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Abstra
t

We study �xpoints of operators on latti
es.

To this end we introdu
e the notion of an

approximation of an operator. We order ap-

proximations by means of a pre
ision order-

ing. We show that ea
h latti
e operator O

has a unique most pre
ise or ultimate ap-

proximation. We demonstrate that �xpoints

of this ultimate approximation provide useful

insights into �xpoints of the operator O.

We apply our theory to logi
 program-

ming and introdu
e the ultimate Kripke-

Kleene, well-founded and stable semanti
s.

We show that the ultimate Kripke-Kleene

and well-founded semanti
s are more pre
ise

then their standard 
ounterparts We argue

that ultimate semanti
s for logi
 program-

ming have attra
tive epistemologi
al proper-

ties and that, while in general they are 
om-

putationally more 
omplex than the standard

semanti
s, for many 
lasses of theories, their


omplexity is no worse.

1 INTRODUCTION

Semanti
s of most knowledge representation languages

are de�ned as 
olle
tions of interpretations or possible-

world stru
tures. The sets of interpretations and

possible-world stru
tures, with some natural order-

ings, form 
omplete latti
es. Logi
 programs, and de-

fault and autoepistemi
 theories determine operators

on these latti
es. In many 
ases, semanti
s of pro-

grams and theories are given as �xpoints of these oper-

ators. Consequently, an abstra
t framework of latti
es,

operators on latti
es and their �xpoints has emerged as

a powerful tool in investigations of semanti
s of these

logi
s. Studying semanti
s of nonmonotoni
 reason-

ing systems within an algebrai
 framework allows us

to eliminate inessential details spe
i�
 to a parti
ular

logi
, simplify arguments and �nd 
ommon prin
iples

underlying di�erent nonmonotoni
 formalisms.

The roots of this algebrai
 approa
h 
an be tra
ed

ba
k to studies of semanti
s of logi
 programs [vEK76,

AvE82, Fit85, Prz90℄ and of appli
ations of latti
es

and bilatti
es in knowledge representation [Gin88℄.

Exploiting the 
on
ept of a bilatti
e and relying on

some general properties of operators on latti
es and

bilatti
es, Fitting proposed an elegant algebrai
 treat-

ment of all major 2-, 3- and 4-valued semanti
s of

logi
 programs [Fit01℄, that is, the supported-model

semanti
s [Cla78℄, stable-model semanti
s [GL88℄,

Kripke-Kleene semanti
s [Fit85, Kun87℄ and well-

founded semanti
s [VRS91℄.

In [DMT00a℄, we extended Fitting's work to a more

abstra
t setting of the study of �xpoints of latti
e op-

erators. Central to our approa
h is the 
on
ept of an

approximation of a latti
e operator O. An approx-

imation is an operator de�ned on a 
ertain bilatti
e

(the produ
t of the latti
e by itself, with two appro-

priately de�ned latti
e orderings). Using purely algeb-

rai
 te
hniques, for an approximation operator for O

we introdu
ed the notion of the stable operator and

the 
on
epts of the Kripke-Kleene, well-founded and

stable �xpoints, and showed how they provide inform-

ation about �xpoints of the operator O. In [DMT00a℄

we noted that our approa
h generalizes the results de-

s
ribed in [Fit01℄. We observed that the 4-valued im-

mediate 
onsequen
e operator T

P

is an approximation

operator for the 2-valued immediate 
onsequen
e oper-

ator T

P

and showed that all the semanti
s 
onsidered

by Fitting 
an be derived from T

P

by means of the

general algebrai
 
onstru
tions that apply to arbitrary

approximation operators.

In [DMT00b℄, we applied our algebrai
 approa
h to

default and autoepistemi
 logi
s. Autoepistemi
 logi


was de�ned by Moore [Moo84℄ to formalize the know-



ledge of a rational agent with full introspe
tion 
apab-

ilities. In Moore's approa
h, an autoepistemi
 theory

T de�nes a 
hara
teristi
 operatorD

T

on the latti
e of

all possible-world stru
tures. Fixpoints of D

T

(or, to

be pre
ise, their theories) are known as expansions. In

[DMT00b℄, we proposed for D

T

an approximation op-

erator, D

T

, de�ned on a bilatti
e of belief pairs (pairs

of possible-world stru
tures). Complete �xpoints of

D

T


orrespond to expansions of T (�xpoints of D

T

),

the least �xpoint of D

T

provides a 
onstru
tive ap-

proximation to all expansions (by analogy with logi


programming, we 
alled it the Kripke-Kleene �xpoint).

Using general te
hniques introdu
ed in [DMT00a℄ we

derived from D

T

its stable 
ounterpart, the operator

D

st

T

. Complete �xpoints of D

st

T

yield a new semanti
s

of extensions for autoepistemi
 logi
. Finally, the least

�xpoint of the stable operator results in yet another

new semanti
s, the well-founded semanti
s for autoep-

istemi
 logi
 (again, 
alled so due to analogies to the

well-founded semanti
s in logi
 programming), whi
h

approximates all extensions.

The same pi
ture emerged in the 
ase of default lo-

gi
 [DMT00b℄. For a default theory � we de�ned an

operator E

�

and 
hara
terized all major semanti
s for

default logi
 in terms of �xpoints of E

�

. In parti
ular,

the standard semanti
s of extensions [Rei80℄ is determ-

ined by 
omplete �xpoints of the stable operator E

st

�

derived from E

�

. Our results on autoepistemi
 and

default logi
s obtained in [DMT00b℄ allowed us to 
la-

rify the issue of their mutual relationship and provided

insights into fundamental 
onstru
tive prin
iples un-

derlying these two modes of nonmonotoni
 reasoning.

