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Abstrat

We study �xpoints of operators on latties.

To this end we introdue the notion of an

approximation of an operator. We order ap-

proximations by means of a preision order-

ing. We show that eah lattie operator O

has a unique most preise or ultimate ap-

proximation. We demonstrate that �xpoints

of this ultimate approximation provide useful

insights into �xpoints of the operator O.

We apply our theory to logi program-

ming and introdue the ultimate Kripke-

Kleene, well-founded and stable semantis.

We show that the ultimate Kripke-Kleene

and well-founded semantis are more preise

then their standard ounterparts We argue

that ultimate semantis for logi program-

ming have attrative epistemologial proper-

ties and that, while in general they are om-

putationally more omplex than the standard

semantis, for many lasses of theories, their

omplexity is no worse.

1 INTRODUCTION

Semantis of most knowledge representation languages

are de�ned as olletions of interpretations or possible-

world strutures. The sets of interpretations and

possible-world strutures, with some natural order-

ings, form omplete latties. Logi programs, and de-

fault and autoepistemi theories determine operators

on these latties. In many ases, semantis of pro-

grams and theories are given as �xpoints of these oper-

ators. Consequently, an abstrat framework of latties,

operators on latties and their �xpoints has emerged as

a powerful tool in investigations of semantis of these

logis. Studying semantis of nonmonotoni reason-

ing systems within an algebrai framework allows us

to eliminate inessential details spei� to a partiular

logi, simplify arguments and �nd ommon priniples

underlying di�erent nonmonotoni formalisms.

The roots of this algebrai approah an be traed

bak to studies of semantis of logi programs [vEK76,

AvE82, Fit85, Prz90℄ and of appliations of latties

and bilatties in knowledge representation [Gin88℄.

Exploiting the onept of a bilattie and relying on

some general properties of operators on latties and

bilatties, Fitting proposed an elegant algebrai treat-

ment of all major 2-, 3- and 4-valued semantis of

logi programs [Fit01℄, that is, the supported-model

semantis [Cla78℄, stable-model semantis [GL88℄,

Kripke-Kleene semantis [Fit85, Kun87℄ and well-

founded semantis [VRS91℄.

In [DMT00a℄, we extended Fitting's work to a more

abstrat setting of the study of �xpoints of lattie op-

erators. Central to our approah is the onept of an

approximation of a lattie operator O. An approx-

imation is an operator de�ned on a ertain bilattie

(the produt of the lattie by itself, with two appro-

priately de�ned lattie orderings). Using purely algeb-

rai tehniques, for an approximation operator for O

we introdued the notion of the stable operator and

the onepts of the Kripke-Kleene, well-founded and

stable �xpoints, and showed how they provide inform-

ation about �xpoints of the operator O. In [DMT00a℄

we noted that our approah generalizes the results de-

sribed in [Fit01℄. We observed that the 4-valued im-

mediate onsequene operator T

P

is an approximation

operator for the 2-valued immediate onsequene oper-

ator T

P

and showed that all the semantis onsidered

by Fitting an be derived from T

P

by means of the

general algebrai onstrutions that apply to arbitrary

approximation operators.

In [DMT00b℄, we applied our algebrai approah to

default and autoepistemi logis. Autoepistemi logi

was de�ned by Moore [Moo84℄ to formalize the know-



ledge of a rational agent with full introspetion apab-

ilities. In Moore's approah, an autoepistemi theory

T de�nes a harateristi operatorD

T

on the lattie of

all possible-world strutures. Fixpoints of D

T

(or, to

be preise, their theories) are known as expansions. In

[DMT00b℄, we proposed for D

T

an approximation op-

erator, D

T

, de�ned on a bilattie of belief pairs (pairs

of possible-world strutures). Complete �xpoints of

D

T

orrespond to expansions of T (�xpoints of D

T

),

the least �xpoint of D

T

provides a onstrutive ap-

proximation to all expansions (by analogy with logi

programming, we alled it the Kripke-Kleene �xpoint).

Using general tehniques introdued in [DMT00a℄ we

derived from D

T

its stable ounterpart, the operator

D

st

T

. Complete �xpoints of D

st

T

yield a new semantis

of extensions for autoepistemi logi. Finally, the least

�xpoint of the stable operator results in yet another

new semantis, the well-founded semantis for autoep-

istemi logi (again, alled so due to analogies to the

well-founded semantis in logi programming), whih

approximates all extensions.

The same piture emerged in the ase of default lo-

gi [DMT00b℄. For a default theory � we de�ned an

operator E

�

and haraterized all major semantis for

default logi in terms of �xpoints of E

�

. In partiular,

the standard semantis of extensions [Rei80℄ is determ-

ined by omplete �xpoints of the stable operator E

st

�

derived from E

�

. Our results on autoepistemi and

default logis obtained in [DMT00b℄ allowed us to la-

rify the issue of their mutual relationship and provided

insights into fundamental onstrutive priniples un-

derlying these two modes of nonmonotoni reasoning.

These result prove that the algebrai framework de-

veloped in [DMT00a℄ is an e�etive tool in studies

of semantis of knowledge representation formalisms.

It allowed us to establish a omprehensive semanti

treatment for nonmonotoni logis and demonstrated

that major nonmonotoni systems are losely related.

However, the approah, as it was developed, is not en-

tirely satisfatory. It provides no riteria that would

allow us to prefer one approximation over another

when attempting to de�ne the onept of a stable �x-

point or when approximating �xpoints by means of the

Kripke-Kleene or well-founded �xpoints. It does not

give us any general indiations how to obtain approx-

imations and whih approximation to pik. Thus, our

theory leaves out a key link in the proess of de�ning

and approximating �xpoints of operators on latties.

In partiular, when de�ning semantis of nonmono-

toni formalisms, we selet an approximation operator,

rather then derive it in a prinipled way. The ap-

proximations used, the bilattie operators T

P

, D

T

and

E

�

, are not algebraially determined by their orres-

ponding lattie operators T

P

, D

T

and E

�

, respet-

ively. Consequently, some programs or theories with

the same basi operators have di�erent Kripke-Kleene,

well-founded or stable �xpoints assoiated with them.

We address this problem here. We extend our theory

of approximations and introdue the notion of the pre-

ision of an approximation. We show that eah lattie

operator O has a unique most preise approximation

whih we all the ultimate approximation of O. Sine

the ultimate approximation is determined by O, it is

well suited for investigations of �xpoints of O. As a

result we obtain onepts of ultimate stable �xpoints,

the ultimate Kripke-Kleene �xpoint and the ultimate

well-founded �xpoint that depend on O only and not

on a (possibly arbitrarily) seleted approximation to

O.

We apply our theory to logi programming, default lo-

gi and autoepistemi logi (only the �rst system is

disussed here, due to spae limitations). We ompare

ultimate semantis with the orresponding \standard"

semantis of logi programs. In partiular, we show

that the ultimate Kripke-Kleene and the ultimate well-

founded semantis are more preise then the stand-

ard Kripke-Kleene and well-founded semantis. This

better auray omes, however, at a ost. We show

that ultimate semantis are in general omputation-

ally more omplex. On the other hand, we show that

for wide lasses of theories, inluding theories likely to

our in pratie, the omplexity remains the same.

Thus, our new semantis may prove useful in omput-

ing stable models and default extensions.

The ultimate semantis have also properties that are

attrative from the logi perspetive. In partiular,

two programs or theories determining the same basi

2-valued operator have the same ultimate semantis.

This property, as we noted, is not true in the standard

ase.

