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Abstract
In this paper we shall be concerned with the problem of approximating the integral 7,{f} = f_Wﬂ_ f(eie)du(('))7

by means of the formula 7,,{f} = Z:;l Ag")f(xgn)) where p is some finite positive measure. We want

the approximation to be so that [n{f} = I.{f} for f belonging to certain classes of rational functions
Wlth prescribed poles which generalize in a certain sense the space of polynomials. In order to get nodes
{x } of modulus 1 and positive weights Ag ), it will be fundamental to use rational functions orthogonal
on the unit circle analogous to Szeg6 polynomials.

1 Introduction

In this paper, we are concerned with complex function theory on the unit circle. We start with the intro-
duction of some notation for the unit circle, the open unit disc and the exterior of the unit circle

T={z:]z|=1}; D={z:|z|<1}; E={z:|z|>1}.

For a given sequence {a;}52; C D, we consider for n = 0,1, ... the nested spaces L£,, of rational functions
of degree n at most which are spanned by the basis of partial Blaschke products {By}}_, where By = 1;
B, = B,_1(, for n = 1,2,... and the Blaschke factors are defined as

a, Qp — 2

Cnl2) =

|an| 1 —@pnz

By convention, we set @, /|ap| = —1 for a, = 0. Sometimes, we shall also write
Bn(z):nnﬂ_ (z)’ H— :Hz—a] ) and 7, (2 :H 1 —@;2) (1.1
n j=1 j=1 j=1

These spaces of rationals have been studied in connection with the Pick-Nevanlinna problem [9, 10, §]
and in many applications [1, 2, 5]. Note that if all the a; are equal to zero, the spaces £, collapse to the
spaces TT,, of polynomials of degree n. Clearly £, is a space of rational functions with prescribed poles 1/@;;
1=1,2,...,n which are all in E| that is,

L, =span{By;k=0,1,...,n} = {£2:p, e1,}
iy

n

We also introduce the following transformation fi(z) = f(1/Z) (f«(2) = m on T), which allows to define
for f. € L, the superstar conjugate as

Fa(2) = Bn(2) fax(2).

*Department of Computer Science, K.U.Leuven, Belgium

t The work of the first author is partially supported by a research grant from the Belgian National Fund for Scientific Research
{Department of Mathematical Analysis, University of L.a Laguna, Tenerife, Spain

§Department of Mathematics, University of Amsterdam, The Netherlands

TDepartment of Mathematics, University of Trondheim-NTH, Norway




Note that in the polynomial case, i.e., when a; = 0; ¢ = 0,...,n, hence B, (z) = 2z, the coefficient p*(0) is
the leading coefficient. In analogy, we shall call here f(a,) the leading coefficient of f,, € £, (with respect
to the basis {Bg}).

Next we consider a positive measure g on the unit circle and orthonormalize the basis for £,, with respect

to the inner product
(f,.9)= f( “)g(e?®)dp(0)

to generate an orthonormal system ¢g = 1, ¢ € ,Ck —Lr_1, ¢ L Lr—1,k=1,2,...,n. They are uniquely
defined if we require that their leading coefficient &, = ¢} (ay) is positive. In [2] it was proved that all the
zeros of ¢} (z) are in E and that it satisfies the orthogonality property ¢ L (,Ln—1, n =1,2,... where

Cn['n—l:{fEEn :f(an) :0}:[,”(0[“). (12)

(Obviously, the zeros of ¢, lie in D).

Other bases can be used for £, (See [2, 6]). In particular, the following will be of great interest for
our purposes. If we set Vo = 1, Vi = Br-1/(1 —agz); k = 1,2,..., then in [2] it was proved that
L, =span{l, (z — w)V1, (z — w)Va, ..., (2 — w) Vs }, w being any complex number.

In this paper we shall study how to obtain quadrature formulas of the form

LAfy =S A )y w2 WM eT =1, n (1.3)

Jj=1

(sometimes we shall drop the superscripts if no confusion is possible). It approximates the integral

s = [ 5o = [ seaut: (1.4)
—T
It is well known that such quadrature formulas are of great interest in the polynomial case to solve the
trigonometric moment problem or equivalently the Schur coefficient problem. The same can be said for
the rational case where the Schur coefficient problem is generalized to the Pick-Nevanlinna interpolation
problem. We shall generalize the basic ideas of the quadrature formulas on the real line where the use of
interpolating functions (which are easily integrated) and the zeros of orthogonal functions become extremely
important.
Our interpolating function spaces will be of the form