These result prove that the algebrai
 framework de-

veloped in [DMT00a℄ is an e�e
tive tool in studies

of semanti
s of knowledge representation formalisms.

It allowed us to establish a 
omprehensive semanti


treatment for nonmonotoni
 logi
s and demonstrated

that major nonmonotoni
 systems are 
losely related.

However, the approa
h, as it was developed, is not en-

tirely satisfa
tory. It provides no 
riteria that would

allow us to prefer one approximation over another

when attempting to de�ne the 
on
ept of a stable �x-

point or when approximating �xpoints by means of the

Kripke-Kleene or well-founded �xpoints. It does not

give us any general indi
ations how to obtain approx-

imations and whi
h approximation to pi
k. Thus, our

theory leaves out a key link in the pro
ess of de�ning

and approximating �xpoints of operators on latti
es.

In parti
ular, when de�ning semanti
s of nonmono-

toni
 formalisms, we sele
t an approximation operator,

rather then derive it in a prin
ipled way. The ap-

proximations used, the bilatti
e operators T

P

, D

T

and

E

�

, are not algebrai
ally determined by their 
orres-

ponding latti
e operators T

P

, D

T

and E

�

, respe
t-

ively. Consequently, some programs or theories with

the same basi
 operators have di�erent Kripke-Kleene,

well-founded or stable �xpoints asso
iated with them.

We address this problem here. We extend our theory

of approximations and introdu
e the notion of the pre-


ision of an approximation. We show that ea
h latti
e

operator O has a unique most pre
ise approximation

whi
h we 
all the ultimate approximation of O. Sin
e

the ultimate approximation is determined by O, it is

well suited for investigations of �xpoints of O. As a

result we obtain 
on
epts of ultimate stable �xpoints,

the ultimate Kripke-Kleene �xpoint and the ultimate

well-founded �xpoint that depend on O only and not

on a (possibly arbitrarily) sele
ted approximation to

O.

We apply our theory to logi
 programming, default lo-

gi
 and autoepistemi
 logi
 (only the �rst system is

dis
ussed here, due to spa
e limitations). We 
ompare

ultimate semanti
s with the 
orresponding \standard"

semanti
s of logi
 programs. In parti
ular, we show

that the ultimate Kripke-Kleene and the ultimate well-

founded semanti
s are more pre
ise then the stand-

ard Kripke-Kleene and well-founded semanti
s. This

better a

ura
y 
omes, however, at a 
ost. We show

that ultimate semanti
s are in general 
omputation-

ally more 
omplex. On the other hand, we show that

for wide 
lasses of theories, in
luding theories likely to

o

ur in pra
ti
e, the 
omplexity remains the same.

Thus, our new semanti
s may prove useful in 
omput-

ing stable models and default extensions.

The ultimate semanti
s have also properties that are

attra
tive from the logi
 perspe
tive. In parti
ular,

two programs or theories determining the same basi


2-valued operator have the same ultimate semanti
s.

This property, as we noted, is not true in the standard


ase.

In summary, our 
ontributions are as follows. We ex-

tend the algebrai
 theory of approximations by provid-

ing a prin
ipled way of deriving an approximation to

a latti
e operator. In this way, we obtain 
on
epts

of Kripke-Kleene �xpoint, well-founded �xpoint and

stable �xpoints that are determined by the operator O

and not by the 
hoi
e of an approximation. In spe
i�



ontexts of most 
ommonly used nonmonotoni
 sys-

tems we obtain new semanti
s with desirable logi
al

properties and possible 
omputational appli
ations.



2 PRELIMINARIES

Let hL;�i be a poset and let A be an operator on L. A

poset is 
hain-
omplete if it 
ontains the least element

? and if every 
hain of elements of L has a least upper

bound (lub) in L. An element x of A is a pre-�xpoint

of A if A(x) � x; x is a �xpoint of A if A(x) = x.

Let A be a monotone operator on a 
hain-
omplete

poset hL;�i. Let us de�ne a sequen
e of elements

of L by trans�nite indu
tion as follows: (1) 


0

= ?;

(2) 


�+1

= A(


�

); (3) 


�

= lub(f


�

: � < �g), for a

limit ordinal �. One 
an show that this sequen
e is

well de�ned, that is has in L its least upper bound

and that this least upper bound is the least �xpoint

of A (lfp(A), in symbols). One 
an also show that

the least �xpoint of a monotone operator on a 
hain-


omplete poset is the least pre-�xpoint of A. That is,

we have lfp(A) = glb(fx 2 L : A(x) � xg). Monotone

operators on 
hain-
omplete posets and their �xpoints

and pre-�xpoints are dis
ussed in [Mar76℄.

A latti
e is a poset hL;�i su
h that L 6= ; and every

pair of elements x; y 2 L has a unique greatest lower

bound and least upper bound. A latti
e is 
omplete

if its every subset has a greatest lower bound and a

least upper bound. In parti
ular, a 
omplete latti
e

has a least and a greatest element denoted by ? and

>, respe
tively.

For any two elements x; y 2 L, we de�ne [x; y℄ = fz 2

L : x � z � yg. If hL;�i is a 
omplete latti
e and

x � y, then h[x; y℄;�i is a 
omplete latti
e, too.

Let hL;�i be a 
omplete latti
e. By the produ
t bil-

atti
e [Gin88℄ of hL;�i we mean the set L

2

= L � L

with the following two orderings �

p

and �:

1. (x; y) �

p

(x

0

; y

0

) if x � x

0

and y

0

� y

2. (x; y) � (x

0

; y

0

) if x � x

0

and y � y

0

.