In summary, our ontributions are as follows. We ex-

tend the algebrai theory of approximations by provid-

ing a prinipled way of deriving an approximation to

a lattie operator. In this way, we obtain onepts

of Kripke-Kleene �xpoint, well-founded �xpoint and

stable �xpoints that are determined by the operator O

and not by the hoie of an approximation. In spei�

ontexts of most ommonly used nonmonotoni sys-

tems we obtain new semantis with desirable logial

properties and possible omputational appliations.



2 PRELIMINARIES

Let hL;�i be a poset and let A be an operator on L. A

poset is hain-omplete if it ontains the least element

? and if every hain of elements of L has a least upper

bound (lub) in L. An element x of A is a pre-�xpoint

of A if A(x) � x; x is a �xpoint of A if A(x) = x.

Let A be a monotone operator on a hain-omplete

poset hL;�i. Let us de�ne a sequene of elements

of L by trans�nite indution as follows: (1) 

0

= ?;

(2) 

�+1

= A(

�

); (3) 

�

= lub(f

�

: � < �g), for a

limit ordinal �. One an show that this sequene is

well de�ned, that is has in L its least upper bound

and that this least upper bound is the least �xpoint

of A (lfp(A), in symbols). One an also show that

the least �xpoint of a monotone operator on a hain-

omplete poset is the least pre-�xpoint of A. That is,

we have lfp(A) = glb(fx 2 L : A(x) � xg). Monotone

operators on hain-omplete posets and their �xpoints

and pre-�xpoints are disussed in [Mar76℄.

A lattie is a poset hL;�i suh that L 6= ; and every

pair of elements x; y 2 L has a unique greatest lower

bound and least upper bound. A lattie is omplete

if its every subset has a greatest lower bound and a

least upper bound. In partiular, a omplete lattie

has a least and a greatest element denoted by ? and

>, respetively.

For any two elements x; y 2 L, we de�ne [x; y℄ = fz 2

L : x � z � yg. If hL;�i is a omplete lattie and

x � y, then h[x; y℄;�i is a omplete lattie, too.

Let hL;�i be a omplete lattie. By the produt bil-

attie [Gin88℄ of hL;�i we mean the set L

2

= L � L

with the following two orderings �

p

and �:

1. (x; y) �

p

(x

0

; y

0

) if x � x

0

and y

0

� y

2. (x; y) � (x

0

; y

0

) if x � x

0

and y � y

0

.

Both orderings are omplete lattie orderings for L

2

.

However, in this paper we are mostly onerned with

the ordering �

p

.

An element (x; y) 2 L

2

is onsistent if x � y. We an

think of a onsistent element (x; y) 2 L

2

as an approx-

imation to every z 2 L suh that x � z � y. With this

interpretation in mind, the ordering �

p

, when restri-

ted to onsistent elements, an be viewed as a preision

ordering. Consistent pairs that are \higher" in the or-

dering �

p

provide tighter approximations. Maximal

onsistent elements with respet to �

p

are pairs of the

form (x; x). We all approximations of the form (x; x)

| exat.

We denote the set of all onsistent pairs in L

2

by L



.

The set hL



;�

p

i is not a lattie. It is, however, hain-

omplete. Indeed, the element (?;>) is the least ele-

ment in L



and the following result shows that every

hain in L



has (in L



) the least upper bound.

Proposition 2.1 Let L be a omplete lat-

tie. If f(a

�

; b

�

)g

�

is a hain of elements

in hL



;�

p

i then lub(fa

�

g

�

) � glb(fa

�

g

�

) and

(lub(fa

�

g

�

); glb(fa

�

g

�

)) = lub

�

p

(f(a

�

; b

�

)g

�

).

It follows that every �

p

-monotone operator on L



has

a least �xpoint.

3 PARTIAL APPROXIMATIONS

For an operator A : L



! L



, we denote by A

1

and

A

2

its projetions to the �rst and seond oordin-

ates, respetively. Thus, for every (x; y) 2 L



, we

have A(x; y) = (A

1

(x; y); A

2

(x; y)). An operator A :

L



! L



is a partial approximation operator if it is �

p

-

monotone and if for every x 2 L, A

1

(x; x) = A

2

(x; x).

We denote the set of all partial approximation oper-

ators on L



by Appx (L



). Let A 2 Appx (L



). Sine

A is �

p

-monotone and L



is hain-omplete, A has a

least �xpoint, alled the Kripke-Kleene �xpoint of A

(KK(A), in symbols). Diretly from the de�nition, it

follows that KK(A) approximates all �xpoints of A.

If A 2 Appx (L



) and O : L ! L is an operator on L

suh that A(x; x) = (O(x); O(x)) then we say that A

is a partial approximation of O. We denote the set of

all partial approximations of O by Appx (O). If A is a

partial approximation of O then x 2 L is a �xpoint of

O if and only if (x; x) is a �xpoint of A. Thus, for every

�xpoint x of O, we have KK(A) �

p

(x; x) or, equival-

ently, KK

1

(A) � x � KK

2

(A), where KK

1

(A) and

KK

2

(A) are the two omponents of the pair KK(A).

Operators from Appx (L



) desribe ways to revise on-

sistent approximations. Of partiular interest are

those situations when the revision of an approxima-

tion leads to another one that is at least as aurate.

Let A be an operator on L



. We all an approximation

(a; b) A-reliable if (a; b) �

p

A(a; b).

Proposition 3.1 Let L be a omplete lattie and A 2

Appx (L



). If (a; b) 2 L



is A-reliable then, for every

x 2 [?; b℄, A

1

(x; b) 2 [?; b℄ and, for every x 2 [a;>℄,

A

2

(a; x) 2 [a;>℄.

Proof: Let x 2 [?; b℄. Then (x; b) �

p

(b; b). By the

�

p

-monotoniity of A,

A

1

(x; b) � A

1

(b; b) = A

2

(b; b) � A

2

(a; b) � b:

The last inequality follows from the fat that (a; b) is

A-reliable. The seond part of the assertion an be

proved in a similar manner. 2



This proposition implies that for every A-reliable pair

(a; b), the restritions ofA

1

(�; b) to [?; b℄ and A

2

(a; �) to

[a;>℄ are in fat operators on [?; b℄ and [a;>℄, respet-

ively. Moreover, they are �-monotone operators on

the posets h[?; b℄;�i and h[a;>℄;�i. Sine h[?; b℄;�i

and h[a;>℄;�i are omplete latties, the operators

A

1

(�; b) and A

2

(a; �) have least �xpoints in the latties

h[?; b℄;�i and h[a;>℄;�i, respetively. We de�ne:

b

A#

= lfp(A

1

(�; b)) and a

A"

= lfp(A

2

(a; �)):

We all the mapping (a; b) 7! (b

A#

; a

A"

), de�ned on

the set of A-reliable elements of L



, the stable revision

operator for A. When A is lear from the ontext, we

will drop the referene to A from the notation.

Diretly from the de�nition of the stable revision op-

erator it follows that for every A-reliable pair, b

#

� b

and a � a

"

.

The stable revision operator for A 2 Appx (L



) is ru-

ial. It allows us to distinguish an important sublass

of the lass of all �xpoints of A. Let L be a omplete

lattie and let A 2 Appx (L



). We say that (x; y) 2 L



is a stable �xpoint of A if (x; y) is A-reliable and is a

�xpoint of the stable revision operator (that is, x = y

#

and y = x

"

). By the A-reliability of (x; y), the seond

requirement is well de�ned.

Stable �xpoints of an operator are, in partiular, its

�xpoints.

Proposition 3.2 Let L be a omplete lattie and let

A 2 Appx (L



). If (x; y) is a stable �xpoint of A then

(x; y) is a �xpoint of A.

