

removing or replacing services implementations on

the node.

• Fourth will it map the abstract services that the

applications are using on the best fitted service im-

plementations.

Figure 2 gives an overview of the high-level architecture

of the MiTS middleware. The middleware is component-

based to support adaptability. The key tasks will be de-

scribed along with the presentation of the main compo-

nents of the middleware.

Applications must be able to operate using different ser-

vice implementations. Therefore they must be pro-

grammed independently from specific services. The ap-

plications will therefore use abstract services which will

be mapped at runtime on concrete service implementa-

tions. The middleware architecture contains a number of

network services and a middleware core which consists of

two network managers (figure 2): the service manager

that is an interoperability layer between application logic

and environment specific networks services, and the ser-

vice component manager, that enables dynamic replace-

ment of service implementations on a travelling sensor

node.

Service manager
The service manager has several responsibilities. The first

is that it must collect information about the service re-

quirements of the applications on the node. The second

responsibility is that it must gather information about the

services offered by the service implementations on the

sensor nodes of the environment. The third key responsi-

bility is mapping the abstract services that the applica-

tions are using on the most appropriate service implemen-

tations that are available. All gathered information is

stored in the Service DB. The service manager can be

configured itself at runtime by adjusting the Service se-

lector policy.

Service component manager
The service component manager is responsible for re-

moving, installing and replacing network service imple-

mentations on the node and for detecting which network

service implementations are used on the local sensor net-

work. It needs the support of two services: the Service

discovery and the Component exchange service (Figure

2).

The behaviour of the Services component manager can be

MiTS Fixed

Service selector

policy

Service component

selector policy

Service compo-

nent manager

Component DB

Service manager

Service DB

App. 1

Service

discovery

Network

service 1

Identify service

discovery

Component

exchange service

Network

service 3

Network

service 2

App. 3 App. 2

OS

Network

Network stack

…

…

Middleware Core

Network Services

Figure 2. High level architecture

changed at runtime by replacing the Service component

selector policy. The service component manager will

store all gathered information about the network services

on the travelling node in the Component DB.

Service discovery
The service discovery consists of two components. The

first component is responsible for initially identifying the

service discovery used on the network. This can typically

be achieved by simply asking any neighbouring node

since all nodes on the network have to be equipped with

this network discovery service.

The second component is the Service discovery compo-

nent which has the task of discovering all the required

service implementations on the network

Component exchange service
The number of services which can be stored on a sensor

node is relatively limited because of the very restricted

hardware of sensor nodes. Whenever a sensor node re-

quires a network service which is currently not available

on the node, it will use the component exchange service

to download the necessary functionality from another

sensor node in its neighbourhood. The number of hops

involved must be minimized. The proposed solution re-

quires that the sensor nodes on the network are equipped

with exactly the same component exchange service.

Standardization
A certain amount of conventions for interoperation are

required to enable the migration of travelling sensor be-

tween different environments. But, all aspects of the mid-

dleware that are standardized by such conventions can no

longer be changed for the purpose of creating new appli-

cations. This may limit the room for innovation and the

flexibility that the middleware offers. Hence we have

limited such conventions to the minimal but sufficient.

The only standardized aspects of our middleware are the

interfaces of the network protocols of the Identify service

discovery and the Component exchange service, as well

as the abstract service definitions that the applications

and middleware are using and the network services are

implementing.

4. Related Work
In this section will we explain why the state-of-the-art

operating systems, virtual machines, and middleware do

not offer the support for travelling sensor nodes as dis-

cussed in this paper.

Operating Systems
So far, sensor node operating systems have been focused

on achieving high performance at minimal cost.

TinyOS
TinyOS [15] is currently the most wide-spread operating

system for wireless sensor nodes. TinyOS is designed for

high performance. It is not possible to execute multiple

applications simultaneous on this OS. In that sense is

TinyOS very static, it does not support adding or remov-

ing a service at runtime.

SOS
SOS [16] is a more dynamic operating system for sensor

nodes. It does support the simultaneous execution of mul-

tiple applications and it allows the installation and re-

moval of applications at runtime. SOS does even contain

a module exchange service which installs all new soft-

ware of the sensor nodes in the neighbourhood on the

node. However, SOS does not support a self-managed

modification of service software as targeted by MiTS.

Virtual machines
Virtual machines have been created with objectives that

are comparable to the design objectives of operating sys-

tems: for instance to limit resource consumption.

Sending an application over a wireless connection costs a

lot of energy. Sending a single bit can consume the same

energy as executing 1000 instruction [17]. Recent re-

search has been addressing the support for creating appli-

cations with a small footprint, e.g. by building an applica-

tion specific virtual machine with for instance Maté [17].

Middleware
The former paragraphs show that the community address-

ing system software for sensor nodes has not (yet) been

addressing the flexibility we are aiming for. Obviously,

research on flexible middleware can offer relevant solu-

tions to guide our research. We cannot be exhaustive in

enumerating relevant work in this space. We briefly dis-

cuss two key research results that share some of our ob-

jectives.

ReMMoC
ReMMoC [18] is a middleware platform that dynamically

adapts both its discovery and binding protocol (e.g. RMI

or publish-subscribe) to allow interoperation with hetero-

geneous services in mobile environments. This middle-

ware uses reflection and WSDL which are well fitted for

PDA’s but are too heavy to be used in sensor node soft-

ware.

INDISS
INDISS [19] is middleware that does deliver service pro-

tocol interoperability in the mobile environment. This

middleware makes it possible to exchange service discov-

ery information between applications that have been de-

veloped for different service discovery protocols. It real-

izes this by translating all incoming service discovery

packets to the protocol the application does support. Each

application running on INDISS must contain its own ser-

vice discovery implementation. This makes the usage of

existing applications possible but it also makes the soft-

ware system unneeded large.