Both orderings are 
omplete latti
e orderings for L

2

.

However, in this paper we are mostly 
on
erned with

the ordering �

p

.

An element (x; y) 2 L

2

is 
onsistent if x � y. We 
an

think of a 
onsistent element (x; y) 2 L

2

as an approx-

imation to every z 2 L su
h that x � z � y. With this

interpretation in mind, the ordering �

p

, when restri
-

ted to 
onsistent elements, 
an be viewed as a pre
ision

ordering. Consistent pairs that are \higher" in the or-

dering �

p

provide tighter approximations. Maximal


onsistent elements with respe
t to �

p

are pairs of the

form (x; x). We 
all approximations of the form (x; x)

| exa
t.

We denote the set of all 
onsistent pairs in L

2

by L




.

The set hL




;�

p

i is not a latti
e. It is, however, 
hain-


omplete. Indeed, the element (?;>) is the least ele-

ment in L




and the following result shows that every


hain in L




has (in L




) the least upper bound.

Proposition 2.1 Let L be a 
omplete lat-

ti
e. If f(a

�

; b

�

)g

�

is a 
hain of elements

in hL




;�

p

i then lub(fa

�

g

�

) � glb(fa

�

g

�

) and

(lub(fa

�

g

�

); glb(fa

�

g

�

)) = lub

�

p

(f(a

�

; b

�

)g

�

).

It follows that every �

p

-monotone operator on L




has

a least �xpoint.

3 PARTIAL APPROXIMATIONS

For an operator A : L




! L




, we denote by A

1

and

A

2

its proje
tions to the �rst and se
ond 
oordin-

ates, respe
tively. Thus, for every (x; y) 2 L




, we

have A(x; y) = (A

1

(x; y); A

2

(x; y)). An operator A :

L




! L




is a partial approximation operator if it is �

p

-

monotone and if for every x 2 L, A

1

(x; x) = A

2

(x; x).

We denote the set of all partial approximation oper-

ators on L




by Appx (L




). Let A 2 Appx (L




). Sin
e

A is �

p

-monotone and L




is 
hain-
omplete, A has a

least �xpoint, 
alled the Kripke-Kleene �xpoint of A

(KK(A), in symbols). Dire
tly from the de�nition, it

follows that KK(A) approximates all �xpoints of A.

If A 2 Appx (L




) and O : L ! L is an operator on L

su
h that A(x; x) = (O(x); O(x)) then we say that A

is a partial approximation of O. We denote the set of

all partial approximations of O by Appx (O). If A is a

partial approximation of O then x 2 L is a �xpoint of

O if and only if (x; x) is a �xpoint of A. Thus, for every

�xpoint x of O, we have KK(A) �

p

(x; x) or, equival-

ently, KK

1

(A) � x � KK

2

(A), where KK

1

(A) and

KK

2

(A) are the two 
omponents of the pair KK(A).

Operators from Appx (L




) des
ribe ways to revise 
on-

sistent approximations. Of parti
ular interest are

those situations when the revision of an approxima-

tion leads to another one that is at least as a

urate.

Let A be an operator on L




. We 
all an approximation

(a; b) A-reliable if (a; b) �

p

A(a; b).

Proposition 3.1 Let L be a 
omplete latti
e and A 2

Appx (L




). If (a; b) 2 L




is A-reliable then, for every

x 2 [?; b℄, A

1

(x; b) 2 [?; b℄ and, for every x 2 [a;>℄,

A

2

(a; x) 2 [a;>℄.

Proof: Let x 2 [?; b℄. Then (x; b) �

p

(b; b). By the

�

p

-monotoni
ity of A,

A

1

(x; b) � A

1

(b; b) = A

2

(b; b) � A

2

(a; b) � b:

The last inequality follows from the fa
t that (a; b) is

A-reliable. The se
ond part of the assertion 
an be

proved in a similar manner. 2



This proposition implies that for every A-reliable pair

(a; b), the restri
tions ofA

1

(�; b) to [?; b℄ and A

2

(a; �) to

[a;>℄ are in fa
t operators on [?; b℄ and [a;>℄, respe
t-

ively. Moreover, they are �-monotone operators on

the posets h[?; b℄;�i and h[a;>℄;�i. Sin
e h[?; b℄;�i

and h[a;>℄;�i are 
omplete latti
es, the operators

A

1

(�; b) and A

2

(a; �) have least �xpoints in the latti
es

h[?; b℄;�i and h[a;>℄;�i, respe
tively. We de�ne:

b

A#

= lfp(A

1

(�; b)) and a

A"

= lfp(A

2

(a; �)):

We 
all the mapping (a; b) 7! (b

A#

; a

A"

), de�ned on

the set of A-reliable elements of L




, the stable revision

operator for A. When A is 
lear from the 
ontext, we

will drop the referen
e to A from the notation.

Dire
tly from the de�nition of the stable revision op-

erator it follows that for every A-reliable pair, b

#

� b

and a � a

"

.

The stable revision operator for A 2 Appx (L




) is 
ru-


ial. It allows us to distinguish an important sub
lass

of the 
lass of all �xpoints of A. Let L be a 
omplete

latti
e and let A 2 Appx (L




). We say that (x; y) 2 L




is a stable �xpoint of A if (x; y) is A-reliable and is a

�xpoint of the stable revision operator (that is, x = y

#

and y = x

"

). By the A-reliability of (x; y), the se
ond

requirement is well de�ned.