Proof: Sine (x; y) is stable, x = lfp(A

1

(�; y)). In par-

tiular, x = A

1

(x; y). Similarly, y = A

2

(x; y). 2

Let O be an operator on a omplete lattie L and let

A 2 Appx (O). We say that x is an A-stable �xpoint

of O if (x; x) is a stable �xpoint of A. The notation is

justi�ed. Indeed, it follows from Proposition 3.2 and

our earlier remarks that every stable �xpoint of O is,

in partiular, a �xpoint of O.

The notion of A-reliability is not strong enough to

guarantee desirable properties of the stable revision

operator. In partiular, if (a; b) 2 L



is A-reliable, it

is not true in general that (b

#

; a

"

) is onsistent nor

that (a; b) �

p

(b

#

; a

"

). There is, however, a lass of

A-reliable pairs for whih both properties hold. An

A-reliable approximation (a; b) is A-prudent if a �

b

#

. We note that every stable �xpoint of A is A-

prudent. We will now prove several basi properties

of A-prudent approximations.

Proposition 3.3 Let L be a omplete lattie, A 2

Appx (L



) and (a; b) 2 L



be A-prudent. Then, (b

#

; a

"

)

is onsistent, A-reliable and A-prudent and (a; b) �

p

(b

#

; a

"

).

Proof: By the de�nition of b

#

and a

"

we have that

b

#

� b and a � a

"

. Moreover, sine (a; b) is A-prudent,

it follows that a � b

#

.

Next, sine (a; b) is A-reliable, it follows that a � b

and A

2

(a; b) � b. Thus, b is a pre-�xpoint of A

2

(a; �).

Consequently, a

"

� b (as a

"

is the least �xpoint of

A

2

(a; �)). Hene, (a; b) �

p

(b

#

; a

"

).

By the �

p

-monotoniity of A we obtain:

A

1

(a

"

; b) � A

1

(a

"

; a

"

) = A

2

(a

"

; a

"

) � A

2

(a; a

"

) = a

"

:

It follows that a

"

is a pre-�xpoint of the operator

A

1

(�; b). Thus, b

#

= lfp(A

1

(�; b)) � a

"

and so, (b

#

; a

"

)

is onsistent.

Let us now observe that b

#

= A

1

(b

#

; b) � A

1

(b

#

; a

"

).

Similarly, a

"

= A

2

(a; a

"

) � A

2

(b

#

; a

"

). Thus, the pair

(b

#

; a

"

) is reliable.

Lastly, we note that for every x 2 [?; a

"

℄, A

1

(x; b) �

A

1

(x; a

"

) � a

"

(the last inequality follows by the A-

reliability of (b

#

; a

"

)). Hene, b

#

= lfp(A

1

(�; b)) �

lfp(A

1

(�; a

"

)) and, onsequently, (b

#

; a

"

) is A-prudent.

2

Let us observe that an A-reliable pair (a; b) is revised

by an operator A into a more aurate approxima-

tion A(a; b). An A-prudent pair (a; b) an be revised

\even more". Namely, it is easy to see that A

1

(a; b) �

A

1

(b

#

; b) = b

#

and a

"

= A

2

(a; a

"

) � A

2

(a; b). Thus,

A(a; b) �

p

(b

#

; a

"

). In other words, (b

#

; a

"

) is indeed

at least as preise revision of (a; b) as A(a; b) is.

The stable revision operator satis�es a ertain mono-

toniity property.

Proposition 3.4 Let L be a omplete lattie and let

A 2 Appx (L



). If (a; b) 2 L



is A-reliable, (; d) 2 L



is A-prudent and if (a; b) �

p

(; d), then (b

#

; a

"

) �

p

(d

#

; 

"

).

Proof: Clearly, we have d

#

� 

"

� d � b. By

the �

p

-monotoniity of A, it follows that A

1

(d

#

; b) �

A

1

(d

#

; d) = d

#

. Thus, d

#

is a pre-�xpoint of A

1

(�; b).

Sine b

#

is the least �xpoint of lfp(A

1

(�; b)), it follows

that b

#

� d

#

.

It remains to prove that 

"

� a

"

. Let u = glb(a

"

; d

#

).

By Proposition 3.3, (; d) �

p

(d

#

; 

"

). Sine (a; b) �

p

(; d), it follows that a � d

#

. Further, by the A-

reliability of (a; b) and (; d), we have a � a

"

and



d

#

� d. Thus, a � u � a

"

and u � d

#

� d. Con-

sequently,

A

1

(u; d) � A

1

(u; u) = A

2

(u; u) � A

2

(a; a

"

) = a

"

and

A

1

(u; d) � A

1

(d

#

; d) = d

#

:

It follows that A

1

(u; d) � glb(a

"

; d

#

) = u. In partiu-

lar, u is a pre-�xpoint of A

1

(�; d). Sine d

#

is the least

�xpoint of A

1

(�; d), d

#

� u. Hene, d

#

� a

"

.

We now have a �  � d

#

� a

"

(the �rst inequality

follows from the assumption (a; b) � (; d), the seond

one follows by Proposition 3.3 from the assumption

that (; d) is A-prudent). Thus, a �  � a

"

and the

�

p

-monotoniity of A implies

A

2

(; a

"

) � A

2

(a; a

"

) = a

"

:

Hene, a

"

is a pre-�xpoint of A

2

(; �). Sine 

"

is the

least �xpoint of A

2

(; �), it follows that 

"

� a

"

. 2

Sine stable �xpoints are prudent, we obtain the fol-

lowing orollary.

Corollary 3.5 Let L be a omplete lattie, A 2

Appx (L



) and let (; d) 2 L



be a stable �xpoint of

A. If (a; b) 2 L



is A-reliable and (a; b) �

p

(; d) then

(b

#

; a

"

) �

p

(; d). 2

The next result states that the limit of a hain of A-

prudent pairs is A-prudent.

Proposition 3.6 Let L be a omplete lattie, A 2

Appx (L



) and let f(a

�

; b

�

)g

�

be a hain of A-prudent

pairs from L



. Then, lub(f(a

�

; b

�

)g

�

) is A-prudent.

Proof: Let us set a

1

= lub(fa

�

g

�

) and b

1

=

glb(fb

�

g

�

). By Proposition 2.1, (a

1

; b

1

) is onsistent

and (a

1

; b

1

) = lub(f(a

�

; b

�

)g

�

). Let us now observe

that, by A-reliability of (a

�

; b

�

) and �

p

-monotoniity

of A, we have (a

�

; b

�

) �

p

A(a

�

; b

�

) �

p

A(a

1

; b

1

):

Thus, (a

1

; b

1

) = lub(f(a

�

; b

�

)g

�

) � A(a

1

; b

1

): It

follows that (a

1

; b

1

) is A-reliable.

The A-reliability of (a

1

; b

1

) implies, in partiular,

that for every x 2 [?; b

1

℄, A

1

(x; b

1

) � b

1

. Thus,

by �

p

-monotoniity of A, for every x 2 [?; b

1

℄

A

1

(x; b

�

) � A

1

(x; b

1

) � b

1

:

Hene, pre-�xpoints of A

1

(�; b

1

) are pre�xpoints of

A

1

(�; b

�

) and, onsequently,

lfp(A

1

(�; b

�

)) � lfp(A

1

(�; b

1

)):

Sine (a

�

; b

�

) is A-prudent, we have that a

�

�

lfp(A

1

(�; b

�

)). Thus, for arbitrary �, a

�

�

lfp(A

1

(�; b

1

)) and, onsequently, a

1

� lfp(A

1

(�; b

1

)).