P
Rpq =L+ Ly = {F;P € pyq}

pTq
(p and ¢ are nonnegative integers, w, and m; as in (1.1)). Observe that L,. = span{l, Bi.,..., By} =
{1,1/By,...,1/B,}. Therefore,
1 1
qu_qpan{B B B—l,l,Bl,...,Bq}
(Ron = L). When all the a; are equal to zero, then By, = 2* and one has R, , = span{z* : k = —p, .. ,q} =

q

A that is the space of Laurent polynomials, or functions of the form A_, , = {L(z) = 7% viz";vi €

P

2 Interpolatory quadrature formulas

Writing A = {a;}52, and A = {1/@; : a; € A}, it is easily seen [4] that Rpq represents a Chebyshev system
on any set X C C — (AU A), and the following holds

Proposition 1 Let the distinct numbers {z;}7_; C C— (AU A) be given. Then, for arbitrary {w;}i=; C C,
there exists a unique p, € Rpq (p+q=n—1) such that p,(xz;) =w;, j=1,...,n



For our purposes, it will be convenient to give Lagrange type formulas for p,. Therefore set

A
() = L Dmgi(e) € Rt z1)

where Ny (z) = H;zl(z — z;) is the node polynomial, and define

1 — @412 Q,(2)

Ljn(2) =

- €ER,y j=1,2,....n 2.2
=y =) (zy) <0 22

Then 1t can be checked that

Pn(2) =D Lin(2)w;. (2.3)

Indeed, observe that
_ . 1 ifi=y .
Liyn(xj)_aij_{ 0 ifi#j 1<4,j<n.
In particular if p=0 (¢ = n — 1), then Ry 4 = £,,_1 and the interpolant will be given by
Zn: 1—a,z Q,(z)

I —anzj (2 — ;) ()

pn(z) = w;

j=1

where Qp(2) = Nn(2)/7n(2). When all the «; are equal to zero, then ©,(z) = Ny, (z) and the well known
Lagrange interpolation formula for polynomial interpolation is recovered.
The space R 4 will be called a domain of validity for the formula I, {f} given by (1.3) if

En{f}:[u{f}_[ﬂ{f}:()a vfeRP,Q'

Furthermore, R, , is said to be mazimal domain of validity when p = ¢ and neither Rp41 4 nor R, 441 is a
domain of validity. In [7] (see also [3]) it was proved for the polynomial case that A_(,_1),_; is a maximal
domain of validity. Here we shall prove a similar result for the rational case, that is we prove that R, _1 ,_1
is a maximal domain of validity.

First let us assume that the distinct nodes {a:j};?zl C T are given. Then, since R, , with p and ¢
nonnegative integers (p + ¢ = n — 1) represents a Chebyshev system on T, weights Aq,..., A, can be
uniquely determined so that the formula I, {f} = Z;ﬂ A; f(z;) has domain of validity R, , at least.

On the other hand, for a function f, defined on T, let p, € R 4 be its interpolant in the nodes {z;}7_;,
then

[ p@aue) = 30 Lindu@e) = 30 415 (y) (2.4
=1 7j=1

Such a quadrature formula is called of interpolatory type in R, 4. The following proposition is readily proved.

Proposition 2 A formula I,{f} = 2;;1 Aj f(zj) with distinct nodes {z;}j_; C T has a domain of validity
Rp.q (p+q=mn—1)if and only if it is of interpolatory type in that subspace.

Finally, we have the following result concerning the maximality of the domain of validity:

Theorem 1 For each n > 1, there can not exist an n-point quadrature formula of the form (1.3) with
distinct nodes on T and with a domain of validity R,,_1, or Ry n_1-

Proof. Let n > 1 be given. First we assume that there exists an n-point formula (1.3) that is valid
for all f € R,_1,. Let Ny(z) = H?zl(z — x;) € T, be the node polynomial and introduce R, (z) =
ANy (2) /70 (2) € L, A # 0. The parameter A, is chosen so that the leading coefficient of R, (z) is positive
(R} (an) > 0) and {R,, Ry) = 1. On the other hand, R, (z)/Bk(2) € Rn_1,, for 0 < k < n—1 and therefore

(o ) = [ ol BeT) = [ BBl = [ 2=

J

0
? By ()

n

1



(Recall that R,(z;) =0, j =1,2,...,n). Similarly, let us assume that I,{f} = I, {f} for all f € R, n_1.