Stable �xpoints of an operator are, in parti
ular, its

�xpoints.

Proposition 3.2 Let L be a 
omplete latti
e and let

A 2 Appx (L




). If (x; y) is a stable �xpoint of A then

(x; y) is a �xpoint of A.

Proof: Sin
e (x; y) is stable, x = lfp(A

1

(�; y)). In par-

ti
ular, x = A

1

(x; y). Similarly, y = A

2

(x; y). 2

Let O be an operator on a 
omplete latti
e L and let

A 2 Appx (O). We say that x is an A-stable �xpoint

of O if (x; x) is a stable �xpoint of A. The notation is

justi�ed. Indeed, it follows from Proposition 3.2 and

our earlier remarks that every stable �xpoint of O is,

in parti
ular, a �xpoint of O.

The notion of A-reliability is not strong enough to

guarantee desirable properties of the stable revision

operator. In parti
ular, if (a; b) 2 L




is A-reliable, it

is not true in general that (b

#

; a

"

) is 
onsistent nor

that (a; b) �

p

(b

#

; a

"

). There is, however, a 
lass of

A-reliable pairs for whi
h both properties hold. An

A-reliable approximation (a; b) is A-prudent if a �

b

#

. We note that every stable �xpoint of A is A-

prudent. We will now prove several basi
 properties

of A-prudent approximations.

Proposition 3.3 Let L be a 
omplete latti
e, A 2

Appx (L




) and (a; b) 2 L




be A-prudent. Then, (b

#

; a

"

)

is 
onsistent, A-reliable and A-prudent and (a; b) �

p

(b

#

; a

"

).

Proof: By the de�nition of b

#

and a

"

we have that

b

#

� b and a � a

"

. Moreover, sin
e (a; b) is A-prudent,

it follows that a � b

#

.

Next, sin
e (a; b) is A-reliable, it follows that a � b

and A

2

(a; b) � b. Thus, b is a pre-�xpoint of A

2

(a; �).

Consequently, a

"

� b (as a

"

is the least �xpoint of

A

2

(a; �)). Hen
e, (a; b) �

p

(b

#

; a

"

).

By the �

p

-monotoni
ity of A we obtain:

A

1

(a

"

; b) � A

1

(a

"

; a

"

) = A

2

(a

"

; a

"

) � A

2

(a; a

"

) = a

"

:

It follows that a

"

is a pre-�xpoint of the operator

A

1

(�; b). Thus, b

#

= lfp(A

1

(�; b)) � a

"

and so, (b

#

; a

"

)

is 
onsistent.

Let us now observe that b

#

= A

1

(b

#

; b) � A

1

(b

#

; a

"

).

Similarly, a

"

= A

2

(a; a

"

) � A

2

(b

#

; a

"

). Thus, the pair

(b

#

; a

"

) is reliable.

Lastly, we note that for every x 2 [?; a

"

℄, A

1

(x; b) �

A

1

(x; a

"

) � a

"

(the last inequality follows by the A-

reliability of (b

#

; a

"

)). Hen
e, b

#

= lfp(A

1

(�; b)) �

lfp(A

1

(�; a

"

)) and, 
onsequently, (b

#

; a

"

) is A-prudent.

2

Let us observe that an A-reliable pair (a; b) is revised

by an operator A into a more a

urate approxima-

tion A(a; b). An A-prudent pair (a; b) 
an be revised

\even more". Namely, it is easy to see that A

1

(a; b) �

A

1

(b

#

; b) = b

#

and a

"

= A

2

(a; a

"

) � A

2

(a; b). Thus,

A(a; b) �

p

(b

#

; a

"

). In other words, (b

#

; a

"

) is indeed

at least as pre
ise revision of (a; b) as A(a; b) is.

The stable revision operator satis�es a 
ertain mono-

toni
ity property.

Proposition 3.4 Let L be a 
omplete latti
e and let

A 2 Appx (L




). If (a; b) 2 L




is A-reliable, (
; d) 2 L




is A-prudent and if (a; b) �

p

(
; d), then (b

#

; a

"

) �

p

(d

#

; 


"

).

Proof: Clearly, we have d

#

� 


"

� d � b. By

the �

p

-monotoni
ity of A, it follows that A

1

(d

#

; b) �

A

1

(d

#

; d) = d

#

. Thus, d

#

is a pre-�xpoint of A

1

(�; b).

Sin
e b

#

is the least �xpoint of lfp(A

1

(�; b)), it follows

that b

#

� d

#

.

It remains to prove that 


"

� a

"

. Let u = glb(a

"

; d

#

).

By Proposition 3.3, (
; d) �

p

(d

#

; 


"

). Sin
e (a; b) �

p

(
; d), it follows that a � d

#

. Further, by the A-

reliability of (a; b) and (
; d), we have a � a

"

and



d

#

� d. Thus, a � u � a

"

and u � d

#

� d. Con-

sequently,

A

1

(u; d) � A

1

(u; u) = A

2

(u; u) � A

2

(a; a

"

) = a

"

and

A

1

(u; d) � A

1

(d

#

; d) = d

#

:

It follows that A

1

(u; d) � glb(a

"

; d

#

) = u. In parti
u-

lar, u is a pre-�xpoint of A

1

(�; d). Sin
e d

#

is the least

�xpoint of A

1

(�; d), d

#

� u. Hen
e, d

#

� a

"

.