It follows that (a

1

; b

1

) is A-prudent. 2

We will now prove that the set of all stable �xpoints of

an operator has a least element (in partiular, it is not

empty). To this end, we de�ne a sequene f(a

�

; b

�

)g

�

of elements of L



by trans�nite indution:

1. (a

0

; b

0

) = (?;>)

2. If � = � + 1, we de�ne a

�

= b

�

#

and b

�

= a

�

"

3. If � is a limit ordinal, we de�ne (a

�

; b

�

) =

lub(f(a

�

; b

�

) : � < �g).

Theorem 3.7 The sequene f(a

�

; b

�

)g

�

is well

de�ned, �

p

-monotone and its limit is the least stable

�xpoint of a partial approximation operator A.

Proof: It is obvious that (?;>) is A-prudent. Thus, by

the trans�nite indution it follows that eah element

in the sequene is well de�ned and A-prudent (Propos-

itions 3.3 and 3.6 settle the ases of suessor ordinals

and limit ordinals, respetively). In the same way, one

an establish the �

p

-monotoniity of the sequene.

Let (a

1

; b

1

) = lub(f(a

�

; b

�

)g

�

). By Proposition 3.6,

(a

1

; b

1

) is A-prudent. Thus, (a

1

; b

1

) is A-reliable.

Moreover, we have a

1

= (b

1

)

#

and b

1

= (a

1

)

"

.

Thus, (a

1

; b

1

) is a stable �xpoint of A. Further, it is

easy to see by trans�nite indution and Corollary 3.5

that (a

1

; b

1

) approximates all stable �xpoints of A.

Thus, it is the least stable �xpoint of A. 2

We all this least stable �xpoint the well-founded �x-

point of A and denote it by WF(A). The well-founded

�xpoint approximates all stable �xpoints of A. In par-

tiular, it approximates all A-stable �xpoints of the

operator O. That is, for every A-stable �xpoint x

of O, WF(A) �

p

(x; x) or, equivalently, WF

1

(A) �

x � WF

2

(A), where WF

1

(A) and WF

2

(A) are the

two omponents of the pair WF(A). Moreover, the

well-founded �xpoint is more preise than the Kripke-

Kleene �xpoint: for A 2 Appx(O), KK(A) �

p

WF(A).

In [DMT00b, DMT00a℄, we showed that when ap-

plied to appropriately hosen approximation operat-

ors in logi programming, default logi and autoep-

istemi logi, these algebrai onepts of �xpoints,

stable �xpoints, the Kripke-Kleene �xpoint and the

well-founded �xpoint provide all major semantis for

these nonmonotoni systems and allow us to under-

stand their interrelations.

We need to emphasize that the onept of a par-

tial approximation introdued here is di�erent from

the onept of approximation introdued in [DMT00a℄.

The latter notion is de�ned as an operator of the whole

bilattie L

2

. That hoie was motivated by our searh



for generality and potential appliations of inonsist-

ent �xpoints in situations when we admit a possibility

of some statements being overde�ned. While di�erent,

both approahes are very losely related

1

.

4 ULTIMATE APPROXIMATIONS

Partial approximations in Appx (L



) an be ordered.

Let A;B 2 Appx (L



). We say that A is less preise

than B (A �

p

B, in symbols) if for eah pair (x; y) 2

L



, A(x; y) �

p

B(x; y). It is easy to see that if A �

p

B

then there is an operator O on the lattie L suh that

A;B 2 Appx (O).

Lemma 4.1 Let L be a omplete lattie and A;B 2

Appx (L



). If A �

p

B and (a; b) 2 L



is A-prudent

then (a; b) is B-prudent and (b

A#

; a

A"

) �

p

(b

B#

; a

B"

).

Proof: Clearly, (a; b) �

p

A(a; b) � B(a; b). Thus, (a; b)

is B-reliable.

For eah pre-�xpoint x � b of B

1

(�; b), A

1

(x; b) �

B

1

(x; b) � x. Consequently, x is a pre�xpoint of

A

1

(�; b). It follows that b

A#

� b

B#

. Sine a � b

A#

,

a � b

B#

. Thus (a; b) is B-prudent.

Likewise, we an prove that any pre-�xpoint of A

2

(a; �)

is a pre�xpoint of B

2

(a; �), and onsequently, a

B"

�

a

A"

. Sine also b

A#

� b

B#

, it follows that (b

A#

; a

A"

) �

p

(b

B#

; a

B"

). 2

More preise approximation have more preise Kripke-

Kleene and well-founded �xpoints.

Theorem 4.2 Let O be an operator on a omplete

lattie L. Let A;B 2 Appx (O). If A �

p

B then

KK(A) �

p

KK(B) and WF(A) �

p

WF(B).

Proof: Let us denote by f(a

�

A

; b

�

A

)g

�

the sequene of

elements of hL



: �

p

i obtained by iterating the operator

A over (?;>). The sequene f(a

�

B

; b

�

B

)g

�

is de�ned in

the same way. Sine A �

p

B, it follows by an easy in-

dution that for every ordinal �, (a

�

A

; b

�

A

) �

p

(a

�

B

; b

�

B

).

Sine KK(A) is the limit of the sequene f(a

�

A

; b

�

A

)g

�

and KK(B) is the limit of the sequene f(a

�

B

; b

�

B

)g

�

,

it follows that KK(A) �

p

KK(B).

To prove the seond part of the assertion, we will

now assume that the sequenes f(a

�

A

; b

�

A

)g

�

and

f(a

�

B

; b

�

B

)g

�

denote the sequenes used in the de�ni-

tion of the well-founded �xpoints of A and B, respet-

ively. To prove the assertion we will now show that for

every ordinal �, (a

�

A

; b

�

A

) �

p

(a

�

B

; b

�

B

).

1

We will inlude a detailed disussion of the relationship

between the two approahes in the full version of the paper.

Clearly, (a

0

A

; b

0

A

) �

p

(a

0

B

; b

0

B

). Let us assume that � =

� + 1 and that (a

�

A

; b

�

A

) �

p

(a

�

B

; b

�

B

). Sine (a

�

A

; b

�

A

)

is A-prudent, Lemma 4.1 entails that it is B-prudent

and

(a

�

A

; b

�

A

) = ((b

�

A

)

A#

; (a

�

A

)

A"

) �

p

((b

�

A

)

B#

; (a

�

A

)

B"

):

By Proposition 3.4,

((b

�

A

)

B#

; (a

�

A

)

B"

) �

p

((b

�

B

)

B#

; (a

�

B

)

B"

) = (a

�

B

; b

�

B

):

The ase of the limit ordinal � is straightforward.

Sine WF(A) and WF(B) are the limits of the se-

quenes f(a

�

A

; b

�

A

)g

�

and f(a

�

B

; b

�

B

)g

�

, respetively, the

seond part of the assertion follows. 2

The next result shows that as the preision of an ap-

proximation grows, all exat �xpoints and exat stable

�xpoints are preserved.

Theorem 4.3 Let O be an operator on a omplete lat-

tie L. Let A;B 2 Appx (O). If A �

p

B then every

exat �xpoint of A is an exat �xpoint of B, and every

exat stable �xpoint of A (that is, an A-stable �xpoint

of O) is also an exat stable �xpoint of B (that is, a

B-stable �xpoint of O).