Since Nor(2) No2)
~ nxl%) nl%) .
— )\n ﬂ'n*(z) - 7774 wn(Z) ) 7774 # 0)

also Ry (2;) =0, =1,2,...,n. Because By Rpsx € Ry n_1 for 0 < k <n—1 we also get

R (2)

(B Ro) = [ B RaGIdn = [ Bele) Rou 2)di = 3 4B (2)) R (1) = 0

j=1

Thus we have found R, € L, — Ln—1, Ra(2;) =0, 5 = 1,...,n, z; € T, which has a positive leading
coefficient and satisfies in both cases

(Rn,B)=0;, 0<k<n-—1;and (R,,R,)=1.

It follows that R, = ¢,. However, this is impossible since the zeros of ¢, lie outside the closed unit disk
and not on T. |

Remark: This theorem says that if an n-point formula I,, { f} (1.3) with nodes on T exists so that I,{f} =
I,{f} for all f € R,,_1 n—_1, then this subspace is a maximal domain of validity.

3 Para-orthogonal rational functions

As we have mentioned above, the zeros of the n-th orthonormal function ¢, lie all in D. In order to develop
quadrature formulas on T, it is useful to have functions in £, with orthogonality properties with respect
to (-, ) whose zeros are distinct and lie on T. For that purpose, we consider now sequences of rational
functions in £,, which we shall call para-orthogonal (we follow the terminology of the polynomial case — see
[7]) because of deficiencies in their orthogonality properties. A sequence {xn € £,,n=10,1,2...} is said to
be para-orthogonal if it satisfies (L, (an) is defined in (1.2))

1) (e, 1 #0 (xn, Ba) #0,n >0

(i) xn L Lnc1 NLy(ay), n>1

Clearly, the sequence of orthonormal functions {¢,} is not para-orthogonal ({¢,, 1) = 0), neither is the
sequence {¢%} ({9, B,) = (1, ¢,,) = 0). However, we can obtain a para-orthogonal sequence by considering
functions of the form

fn(z;wn) = 6n(2) + weon(2), n=0,1,... (3.1)

Properties of these functions are described in the following theorem.

Theorem 2 Let f,(z;wy) be defined as in (3.1) above.

(1) Let ¢, wy, be given nonzero complex numbers. Then {cy, fn(2;wn)} is a para-orthogonal sequence.

(2) Let {xn} be a para-orthogonal sequence. Then for n > 0, there exist nonzero complex numbers ¢y, dy
such that

Xn(2) = enfn(z;wyn);  wnp =dn/en.

Proof. (i) The case n = 0 is trivial, so we suppose n > 1. If f,, (z;w,) = ¢,(2) + w, ¢} (2), w, # 0, then
(

(fn, 1) = {dn, 1) + wp (o5, 1) = wy(os, 1) but (¢}, 1) = [¢kdu = [ B,¢sdu = (By, ¢,) # 0. Similarly
(fn,Bn) #0. Since ¢, L L,_1 and ¢}, L L, (), we clearly have

(fn, /) =0, VfeLln_1NLy(an).
(ii) Let us first determine ¢, and d,, by imposing that T, = xn — ¢n¢n — dn ¢}, satisfies
(T, 1) =0 and (T,, ¢,) = 0. (3.2)
This gives (T, 1) = (Xn=cnn—dn s 1) = (n, 1)=da(d5, 1), where (5, 1) # 0. Hence d, = (xn, 1/(65, 1)
Similarly (T, n) = (Xn, #n) = cn — dn(},, $n) = 0 which yields ca = (xn, @) = (Xn, 1S5, 6n)/(¢5,1).

Next we show that 7, = 0 for n > 0. It is immediate that 75 = 0. For n > 1, we can express
T, in the form T,(z) = ZZ:1 ar¢r(z), ar € C. By (3.2) we obtain that 0 = (7},,1) = ag{do, 1) = aq.



Similarly, 0 = (75, ¢n) = an {0y, ¢n) = a,. Therefore, in particular 7} = 0. We now use the basis Uy = 1,
Usg=(z—w)Vi, k=1,2,.., w € C, that is

— w) Bk
Vo=, Upo EZWBt oy (3.3)

1 —-aiz
and choose w = a,,. Observe then that Uy € £,,_1 N L, (), for k=1,2,...,n— 1. Therefore, for n > 2

n—1

0:<Tn,U1>: ak<¢k,U1>:a1<¢1aU1>
k=1
because x, is para-orthogonal. This implies a; = 0. Continuing in this manner for Uy, k =2,...,n— 1, we
can show that as =a3 =+ =a,—1 = 0. Thus, 7;, = 0 for n > 0 and thus

Xn:Cn(ﬁn‘Fdn(ﬁ;, n=20,1,...