We now have a � 
 � d

#

� a

"

(the �rst inequality

follows from the assumption (a; b) � (
; d), the se
ond

one follows by Proposition 3.3 from the assumption

that (
; d) is A-prudent). Thus, a � 
 � a

"

and the

�

p

-monotoni
ity of A implies

A

2

(
; a

"

) � A

2

(a; a

"

) = a

"

:

Hen
e, a

"

is a pre-�xpoint of A

2

(
; �). Sin
e 


"

is the

least �xpoint of A

2

(
; �), it follows that 


"

� a

"

. 2

Sin
e stable �xpoints are prudent, we obtain the fol-

lowing 
orollary.

Corollary 3.5 Let L be a 
omplete latti
e, A 2

Appx (L




) and let (
; d) 2 L




be a stable �xpoint of

A. If (a; b) 2 L




is A-reliable and (a; b) �

p

(
; d) then

(b

#

; a

"

) �

p

(
; d). 2

The next result states that the limit of a 
hain of A-

prudent pairs is A-prudent.

Proposition 3.6 Let L be a 
omplete latti
e, A 2

Appx (L




) and let f(a

�

; b

�

)g

�

be a 
hain of A-prudent

pairs from L




. Then, lub(f(a

�

; b

�

)g

�

) is A-prudent.

Proof: Let us set a

1

= lub(fa

�

g

�

) and b

1

=

glb(fb

�

g

�

). By Proposition 2.1, (a

1

; b

1

) is 
onsistent

and (a

1

; b

1

) = lub(f(a

�

; b

�

)g

�

). Let us now observe

that, by A-reliability of (a

�

; b

�

) and �

p

-monotoni
ity

of A, we have (a

�

; b

�

) �

p

A(a

�

; b

�

) �

p

A(a

1

; b

1

):

Thus, (a

1

; b

1

) = lub(f(a

�

; b

�

)g

�

) � A(a

1

; b

1

): It

follows that (a

1

; b

1

) is A-reliable.

The A-reliability of (a

1

; b

1

) implies, in parti
ular,

that for every x 2 [?; b

1

℄, A

1

(x; b

1

) � b

1

. Thus,

by �

p

-monotoni
ity of A, for every x 2 [?; b

1

℄

A

1

(x; b

�

) � A

1

(x; b

1

) � b

1

:

Hen
e, pre-�xpoints of A

1

(�; b

1

) are pre�xpoints of

A

1

(�; b

�

) and, 
onsequently,

lfp(A

1

(�; b

�

)) � lfp(A

1

(�; b

1

)):

Sin
e (a

�

; b

�

) is A-prudent, we have that a

�

�

lfp(A

1

(�; b

�

)). Thus, for arbitrary �, a

�

�

lfp(A

1

(�; b

1

)) and, 
onsequently, a

1

� lfp(A

1

(�; b

1

)).

It follows that (a

1

; b

1

) is A-prudent. 2

We will now prove that the set of all stable �xpoints of

an operator has a least element (in parti
ular, it is not

empty). To this end, we de�ne a sequen
e f(a

�

; b

�

)g

�

of elements of L




by trans�nite indu
tion:

1. (a

0

; b

0

) = (?;>)

2. If � = � + 1, we de�ne a

�

= b

�

#

and b

�

= a

�

"

3. If � is a limit ordinal, we de�ne (a

�

; b

�

) =

lub(f(a

�

; b

�

) : � < �g).

Theorem 3.7 The sequen
e f(a

�

; b

�

)g

�

is well

de�ned, �

p

-monotone and its limit is the least stable

�xpoint of a partial approximation operator A.

Proof: It is obvious that (?;>) is A-prudent. Thus, by

the trans�nite indu
tion it follows that ea
h element

in the sequen
e is well de�ned and A-prudent (Propos-

itions 3.3 and 3.6 settle the 
ases of su

essor ordinals

and limit ordinals, respe
tively). In the same way, one


an establish the �

p

-monotoni
ity of the sequen
e.

Let (a

1

; b

1

) = lub(f(a

�

; b

�

)g

�

). By Proposition 3.6,

(a

1

; b

1

) is A-prudent. Thus, (a

1

; b

1

) is A-reliable.

Moreover, we have a

1

= (b

1

)

#

and b

1

= (a

1

)

"

.

Thus, (a

1

; b

1

) is a stable �xpoint of A. Further, it is

easy to see by trans�nite indu
tion and Corollary 3.5

that (a

1

; b

1

) approximates all stable �xpoints of A.

Thus, it is the least stable �xpoint of A. 2

We 
all this least stable �xpoint the well-founded �x-

point of A and denote it by WF(A). The well-founded

�xpoint approximates all stable �xpoints of A. In par-

ti
ular, it approximates all A-stable �xpoints of the

operator O. That is, for every A-stable �xpoint x

of O, WF(A) �

p

(x; x) or, equivalently, WF

1

(A) �

x � WF

2

(A), where WF

1

(A) and WF

2

(A) are the

two 
omponents of the pair WF(A). Moreover, the

well-founded �xpoint is more pre
ise than the Kripke-

Kleene �xpoint: for A 2 Appx(O), KK(A) �

p

WF(A).

In [DMT00b, DMT00a℄, we showed that when ap-

plied to appropriately 
hosen approximation operat-

ors in logi
 programming, default logi
 and autoep-

istemi
 logi
, these algebrai
 
on
epts of �xpoints,

stable �xpoints, the Kripke-Kleene �xpoint and the

well-founded �xpoint provide all major semanti
s for

these nonmonotoni
 systems and allow us to under-

stand their interrelations.

We need to emphasize that the 
on
ept of a par-

tial approximation introdu
ed here is di�erent from

the 
on
ept of approximation introdu
ed in [DMT00a℄.