Proof: Sine for every x 2 L, A(x; x) = B(x; x) =

(O(x); O(x)), the �rst part of the assertion follows. Let

us now assume that (x; x) is an exat stable �xpoint of

A. In partiular, it follows that (x; x) is a �xpoint of A

and is A-prudent. By Lemma 4.1, (x; x) is B-prudent

and (x; x) �

p

(x

B#

; x

B"

). The latter pair is onsistent

(Proposition 3.3). Consequently, (x; x) is (x

B#

; x

B"

)

and hene x is an exat stable �xpoint of B. 2

Non-exat �xpoints are not preserved, in general. Let

us onsider two partial approximations A and B suh

that A �

p

B. Let us also assume that WF(A) <

p

WF(B) (that is, A has a stritly less preise well-

founded �xpoint than B). Then, learly, WF(A) is

no longer a stable �xpoint of B. Thus, �xpoints of

A may disappear when we move on to a more preise

approximation B.

More preise approximations of a non-monotone oper-

ator O yield more preise well-founded �xpoints and

additional exat stable �xpoints. The natural question

is whether there exists an ultimate approximation of O,

that is, a partial approximation most preise with re-

spet to the ordering �

p

. Suh approximation would

have a most preise Kripke-Kleene and well-founded

�xpoint and a largest set of exat stable �xpoints. We

will show that the answer to this key question is pos-

itive. Suh ultimate approximation, being a distin-

guished objet in the olletion of all approximations



an be viewed as determined by O. Consequently, �x-

points of the ultimate approximation of O (inluding

stable, Kripke-Kleene and well-founded �xpoints) an

be regarded as determined by O and an be assoiated

with it.

We start by providing a non-onstrutive argument

for the existene of ultimate approximations. Let us

note that the set Appx (O) is not empty. Indeed, let

us de�ne A

O

(x; y) = (O(x); O(x)), if x = y, and

A

O

(x; y) = (?;>), otherwise. It is easy to see that

A

O

2 Appx (O) and that it is the least preise ele-

ment in Appx (O). Next, we observe that Appx (O)

with the ordering �

p

is a omplete lattie, as the

set Appx (O) is losed under the operations of taking

greatest lower bounds and least upper bounds. It fol-

lows that Appx (O) has a greatest element (most pre-

ise approximation). We all this partial approxima-

tion the ultimate approximation of O and denote it by

U

O

.

We all the Kripke-Kleene and the well-founded �x-

points of U

O

, the ultimate Kripke-Kleene and the ul-

timate well-founded �xpoint of O. We denote them by

KK(O) and WF(O), respetively. We all a stable �x-

point of U

O

an ultimate partial stable �xpoint of O.

We refer to an exat stable �xpoint of U

O

as an ulti-

mate stable �xpoint of O. Exat �xpoints of all partial

approximations are the same and orrespond to �x-

points of O. Thus, there is no need to introdue the

onept of an ultimate exat �xpoint of O. We have

the following orollary to Theorems 4.2 and 4.3.

Corollary 4.4 Let O be an operator on a omplete

lattie L. For every A 2 Appx (O), KK(A) �

p

KK(U

O

), WF(A) �

p

WF(U

O

) and every A-stable �x-

point of O is an ultimate stable �xpoint of O.

We will now provide a onstrutive haraterization of

the notion. To state the result, for every x; y 2 L suh

that x � y, we de�ne O([x; y℄) = fO(z) : z 2 [x; y℄g.

Theorem 4.5 Let O be an operator on a omplete

lattie L. Then, for every (x; y) 2 L



, U

O

(x; y) =

(glb(O([x; y℄)); lub(O([x; y℄))).

Proof: We de�ne an operator C : L



! L

2

by setting

C(x; y) = (glb(O([x; y℄)); lub(O([x; y℄))):

First, let us notie that sine glb(O([x; y℄)) �

lub(O([x; y℄)), the operator C maps L



into L



.

Moreover, it is easy to see that C is �

p

-monotone.

Lastly, sine O([x; x℄) = fO(x)g,

glb(O([x; x℄)) = lub(O([x; x℄)) = O(x):

and, onsequently, C(x; x) = (O(x); O(x)). Thus, it

follows that C is a partial approximation of O. Sine

U

O

is the most preise approximation, we have C �

p

U

O

.

On the other hand, U

O

(x; y) � (O(z); O(z)) for every

z 2 [x; y℄. Therefore U

1

O

(x; y) �

p

O(z) for all z 2

[x; y℄ and thus U

1

O

(x; y) � glb(O([x; y℄)). Similarly,

lub(O([x; y℄)) � U

2

O

(x; y). Sine x � y are arbitrary,

U

O

�

p

C, as desired. 2

With this result we obtain an expliit haraterization

of ultimate stable �xpoints of an operator O.

Corollary 4.6 Let L be a omplete lattie. An ele-

ment x 2 L is an ultimate stable �xpoint of an oper-

ator O : L! L if and only if x is the least �xpoint of

the operator glb(O([�; x℄)) regarded as an operator on

[?; x℄.

We onlude this setion by desribing ultimate ap-

proximations for monotone and antimonotone operat-

ors on L.

Proposition 4.7 If O is a monotone operator on

a omplete lattie L then for every (x; y) 2 L



,

U

O

(x; y) = (O(x); O(y)). If O is antimonotone then

for every (x; y) 2 L



, U

O

(x; y) = (O(y); O(x)).

Proof: By Theorem 4.5,

U

O

(x; y) = (glb(O([x; y℄)); lub(O([x; y℄))):

Now, it is easy to see that if O is monotone, then

glb(O([x; y℄)) = O(x) and lub(O([x; y℄)) = O(y). If

O is antimonotone, then glb(O([x; y℄)) = O(y) and

lub(O([x; y℄)) = O(x). The proposition follows. 2

Using the results from [DMT00a℄ and Proposition 4.7

we now obtain the following orollary.

Corollary 4.8 Let O be an operator on a omplete

lattie L. If O is monotone, then the least �xpoint

of O is the ultimate well-founded �xpoint of O and the

unique ultimate stable �xpoint of O. If O is antimono-

tone, then KK(O) = WF(O) and every �xpoint of O

is an ultimate stable �xpoint of O.

5 ULTIMATE SEMANTICS FOR

LOGIC PROGRAMMING

The basi operator in logi programming is the one-

step provability operator T

P

introdued in [vEK76℄. It

is de�ned on the lattie of all interpretations. This lat-

tie onsists of subsets of the set of all atoms appearing



in P and is ordered by inlusion (we identify truth as-

signments with subsets of atoms that are assigned the

value t).

Let P be a logi program. We denote by U

P

the ulti-

mate approximation operator for the operator T

P

. By

speializing Theorem 4.5 to the operator T

P

we obtain

that for every two interpretations I � J ,

U

P

(I; J) = (glb(T

P

([I; J ℄)); lub(T

P

([I; J ℄))):

Replaing the ultimate approximation operator U

O

in the de�nitions of ultimate Kripke-Kleene, well-

founded and stable �xpoints with U

P

results in the

orresponding notions of ultimate Kripke-Kleene, well-

founded and stable models (semantis) of a program

P .

We are now in a position to disuss ommonsense reas-

oning intuitions underlying abstrat algebrai onepts

of ultimate approximation and its �xpoints. Let us

onsider two interpretations I and J suh that I � J .

We interpret I as a urrent lower bound and J as a

urrent upper bound on the set of atoms that are true

(under P ). Thus, I spei�es atoms that are de�n-

itely true, while J spei�es atoms that are possibly

true. Arguably, if an atom p is derived by applying

the operator T

P

to every interpretation K 2 [I; J ℄, it

an safely be assumed to be true (in the ontext of

the knowledge represented by I and J). Thus, the set

I

0

= glb(T

P

([I; J ℄)) an be viewed as a revision of I .