Obviously, d,, # 0 ({xn,1) # 0). If ¢, = 0, then x,, = d, ¢}, and d, (¢}, Bn) = (Xn, Bn) # 0 which is a

contradiction. In conclusion, we can then write for all n > 0

Xa(2) = n(a2) + 01 ) = eafulsiwn); wa = 2

Let xn € L, be given. For k € C, k # 0, x,, is called k-invariant if
X (2) = kxn(z) for all z € C.

A sequence {xn, € L, :n =0,1,...} is said to be {k,}-invariant if x, is k,-invariant. Note that ¢, is not
k-invariant for any k because ¢} = k¢, would imply that (¢}, 1) = k{¢,, 1) = 0 which is impossible because
(97, 1) = (Bn, ¢n) # 0.

For a {k, }-invariant sequence {x,} we can prove a theorem that is similar to theorem 2.

Theorem 3 Let f,(z;wy) be as defined in (3.1).

(i) For alln > 0, let ¢,,w, € C be given (¢, £ 0, |wn| = 1) and let ky, =, Wn/cn. Then {cnfn(z;wn)}
is a {kn}-invariant sequence.

(ii) Let {xn € Ln,m = 0,1,...} be a para-orthogonal and {k,}-invariant sequence, then x,(z) =
enfn(z;wy) for all z € C such that \w,| =1 and k, = ¢, W, /¢, € T.

Proof. (i) It suffices to note that

Cn Wy

[en fn (25 wn)]* =¢p [‘b; + W, 0] = ;_n[fbn + wn(b:;] = cnfn (25 wn)'

“N

(ii) By virtue of theorem 2 we can write

Now, suppose that for some n > 0, x, is k,-invariant, that is xj, = knXn. Then ¢,¢}, + dno, = kn(cndn +
dn¢r,) or equivalently (dn — kncn)on + (En — kndn)ok = 0. Since ¢,, and ¢ are linearly independent, we can
conclude that k,, = d,, /¢, = ¢,/d,,. This implies |¢,| = |d,| and hence |w,| = 1. m]

Now we can prove a theorem which will provide the nodes for the desired n-point quadrature formula.

Theorem 4 Let {xn € Ln,n = 0,1,...} be a {ky}-invariant and para-orthogonal sequence. Then, for all
n > 1, xn has n simple zeros which lie on the unit circle T.

Proof. Let be n > 1, then xn = cu[dn + wnd)], cn # 0, |wn| = 1. Therefore, it suffices to prove that a
function of the form f,(2) = ¢n(2) + wo;,(2), (w € T) has exactly n simple zeros on T. This is proved in
[2]. O



4 Rational Szeg6 formulas

For given n > 1, let z1,..., 2, be the zeros of f,(z) = ¢n(2) + we}(z), (Jw] = 1). We shall see how these
zeros can be used to construct an n-point formula I, {f} of the form (1.3).

Theorem 5 Let z1,...,z, be the zeros of f,(z;w), (lw| = 1). Then there exist positive Ay, ..., A, such
that the formula

LAY =) Aif(z)) (4.1)
j=1

is exact (In{f} = I,{f}) forall f € Rn_1 1.
Proof. See [2]. O

From this theorem and theorem 1, we conclude that R,_1 ,-1 is a maximal domain of validity.
The next result says that the only quadrature formulas with such a maximal domain of validity are
precisely those given in theorem 5.

Theorem 6 Let us consider the n-point formula as in ({.1) with x; # x;,|x;| = 1. Then I,{f} has a
domain of validity R,_1 n—1 if and only if
(1) In{f} is of interpolatory type in R, 4, p and q being nonnegative integers such that p+q =n — 1.
(i1) If we write xn(2) = Np(2)/mn(2), where N,(z) = HJ 1(z — ;) is the node polynomial, then x, is
para-orthogonal and k-invariant.

Proof. “=7” (i) Let p and ¢ satisfy p+ ¢ =n — 1. Clearly R, 4 C Rn—1,n-1. Since I, {f} is exact in R, 4,
it must be of interpolatory type by proposition 2.
(i1) Let us first prove that y, is k-invariant.

X2 (2) = Ba(2)xm (2) = Bu(e) [] 272 =, M) (o)

a; —z Tn (2)

with kn = [17_, (@75 /10,]) € T.

To prove para-orthogonality, assume 0 = (xn, | an = In{xn}. But xn € Ln — Ln_1.
Now Rpn—1n = Rn-i,n—1 U (Ln — Ln_1). So, I {f} is exact in Rn 17,1 which contradicts theorem 1. Thus
{xn,1) # 0. On the other hand, also (B, xn) = [ BnXn«dp = (X}, 1) = kn{xn, 1) # 0.