The latter notion is de�ned as an operator of the whole

bilatti
e L

2

. That 
hoi
e was motivated by our sear
h



for generality and potential appli
ations of in
onsist-

ent �xpoints in situations when we admit a possibility

of some statements being overde�ned. While di�erent,

both approa
hes are very 
losely related

1

.

4 ULTIMATE APPROXIMATIONS

Partial approximations in Appx (L




) 
an be ordered.

Let A;B 2 Appx (L




). We say that A is less pre
ise

than B (A �

p

B, in symbols) if for ea
h pair (x; y) 2

L




, A(x; y) �

p

B(x; y). It is easy to see that if A �

p

B

then there is an operator O on the latti
e L su
h that

A;B 2 Appx (O).

Lemma 4.1 Let L be a 
omplete latti
e and A;B 2

Appx (L




). If A �

p

B and (a; b) 2 L




is A-prudent

then (a; b) is B-prudent and (b

A#

; a

A"

) �

p

(b

B#

; a

B"

).

Proof: Clearly, (a; b) �

p

A(a; b) � B(a; b). Thus, (a; b)

is B-reliable.

For ea
h pre-�xpoint x � b of B

1

(�; b), A

1

(x; b) �

B

1

(x; b) � x. Consequently, x is a pre�xpoint of

A

1

(�; b). It follows that b

A#

� b

B#

. Sin
e a � b

A#

,

a � b

B#

. Thus (a; b) is B-prudent.

Likewise, we 
an prove that any pre-�xpoint of A

2

(a; �)

is a pre�xpoint of B

2

(a; �), and 
onsequently, a

B"

�

a

A"

. Sin
e also b

A#

� b

B#

, it follows that (b

A#

; a

A"

) �

p

(b

B#

; a

B"

). 2

More pre
ise approximation have more pre
ise Kripke-

Kleene and well-founded �xpoints.

Theorem 4.2 Let O be an operator on a 
omplete

latti
e L. Let A;B 2 Appx (O). If A �

p

B then

KK(A) �

p

KK(B) and WF(A) �

p

WF(B).

Proof: Let us denote by f(a

�

A

; b

�

A

)g

�

the sequen
e of

elements of hL




: �

p

i obtained by iterating the operator

A over (?;>). The sequen
e f(a

�

B

; b

�

B

)g

�

is de�ned in

the same way. Sin
e A �

p

B, it follows by an easy in-

du
tion that for every ordinal �, (a

�

A

; b

�

A

) �

p

(a

�

B

; b

�

B

).

Sin
e KK(A) is the limit of the sequen
e f(a

�

A

; b

�

A

)g

�

and KK(B) is the limit of the sequen
e f(a

�

B

; b

�

B

)g

�

,

it follows that KK(A) �

p

KK(B).

To prove the se
ond part of the assertion, we will

now assume that the sequen
es f(a

�

A

; b

�

A

)g

�

and

f(a

�

B

; b

�

B

)g

�

denote the sequen
es used in the de�ni-

tion of the well-founded �xpoints of A and B, respe
t-

ively. To prove the assertion we will now show that for

every ordinal �, (a

�

A

; b

�

A

) �

p

(a

�

B

; b

�

B

).

1

We will in
lude a detailed dis
ussion of the relationship

between the two approa
hes in the full version of the paper.

Clearly, (a

0

A

; b

0

A

) �

p

(a

0

B

; b

0

B

). Let us assume that � =

� + 1 and that (a

�

A

; b

�

A

) �

p

(a

�

B

; b

�

B

). Sin
e (a

�

A

; b

�

A

)

is A-prudent, Lemma 4.1 entails that it is B-prudent

and

(a

�

A

; b

�

A

) = ((b

�

A

)

A#

; (a

�

A

)

A"

) �

p

((b

�

A

)

B#

; (a

�

A

)

B"

):

By Proposition 3.4,

((b

�

A

)

B#

; (a

�

A

)

B"

) �

p

((b

�

B

)

B#

; (a

�

B

)

B"

) = (a

�

B

; b

�

B

):

The 
ase of the limit ordinal � is straightforward.

Sin
e WF(A) and WF(B) are the limits of the se-

quen
es f(a

�

A

; b

�

A

)g

�

and f(a

�

B

; b

�

B

)g

�

, respe
tively, the

se
ond part of the assertion follows. 2

The next result shows that as the pre
ision of an ap-

proximation grows, all exa
t �xpoints and exa
t stable

�xpoints are preserved.

Theorem 4.3 Let O be an operator on a 
omplete lat-

ti
e L. Let A;B 2 Appx (O). If A �

p

B then every

exa
t �xpoint of A is an exa
t �xpoint of B, and every

exa
t stable �xpoint of A (that is, an A-stable �xpoint

of O) is also an exa
t stable �xpoint of B (that is, a

B-stable �xpoint of O).

Proof: Sin
e for every x 2 L, A(x; x) = B(x; x) =

(O(x); O(x)), the �rst part of the assertion follows. Let

us now assume that (x; x) is an exa
t stable �xpoint of

A. In parti
ular, it follows that (x; x) is a �xpoint of A

and is A-prudent. By Lemma 4.1, (x; x) is B-prudent

and (x; x) �

p

(x

B#

; x

B"

). The latter pair is 
onsistent

(Proposition 3.3). Consequently, (x; x) is (x

B#

; x

B"

)

and hen
e x is an exa
t stable �xpoint of B. 2

Non-exa
t �xpoints are not preserved, in general. Let

us 
onsider two partial approximations A and B su
h

that A �

p

B. Let us also assume that WF(A) <

p

WF(B) (that is, A has a stri
tly less pre
ise well-

founded �xpoint than B). Then, 
learly, WF(A) is

no longer a stable �xpoint of B. Thus, �xpoints of

A may disappear when we move on to a more pre
ise

approximation B.