Similarly, sine every interpretation K 2 [I; J ℄ must

be regarded as possible aording to the pair (I; J)

of onservative and liberal estimates, an atom might

possibly be true if it an be derived by the operator

T

P

from at least one interpretation in [I; J ℄. Thus, the

set J

0

= lub(T

P

([I; J ℄)), onsisting of all suh atoms,

an be regarded as a revision of J . Clearly, (I

0

; J

0

) =

U

P

(I; J) and, onsequently, U

P

an be viewed as a

way to revise our knowledge about the logial values

of atoms as determined by a program P from (I; J) to

(I

0

; J

0

).

By iterating U

P

starting at (?;>), we obtain the ulti-

mate Kripke-Kleene model of P as an approximation

that annot be further improved by applying U

P

. The

ultimate Kripke Kleene model of P approximates all

�xpoints of U

P

and, in partiular, all supported mod-

els of P . Often, however, the Kripke-Kleene model

is too weak as we are ommonly interested in those

(partial) models of P that satisfy some minimality or

groundedness onditions. These requirements are sat-

is�ed by ultimate stable models and, in partiular, by

the ultimate well-founded model of P .

When onstruting the ultimate well-founded model,

we start by assuming no knowledge about the status

of atoms: no atom is known true and all atoms are

assumed possible. Our goal is to improve on these

bounds.

To improve on the lower bound, we proeed as follows.

Our urrent knowledge does not prelude any inter-

pretation and all of them (the whole segment [?;>℄)

need to be taken into aount. If some atom p an

be derived by applying the operator T

P

to eah ele-

ment of [?;>℄ then, arguably, p ould be aepted

as de�nitely true. The set of all these atoms is ex-

atly glb(T

P

([?;>℄)). So, this set, say I

1

, an be

taken as a safe new lower bound, giving a smaller in-

terval [I

1

;>℄ of possible interpretations. We now re-

peat the same proess and obtain a new lower bound,

say I

2

, onsisting of those atoms that an be derived

from every interpretation in [I

1

;>℄. It is given by

I

2

= glb(T

P

([I

1

;>℄)). Clearly, I

2

improves on I

1

. We

iterate this proess until a �xpoint is reahed. This

�xpoint, say I

1

, onsists of all these atoms for whih

there is a onstrutive argument that they are true,

given that no atoms are known to be false (all atoms

are possible). Thus, it provides a safe lower bound for

the set of atoms the program should speify as true.

The reasoning for revising the upper bound is di�er-

ent. The goal is to make false all atoms for whih

there annot be a onstrutive argument that they are

true. Let us onsider an interpretation J suh that

for every K 2 [?; J ℄, T

P

(K) 2 [?; J ℄, or equivalently,

lub(T

P

([?; J ℄)) � J . An atom p =2 J (false in J) an-

not be made true by applying T

P

to any element in the

segment [?; J ℄. In order to derive p by means of T

P

,

some atoms that are false in J would have to be made

true. That, however, would mean that p is not groun-

ded and ould be assumed to be false. Thus, eah suh

interpretation J represents an upper estimate on what

is possible (its omplement gives a lower estimate on

what is false) under the assumption that no atom is

known to be true yet. It turns out that there is a least

interpretation, say J

1

suh that lub(T

P

([?; J

1

℄)) � J

1

and it an be onstruted in a bottom up way by iter-

ating the operator lub(T

P

([?; �℄). This interpretation

an be taken as a safe lower bound on what is false

(given that no atom is known to be true).

The pair (I

1

; J

1

) is the �rst improvement on (?;>).

It is preisely the pair produed by the �rst iteration

of the general well-founded �xpoint de�nition given

earlier. It an now be used, in plae of (?;>), to

obtain an even more re�ned estimate, (I

2

; J

2

) and the

proess ontinues until the �xpoint is reahed. The

resulting pair is the ultimate well-founded model of P .

This disussion demonstrates that abstrat algebrai

onepts of ultimate approximations an be given a



sound intuitive aount.

We will now disuss the properties of the ultimate se-

mantis for logi programs.

Theorem 5.1 Let P , P

0

be two programs suh that

T

P

= T

P

0

. Then, the ultimate well-founded models

and ultimate stable models of P and P

0

oinide.

Proof: Theorem 4.5 implies that U

P

= U

P

0

. But then

all �xpoints of U

P

and U

P

0

oinide. Thus, the result

follows. 2

This assertion does not hold for the (standard) well-

founded and stable models. For instane, let P

1

=

fp  p; p  :pg and P

2

= fp  g. Clearly, T

P

1

=

T

P

2

. However, P

2

has a stable model, fpg, while P

1

has

no stable models. Furthermore, p is true in the well-

founded model of P

2

and unknown in the well-founded

model of P

1

.

Another appealing property is that the ultimate well-

founded model of a program P with monotone oper-

ator T

P

is the least �xpoint of this operator (the least

model of P ). This is a orollary of Proposition 4.8. It

is not satis�ed by the standard well-founded semantis,

as shown by the program P

1

.

In many ases, the ultimate well-founded semantis

oinides with the standard well-founded semantis. A

onsequene of Corollary 4.4 is that if the well-founded

model of a program is two-valued, then it oinides

with the ultimate well-founded model. Thus, we have

the following result dealing with the lasses of Horn

and weakly strati�ed programs [Prz90℄:

Proposition 5.2 If a logi program P is a Horn pro-

gram or a (weakly) strati�ed program, then its ulti-

mate well-founded semantis oinides with the stand-

ard well-founded semantis.

Proof: Let P be a Horn program or a weakly strati�ed

program (the argument is the same). Let WF

P

be the

well-founded model of P . Let T

P

be the van Emden-

Kowalski operator for P , and let T

P

be the orrespond-

ing 3-valued operator [Fit85℄. Then, T

P

is an approx-

imation of T

P

and the well-founded model of P satis-

�es WF

P

=WF(T

P

) [DMT00a℄. Moreover, for weakly

strati�ed programs, WF

P

is two-valued [VRS91℄. By

Corollary 4.4

WF

P

=WF(T

P

) �

p

WF(U

P

):

Sine WF(U

P

) is onsistent, and WF

P

is omplete, it

follows that WF

P

= WF(U

P

), as required. 2

We now show that in general, attrative properties of

ultimate semantis ome at a prie. Namely, we have

the following two theorems.

Theorem 5.3 The problem \given a �nite proposi-

tional logi program P , deide whether P has a om-

plete ultimate stable model" is �

P

2

-omplete.

Theorem 5.4 The problems \given a �nite propos-

itional logi program, ompute the ultimate well-

founded �xpoint of P" and \given a �nite propositional

logi program, ompute the ultimate Kripke-Kleene �x-

point of P" are in the lass �

P

2

.

These results might put in doubt the usefulness of ulti-

mate semantis. However, for wide lasses of programs

the omplexity does not grow. Let k be a �xed integer.

We de�ne the lass E

k

to onsist of all logi programs

P suh that for every atom p 2 At(P ) at least one of

the following onditions holds:

1. P ontains at most k lauses with p as the head;

2. the body of eah lause with the head p onsists

of at most two elements;

3. the body of eah lause with the head p ontains

at most one positive literal;

4. the body of eah lause with the head p ontains

at most one negative literal.

Theorem 5.5 The problem \given a �nite proposi-

tional logi program from lass E

k

, deide whether P

has a omplete ultimate stable model" is NP-omplete.

Theorem 5.6 The problem \given a �nite proposi-

tional logi program from lass E

k

, ompute the ulti-

mate well-founded �xpoint of P" is in P.