Finally, we must show that (x,,f) = 0 for all f € L,_1 N Ly(an). Let us again consider the basis
{Uo,Ux,...,Uyn} defined in (3.3) where we replace w by a,. If f € L£,_1NLy (), then f(z) = k S akUk( ),
with ag = 0 since f(an) = 0. Consequently, we have to prove that {(x»,Ur) =0, 1 <k <n-—1, (n > 2).
Now, Ug«(2) = Ak (1 — @p2)me—1(2) /wi(2), A # 0. Thus

/xn( 2)Uka (2)dpt = )\k/N )= @n)mi () )

<Xn;Uk> ( )Wk( )

= [ g sl = Melnfgas) =0

since gn k € Rn—1n—1 and g, k(z;) =0, =1,2,...,n
“«<” Let xn € L, be para-orthogonal and k-invariant. x,, has n simple zeros {z;}7_; on T. Let p and ¢ be

nonnegative integers such that p4+¢q = n — 1. Consider L(p)( ) € Rp 4 defined by L;-p)(a:i) =d;;,1<¢j<n
and set Ap) = fL z)dp. We prove that I,{f} = Z A;-p)f(xj) has domain of validity Rn—1,n-1.
Therefore suppose 1" € Rn—1,n—1 and define R(z) = T'(z) — Z;zl L;p)(z)R(xj). Clearly R € Rn—1,n-1 and
R(z;)=0,j=1,2,...,n. So
P(z)

Tn—1(2)wn-1(2)
By the latter condition, P(z) is of the form P(z) = S(z)N,(z) where N,(z) = H;zl(z — x;) is the node
polynomial and S € TI,,_5. Thus R(z) can be brought into the form

Nn(Z) (l—anZ)S(Z) _ Z ) where N w 1 .
TFn(Z) Wn—l(z) —Xn( )gn*( ) he ,gn( ) 7rn—1(2) € Lo ﬂﬁn( n)

R(z) =



Hence [ R(z)dp = fxn(z)Md,u = (Xn, gn) = 0 due to the para-orthogonality of x,,. Thus I,{T'} = I,{T}
foral T € Ry_1n-1.

It remains to be shown that the weights are independent of p. Given p and p’, 0 < p,p’ < n — 1, one
has to prove that A;p) = A;pl), Jj=1,...,n. Let us assume that p < p’, thatisp’ = p+r, 1 <r<n-1.

Clearly it suffices to take » = 1. So suppose p’ = p+ 1. One has A;p) = Lg.p)(z)d,u, where

l-@ Q, Ny
L;P)(z) — _aq+1z VP(IZ) and Qn,p(z) — (Z)
L —agprzj (2 — ), p(25) wp(2)mgt1(2)
For p’ = p+ 1, one has
Nn (Z) 1 -7, 412
Q) = e
! wpt1(2)mg(z) 2 —appr T
and =
Q) () = T o g,
B e )
Therefore,
1 —ay2 Qs pt1(2) _ -0z zj —apy

L(P+1) (Z) —

(p)
Y T 1= agr; (2 — x;)Q L; (2)

npt1(%5) S =TTy 2y

or equivalently,

1P () = L) () + (z — @) (ap — ) )
B R )
Hence, one has to prove that

— 1—a&
/ iL(p)(z)d,u = 0 or equivalently / anyp(z)d,u =0.

J

2= Qp41 Z = Qpp1
The latter integral can be written in the form
Np(2) Np(2) (1 —@gq12) - - (1 — @y 2)
——————du = ' o ~dp = /Xn(Z)h (2)du
| Eemne mn(2) w1 ) :

where h(z) = (2 — agq1) - - (2 — @,)/mp41(2). Observe that p’ = p+1<n—1 and consequently h € £,_1
as well as h € £,,(a,). By para-orthogonality of x,, we may conclude that [ x,h.dy = (x,,h) = 0. m|

As a result, we have now a one-parameter family of quadrature formulas of the form (4.1), depending on a
parameter w € T, such that

(1) the nodes are the zeros of ¢, + w¢}, and

(ii) the weights are given by A;-n) = f Lj n(2)dp(z) where L; n € Ron—1 = Ln—1 is defined by Lj’n(xz(.n)) =
52’]’ and

(iii) Rn—1,n—1 Is a maximal domain of validity.

Such a formula will be called an n-point rational Szegd quadrature formula, or an R-Szeg6 quadrature
for short.
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