More pre
ise approximations of a non-monotone oper-

ator O yield more pre
ise well-founded �xpoints and

additional exa
t stable �xpoints. The natural question

is whether there exists an ultimate approximation of O,

that is, a partial approximation most pre
ise with re-

spe
t to the ordering �

p

. Su
h approximation would

have a most pre
ise Kripke-Kleene and well-founded

�xpoint and a largest set of exa
t stable �xpoints. We

will show that the answer to this key question is pos-

itive. Su
h ultimate approximation, being a distin-

guished obje
t in the 
olle
tion of all approximations




an be viewed as determined by O. Consequently, �x-

points of the ultimate approximation of O (in
luding

stable, Kripke-Kleene and well-founded �xpoints) 
an

be regarded as determined by O and 
an be asso
iated

with it.

We start by providing a non-
onstru
tive argument

for the existen
e of ultimate approximations. Let us

note that the set Appx (O) is not empty. Indeed, let

us de�ne A

O

(x; y) = (O(x); O(x)), if x = y, and

A

O

(x; y) = (?;>), otherwise. It is easy to see that

A

O

2 Appx (O) and that it is the least pre
ise ele-

ment in Appx (O). Next, we observe that Appx (O)

with the ordering �

p

is a 
omplete latti
e, as the

set Appx (O) is 
losed under the operations of taking

greatest lower bounds and least upper bounds. It fol-

lows that Appx (O) has a greatest element (most pre-


ise approximation). We 
all this partial approxima-

tion the ultimate approximation of O and denote it by

U

O

.

We 
all the Kripke-Kleene and the well-founded �x-

points of U

O

, the ultimate Kripke-Kleene and the ul-

timate well-founded �xpoint of O. We denote them by

KK(O) and WF(O), respe
tively. We 
all a stable �x-

point of U

O

an ultimate partial stable �xpoint of O.

We refer to an exa
t stable �xpoint of U

O

as an ulti-

mate stable �xpoint of O. Exa
t �xpoints of all partial

approximations are the same and 
orrespond to �x-

points of O. Thus, there is no need to introdu
e the


on
ept of an ultimate exa
t �xpoint of O. We have

the following 
orollary to Theorems 4.2 and 4.3.

Corollary 4.4 Let O be an operator on a 
omplete

latti
e L. For every A 2 Appx (O), KK(A) �

p

KK(U

O

), WF(A) �

p

WF(U

O

) and every A-stable �x-

point of O is an ultimate stable �xpoint of O.

We will now provide a 
onstru
tive 
hara
terization of

the notion. To state the result, for every x; y 2 L su
h

that x � y, we de�ne O([x; y℄) = fO(z) : z 2 [x; y℄g.

Theorem 4.5 Let O be an operator on a 
omplete

latti
e L. Then, for every (x; y) 2 L




, U

O

(x; y) =

(glb(O([x; y℄)); lub(O([x; y℄))).

Proof: We de�ne an operator C : L




! L

2

by setting

C(x; y) = (glb(O([x; y℄)); lub(O([x; y℄))):

First, let us noti
e that sin
e glb(O([x; y℄)) �

lub(O([x; y℄)), the operator C maps L




into L




.

Moreover, it is easy to see that C is �

p

-monotone.

Lastly, sin
e O([x; x℄) = fO(x)g,

glb(O([x; x℄)) = lub(O([x; x℄)) = O(x):

and, 
onsequently, C(x; x) = (O(x); O(x)). Thus, it

follows that C is a partial approximation of O. Sin
e

U

O

is the most pre
ise approximation, we have C �

p

U

O

.

On the other hand, U

O

(x; y) � (O(z); O(z)) for every

z 2 [x; y℄. Therefore U

1

O

(x; y) �

p

O(z) for all z 2

[x; y℄ and thus U

1

O

(x; y) � glb(O([x; y℄)). Similarly,

lub(O([x; y℄)) � U

2

O

(x; y). Sin
e x � y are arbitrary,

U

O

�

p

C, as desired. 2

With this result we obtain an expli
it 
hara
terization

of ultimate stable �xpoints of an operator O.

Corollary 4.6 Let L be a 
omplete latti
e. An ele-

ment x 2 L is an ultimate stable �xpoint of an oper-

ator O : L! L if and only if x is the least �xpoint of

the operator glb(O([�; x℄)) regarded as an operator on

[?; x℄.

We 
on
lude this se
tion by des
ribing ultimate ap-

proximations for monotone and antimonotone operat-

ors on L.

Proposition 4.7 If O is a monotone operator on

a 
omplete latti
e L then for every (x; y) 2 L




,

U

O

(x; y) = (O(x); O(y)). If O is antimonotone then

for every (x; y) 2 L




, U

O

(x; y) = (O(y); O(x)).

Proof: By Theorem 4.5,

U

O

(x; y) = (glb(O([x; y℄)); lub(O([x; y℄))):

Now, it is easy to see that if O is monotone, then

glb(O([x; y℄)) = O(x) and lub(O([x; y℄)) = O(y). If

O is antimonotone, then glb(O([x; y℄)) = O(y) and

lub(O([x; y℄)) = O(x). The proposition follows. 2

Using the results from [DMT00a℄ and Proposition 4.7

we now obtain the following 
orollary.