More Open Problems
Before a solution for travelling sensor nodes can be de-

ployed in the real world, several remaining management

and security challenges need to be solved as well. We

give a short overview of the most important additional

challenges that we anticipate.

Management challenges:

• One entity: It must still be possible to approach the

complete sensor network as one entity.

• Border detection: The sensor node must be able to

detect when it crosses the border of a sensor network.

If a container is for instance loaded on a boat then it

will have to detect that it must leave the port’s sensor

network, even if it still can have connectivity with it.

Security challenges:

• Network identification: The node must be able to

verify whether it has joined the right sensor network.

• Trusted network services: The sensor node must be

able to trust each network service that it installs.

• Authentication: Only authorized nodes may be able

to collect confidential information.

Our current focus is on refining the architecture intro-

duced in section 3, while targeting a scalable implementa-

tion with acceptable footprint.

5. Summary
In this paper, we discuss sensor network applications that

are a composition of (1) environments (of sensor nodes)

that each have a relatively static topology and (2) travel-

ling sensor nodes that migrate through these environ-

ments.

We have used a container transport application case study

to illustrate the system software requirements of travelling

sensor nodes as these face a lot of heterogeneity in their

environment. This heterogeneity is caused by the network

properties, the application requirements and the available

service implementations. We have shown that the combi-

nation of the mobility of the travelling sensor node and

the heterogeneity of its environment make it difficult for

the travelling sensor node to cooperate with sensor nodes

in the environment.

We have argued that cooperation can be made possible

between the sensor nodes of different networks by hiding

the heterogeneity of the environment of the node with

self-adaptive middleware. We are working on a new mid-

dleware called MiTS that will allow sensor nodes to

travel to different sensor networks by hiding all heteroge-

neity for the applications on the node.

Travelling sensor nodes – as defined here – currently are

a relatively new research area. The middleware solution

sketched in this paper is making the first step towards

allowing sensor nodes to migrate. This enables sensor

nodes from different sensor networks to cooperate in a

heterogeneous environment.

REFERENCES
[1] I. F. Akyildiz and W. Su and Y. Sankarasubramaniam and

E. Cayirci, Wireless sensor networks: a survey, Computer

Networks, vol. 38, no. 4, March 2002, pp. 393-422

[2] D. Culler and W. Hong, Wireless sensor networks, Com-

munications of the ACM, vol. 47, no. 6, June 2004, pp 32-

33

[3] D. Culler and H. Mulder, Sensor Nets / RFID,

http://www.intel.com/research/exploratory/smartnetworks.

htm, 2004

[4] Bulldog Technologies Releases RFID and Sensor Network

Products, Frontline,

http://www.frontlinetoday.com/frontline/article/articleDeta

il.jsp?id=153264, March 2005

[5] E. H. Callaway, Wireless sensor networks, ISBN 0-8493-

1823-8, 2004

[6] http://www.bulldog-tech.com

[7] K. Akkaya and M. Younis, A survey on routing protocols

for wireless sensor networks, Elsevier Ad Hoc Networks,

vol. 3, no. 3, 2005, pp. 325-349

[8] B. Williams and T. Camp, Comparison of broadcasting

techniques for mobile ad hoc networks, Proceedings of the

ACM International Symposium on Mobile Ad Hoc Net-

working and Computing (MOBIHOC), 2002, pp. 194-205

[9] D. Niculescu, Positioning in ad hoc sensor networks, IEEE

Network, July/August 2004

[10] J. Elson, K. Römer, Wireless sensor networks: a new re-

gime for time synchronization, ACM SIGCOMM Com-

puter Communication Review, vol. 33, no. 1, January

2003, pp. 149–154

[11] C. E. Perkins and P. Bhagwat, Highly dynamic Destina-

tion-Sequenced Distance-Vector routing (DSDV) for mo-

bile computers, SIGCOMM ’94, August 1994, pp. 234-

244

[12] K. Akkaya and M. Younis, A survey on routing protocols

for wireless sensor networks, Elsevier: Ad Hoc Networks,

2004

[13] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, En-

ergy-efficient communication protocol for wireless sensor

networks, Proceedings of the Hawaii International Confer-

ence on System Sciences, January 2000

[14] T. He, J. Stankovic, C. Lu and T. Abdelzaher, SPEED: a

stateless protocol for real-time communication in sensor

networks, Proceedings of International Conference on Dis-

tributed Computing Systems, Providence, RI, May 2003

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler and K.

S. J. Pister, System architecture directions for networked

sensors, Architectural Support for Programming Lan-

guages and Operating Systems, 2000, pp. 93-104

[16] C. Han, R. K. Rengaswamy, R. Shea, E. Kohler and M.

Srivastava, SOS: A dynamic operating system for sensor

networks, Proceedings of the Third International Confer-

ence on Mobile Systems, Applications and Services (Mo-

bisys), 2005

[17] P. Levis and D. Culler, Maté: a tiny virtual machine for

sensor networks, Architectural Support for Programming

languages and Operating Systems, San Jose, October 2002

[18] P. Grace, G. S. Blair and S Samuel, ReMMoC: a reflective

middleware to support mobile client interoperability, Pro-

ceedings of International Symposium on Distributed Ob-

jects and Applications(DOA), November 2003, pp. 1170-

1187

[19] Y. Bromberg and V. Issarny, Service discovery protocol

interoperability in the mobile environment, SEM, 2004,

pp. 64-77