We will now prove these results. If P is a �nite pro-

positional program, then it follows diretly from the

de�nition of the ultimate Kripke-Kleene �xpoint of T

P

(that is, the ultimate Kripke-Kleene model of P ) that

it an be omputed by means of polynomially many

(in the size of P ) evaluations of the operator U

P

(I; J),

where I � J are interpretations, with all other ompu-

tational tasks taking only polynomial amount of time.

Let us also note that I is a omplete ultimate stable

model of P if and only if I = lfp(U

P

(�; I)). Thus, to

verify whether I is a omplete ultimate stable model, it

is enough to iterate the operator lfp(U

P

(�; I)) starting

with the empty interpretation. The number of itera-

tions needed to reah the least �xpoint is again poly-

nomial in the size of P with all other needed tasks tak-

ing polynomial time only. A similar disussion shows

that the ultimate well-founded model of P an be om-

puted by means of polynomially many evaluations of

the form U

P

(I; J).

It follows that evaluating U

P

(I; J), where I � J , is

at the heart of omputing the ultimate Kripke-Kleene,



well-founded and omplete stable models of a program

P . Hene, we will now fous on this task.

Let P be a logi program and let p be an atom in P .

For every rule r 2 P suh that p is the head of r, we

de�ne B

r

to be the onjuntion of all literals in the

body of r. For every atom p, we denote by B

P

(p) the

disjuntion of all formulas B

r

, where r ranges over all

rules in P with the head p. When p is the head of no

rule in P then we set B

P

(r) = ? (empty disjuntion).

Every logi program P has a normal representation.

It is the olletion of rules p B

P

(p), where p ranges

over all atoms of P . The de�nition of the operator T

P

extends, in a straightforward way, to the ase when P

is given in its normal form de�ned above. Moreover,

if P is a logi program and Q is its normal repres-

entation, T

P

= T

Q

. Thus, in the remainder of this

setion, without loss of generality we will assume that

programs are given by means of their normal repres-

entations.

Let us reall that

U

1

P

(I; J) = glb(T

P

([I; J ℄)) =

\

I�K�J

T

P

(K)

and

U

2

P

(I; J) = lub(T

P

([I; J ℄)) =

[

I�K�J

T

P

(K):

Let I and J be two interpretations suh that I � J .

We de�ne the redut P

I;J

of P to be the program ob-

tained from P by substituting in eah body formula

B

P

(p), any atom r by f if r =2 J and any atom r by t

if r 2 I . Note that all body atoms of P

I;J

are elements

of J n I .

We have the following simple properties. An atom p

of P belongs to U

1

P

(I; J) if and only if for every inter-

pretation K 2 [;; J nI ℄, the formula B

P

I;J

(p) is true in

K (or, equivalently, if and only if the formula B

P

I;J

(p)

is a tautology). An atom p of P belongs to U

2

P

(I; J) if

and only if for some interpretation K 2 [;; J n I ℄, the

formula B

P

I;J

(p) is true in K (or, equivalently, if and

only if the formula B

P

I;J

(p) is satis�able).

>From the seond property it follows that omputing

U

2

P

(I; J) is easy | it an be aomplished in polyno-

mial time (in the size of P ). Indeed, sine B

P

I;J

(p) is a

DNF formula, its satis�ability an be deided in poly-

nomial time and the laim follows. Thus, from now on

we will fous on the task of omputing U

1

P

(I; J).

The problem to deide whether a DNF formula is a

tautology is o-NP-omplete. Thus, the problem to

ompute the ultimate Kripke-Kleene and well-founded

models of a program P is in the lass �

P

2

. Con-

sequently, Theorem 5.4 follows.

It also follows that heking whether for an interpreta-

tion J , J = lfp(U

1

P

(�; J)) is in �

P

2

. Hene, the problem

to deide whether a program has a omplete ultimate

stable �xpoint is in the lass �

P

2

.

We will now show the �

P

2

-hardness of the problem of

existene of a omplete ultimate stable model of a pro-

gram P . Let ' be a propositional formula and let I

be an interpretation (a set of atoms). We reall that

the following problem is �

P

2

-omplete: Given a DNF

formula ' over variables x

1

; : : : ; x

m

, y

1

; : : : ; y

n

, deide

whether there is a truth assignment I � fx

1

; : : : ; x

m

g

suh that '

I

is a tautology, where '

I

is the formula ob-

tained by replaing in ' all ourrenes of atoms from

I with t, and by replaing all ourrenes of atoms

from fx

1

; : : : ; x

m

g n I with f.

We will redue this problem to our problem. For eah

x

i

, i = 1; : : : ;m, in ' we introdue a new variable

x

0

i

. We also introdue two new atoms p and q. By '

0

we denote the formula obtained from ' by replaing

literals :x

i

in the disjunts of ' with new atoms x

0

i

.

We de�ne a program P (') to onsist of the following

lauses:

1. x

i

 not(x

0

i

) and x

0

i

 not(x

i

), for every i =

1; : : : ;m

2. y

i

 '

0

, for every i = 1; : : : ; n

3. p '

0

4. q  not(p);not(q).

We will show that there is I � fx

1

; : : : ; x

m

g suh that

'

I

is a tautology if and only if P (') has an ultimate

omplete stable model.

It is easy to see the that the following properties hold

for every �xpoint M of T

P (')

:

1. q is false in M (if q is true in M , T

P (')

does not

derive q);

2. p is true in M (otherwise T

P (')

derives q);

3. y

1

; ::; y

n

are true in M (sine their rules have the

same bodies as p);

4. for eah x

i

, either x

i

or x

0

i

is true in M .

For a subset I � fx

1

; : : : ; x

m

g, let us de�ne I = I [

fx

0

i

: x

i

=2 Ig. It follows from the properties listed

above that for eah �xpointM of T

P (')

and, a fortiori,

ifM is a omplete ultimate stable model of P ('), there

exists an I suh that

M = I [ fp; y

1

; : : : ; y

n

g:

Thus, it suÆes to show that if I � fx

1

; : : : ; x

m

g then

M = I [ fp; y

1

; : : : ; y

n

g is a omplete ultimate stable



model of P (') if and only if '

I

is a tautology.

It is easy to verify that for every set M = I [

fp; y

1

; : : : ; y

n

g and for every J � M , U

1

(J;M) sat-

is�es the following properties:

1. U

1

P (')

(J;M) \ fx

1

; ::; x

n

; x

0

1

; ::; x

0

n

g = I

2. U

1

P (')

(J;M) \ fy

1

; ::; y

n

; p; qg is either ; or

fy

1

; ::; y

n

; pg, sine bodies of rules of y

1

; ::; y

n

; p

are idential.

Thus, we �nd that U

1

P (')

(J;M) is either I or M and,

onsequently, U

1

P (')

(�;M) has a least �xpoint, whih

is either I or M . Hene M = I [ fp; y

1

; : : : ; y

n

g

is a omplete ultimate stable model of P (') if and

only if I is not a �xpoint of U

1

P (')

(�;M), that is if

U

1

P (')

(I;M) =M . Consequently, all we need to prove

is that p 2 U

1

P (')

(I;M) if and only if '

I

is a tautology.

Let us reall that p 2 U

1

P (')

(I;M) if and only if

for every interpretation K 2 [;;M n I ℄, the formula

B

P (')

I;M

(p) is true in K, that is, if and only if the for-

mula B

P (')

I;M

(p) is a tautology. Let us observe that

B

P (')

(p) = '

0

. Thus, it is easy to see that B

P (')

I;M

(p)

is logially equivalent to '

I

. Consequently, the laim

and Theorem 5.3 follows.

The problems of interest restrited to programs from

the lass E

k

beome easier. Let us reall that the

deision whether an atom p 2 At(P ) belongs to

U

1

P

(I; J) boils down to the deision whether the for-

mulaB

P

I;J

(p) is a tautology. If P is in the lass E

k

, this

question an be resolved in polynomial time. Thus, the

ultimate Kripke-Kleene and the well-founded models

for programs in E

k

an be omputed in polynomial

time. Thus, Theorem 5.6 follows.

Similarly, it takes only polynomial time to verify

whether an interpretation I satis�es I = lfp(U

1

P

(�; I)).

Thus, the problem to deide whether a program from

E

k

has a omplete ultimate stable model is in NP. To

prove ompleteness, we observe that for purely negat-

ive programs:

1. there is no di�erene between omplete stable �x-

points and omplete ultimate stable �xpoints

2. purely negative programs are in E

k

3. the problem of existene of omplete stable

�xpoints for purely negative programs is NP-

omplete.

Thus, Theorem 5.5 follows.

6 CONCLUSIONS AND

DISCUSSION

We extended our algebrai framework [DMT00a,

DMT00b℄ for studying semantis of nonmonotoni

reasoning systems. The main ontribution of this pa-

per is the notion of an ultimate approximation. We

argue that the Kripke-Kleene, well-founded and stable

�xpoints of the ultimate approximation of an operator

O an be regarded as the Kripke-Kleene, well-founded

and stable �xpoints of the operator O itself. In earlier

approahes, to study �xpoints of an operator O one

needed to selet an appropriate approximation oper-

ator. There were, however, no prinipled, algebrai

ways to do so. In the present paper, we �nd a dis-

tinguished element in the spae of all approximations

and propose this partiular approximation (ultimate

approximation) to study �xpoints of O.

A striking feature of our approah is the ease with

whih it an be applied in any ontext where semantis

emerge as �xpoints of operators. We applied this ap-

proah here in the ontext of logi programming and

obtained a family of new semantis for logi programs:

the ultimate Kripke-Kleene, the ultimate well-founded

and the ultimate stable-model semantis. These se-

mantis are well motivated and have attrative prop-

erties. First, they are preserved when we modify the

program, as long as the 2-valued provability operator

stays the same (the property that does not hold in

general for standard semantis). Seond, the ulti-

mate Kripke-Kleene and the well-founded semantis

are stronger (in general) than their standard ounter-

parts, yet approximate the olletion of all �xpoints

of O and the olletion of all stable �xpoints of O,

respetively. The disadvantage is that their omplex-

ity is higher. But, as we notied, for large lasses of

programs there is atually no loss in eÆieny of om-

puting ultimate semantis.

This approah an also be applied to default and au-

toepistemi logis and results in new semantis with

appealing epistemologial features

2

. It was also re-

ently used to de�ne a preise semantis for logi pro-

grams with aggregates [DPB01℄.

We end this disussion with omments on a possible

broader role of the approximation theory. One om-

mon onern when designing semantis of nonmono-

toni logis is to avoid models justi�ed by ungroun-

ded or self-supporting (irular) arguments. The well-

founded �xpoints (semantis) avoid suh arguments.

Groundedness is also a fundamental feature of indu-

2

We will inlude a more extensive disussion of these

appliations in the journal version of the paper.



tion, a onstrutive way in whih humans speify on-

epts both in ommonsense reasoning settings and in

formal onsiderations. In its simplest form indution

relies only on positive information. In general, how-

ever, it may make referenes to negative information,

too. In either form it is a nonmonotoni spei�ation

mehanism. As argued in [Den98℄, the well-founded

semantis generalizes existing formalizations of indu-

tion (for instane, positive indution and iterated in-

dution .

Aknowledgments

This material is based upon work supported by the Na-

tional Siene Foundation under Grants No. 9874764

and 0097278. Any opinions, �ndings, and onlu-

sions or reommendations expressed in this material

are those of the authors and do not neessarily reet

the views of the National Siene Foundation.

Referenes

[AvE82℄ K.R. Apt and M.H. van Emden. Contribu-

tions to the theory of logi programming.

Journal of the ACM, 29(3):841{862, 1982.

[Cla78℄ K.L. Clark. Negation as failure. In H. Gal-

laire and J. Minker, editors, Logi and data

bases, pages 293{322. Plenum Press, New

York-London, 1978.

[Den98℄ M. Deneker. The well-founded semantis

is the priniple of indutive de�nition.

In J. Dix, L. Fari~nas del Cerro, and

U. Furbah, eds., Logis in Arti�ial In-

telligene, LNAI, volume 1489, Springer-

Verlag 1998.

[DMT00a℄ M. Deneker, V. Marek, and M. Trusz-

zy�nski. Approximations, stable operators,

well-founded �xpoints and appliations in

nonmonotoni reasoning. In J. Minker,

editor, Logi-Based Arti�ial Intelligene,

pages 127{144. Kluwer Aademi Publish-

ers, 2000.

[DMT00b℄ M. Deneker, V. Marek, and M. Trusz-

zy�nski. Uni�ed semanti treatment of de-

fault and autoepistemi logis. In Prin-

iples of Knowledge Representation and

Reasoning, Proeedings of the Seventh In-

ternational Conferene (KR2000), pages

74 { 84. Morgan Kaufmann Publishers,

2000.

[DPB01℄ M. Deneker, N. Pelov, and M. Bruy-

nooghe. Well-founded and stable se-

mantis for logi programs with aggreg-

ates. In Proeedings of ICLP-01, LNCS

2237, Springer-Verlag, 2001.

[Fit85℄ M. C. Fitting. A Kripke-Kleene semantis

for logi programs. Journal of Logi Pro-

gramming, 2(4):295{312, 1985.

[Fit01℄ M. C. Fitting. Fixpoint semantis for lo-

gi programming { a survey. Theoretial

Computer Siene, 2002. To appear.

[Gin88℄ M.L. Ginsberg. Multivalued logis: a uni-

form approah to reasoning in arti�ial

intelligene. Computational Intelligene,

4:265{316, 1988.

[GL88℄ M. Gelfond and V. Lifshitz. The stable

semantis for logi programs. In R. Kow-

alski and K. Bowen, editors, Proeedings

of the 5th International Conferene on Lo-

gi Programming, pages 1070{1080. MIT

Press, 1988.

[Kun87℄ K. Kunen. Negation in logi programming.

Journal of Logi Programming, 4(4):289{

308, 1987.

[Mar76℄ G. Markowsky. Chain-omplete posets and

direted sets with appliations. Algebra

Universalis, 6(1):53{68, 1976.

[Moo84℄ R.C. Moore. Possible-world semantis for

autoepistemi logi. In Proeedings of

the Workshop on Non-Monotoni Reas-

oning, pages 344{354, 1984. Reprinted

in: M. Ginsberg, ed., Readings on non-

monotoni reasoning, pp. 137{142, Morgan

Kaufmann, 1990.

[Prz90℄ T.C. Przymusinski. The well-founded se-

mantis oinides with the three-valued

stable semantis. Fundamenta Informat-

iae, 13(4):445{464, 1990.

[Rei80℄ R. Reiter. A logi for default reason-

ing. Arti�ial Intelligene, 13(1-2):81{132,

1980.

[vEK76℄ M.H. van Emden and R.A. Kowalski. The

semantis of prediate logi as a program-

ming language. Journal of the ACM,

23(4):733{742, 1976.

[VRS91℄ A. Van Gelder, K.A. Ross, and J.S. Shlipf.

The well-founded semantis for general



logi programs. Journal of the ACM,

38(3):620{650, 1991.