Corollary 4.8 Let O be an operator on a 
omplete

latti
e L. If O is monotone, then the least �xpoint

of O is the ultimate well-founded �xpoint of O and the

unique ultimate stable �xpoint of O. If O is antimono-

tone, then KK(O) = WF(O) and every �xpoint of O

is an ultimate stable �xpoint of O.

5 ULTIMATE SEMANTICS FOR

LOGIC PROGRAMMING

The basi
 operator in logi
 programming is the one-

step provability operator T

P

introdu
ed in [vEK76℄. It

is de�ned on the latti
e of all interpretations. This lat-

ti
e 
onsists of subsets of the set of all atoms appearing



in P and is ordered by in
lusion (we identify truth as-

signments with subsets of atoms that are assigned the

value t).

Let P be a logi
 program. We denote by U

P

the ulti-

mate approximation operator for the operator T

P

. By

spe
ializing Theorem 4.5 to the operator T

P

we obtain

that for every two interpretations I � J ,

U

P

(I; J) = (glb(T

P

([I; J ℄)); lub(T

P

([I; J ℄))):

Repla
ing the ultimate approximation operator U

O

in the de�nitions of ultimate Kripke-Kleene, well-

founded and stable �xpoints with U

P

results in the


orresponding notions of ultimate Kripke-Kleene, well-

founded and stable models (semanti
s) of a program

P .

We are now in a position to dis
uss 
ommonsense reas-

oning intuitions underlying abstra
t algebrai
 
on
epts

of ultimate approximation and its �xpoints. Let us


onsider two interpretations I and J su
h that I � J .

We interpret I as a 
urrent lower bound and J as a


urrent upper bound on the set of atoms that are true

(under P ). Thus, I spe
i�es atoms that are de�n-

itely true, while J spe
i�es atoms that are possibly

true. Arguably, if an atom p is derived by applying

the operator T

P

to every interpretation K 2 [I; J ℄, it


an safely be assumed to be true (in the 
ontext of

the knowledge represented by I and J). Thus, the set

I

0

= glb(T

P

([I; J ℄)) 
an be viewed as a revision of I .

Similarly, sin
e every interpretation K 2 [I; J ℄ must

be regarded as possible a

ording to the pair (I; J)

of 
onservative and liberal estimates, an atom might

possibly be true if it 
an be derived by the operator

T

P

from at least one interpretation in [I; J ℄. Thus, the

set J

0

= lub(T

P

([I; J ℄)), 
onsisting of all su
h atoms,


an be regarded as a revision of J . Clearly, (I

0

; J

0

) =

U

P

(I; J) and, 
onsequently, U

P


an be viewed as a

way to revise our knowledge about the logi
al values

of atoms as determined by a program P from (I; J) to

(I

0

; J

0

).

By iterating U

P

starting at (?;>), we obtain the ulti-

mate Kripke-Kleene model of P as an approximation

that 
annot be further improved by applying U

P

. The

ultimate Kripke Kleene model of P approximates all

�xpoints of U

P

and, in parti
ular, all supported mod-

els of P . Often, however, the Kripke-Kleene model

is too weak as we are 
ommonly interested in those

(partial) models of P that satisfy some minimality or

groundedness 
onditions. These requirements are sat-

is�ed by ultimate stable models and, in parti
ular, by

the ultimate well-founded model of P .

When 
onstru
ting the ultimate well-founded model,

we start by assuming no knowledge about the status

of atoms: no atom is known true and all atoms are

assumed possible. Our goal is to improve on these

bounds.

To improve on the lower bound, we pro
eed as follows.

Our 
urrent knowledge does not pre
lude any inter-

pretation and all of them (the whole segment [?;>℄)

need to be taken into a

ount. If some atom p 
an

be derived by applying the operator T

P

to ea
h ele-

ment of [?;>℄ then, arguably, p 
ould be a

epted

as de�nitely true. The set of all these atoms is ex-

a
tly glb(T

P

([?;>℄)). So, this set, say I

1

, 
an be

taken as a safe new lower bound, giving a smaller in-

terval [I

1

;>℄ of possible interpretations. We now re-

peat the same pro
ess and obtain a new lower bound,

say I

2

, 
onsisting of those atoms that 
an be derived

from every interpretation in [I

1

;>℄. It is given by

I

2

= glb(T

P

([I

1

;>℄)). Clearly, I

2

improves on I

1

. We

iterate this pro
ess until a �xpoint is rea
hed. This

�xpoint, say I

1

, 
onsists of all these atoms for whi
h

there is a 
onstru
tive argument that they are true,

given that no atoms are known to be false (all atoms

are possible). Thus, it provides a safe lower bound for

the set of atoms the program should spe
ify as true.

The reasoning for revising the upper bound is di�er-

ent. The goal is to make false all atoms for whi
h

there 
annot be a 
onstru
tive argument that they are

true. Let us 
onsider an interpretation J su
h that

for every K 2 [?; J ℄, T

P

(K) 2 [?; J ℄, or equivalently,

lub(T

P

([?; J ℄)) � J . An atom p =2 J (false in J) 
an-

not be made true by applying T

P

to any element in the

segment [?; J ℄. In order to derive p by means of T

P

,

some atoms that are false in J would have to be made

true. That, however, would mean that p is not groun-

ded and 
ould be assumed to be false. Thus, ea
h su
h

interpretation J represents an upper estimate on what

is possible (its 
omplement gives a lower estimate on

what is false) under the assumption that no atom is

known to be true yet. It turns out that there is a least

interpretation, say J

1

su
h that lub(T

P

([?; J

1

℄)) � J

1

and it 
an be 
onstru
ted in a bottom up way by iter-

ating the operator lub(T

P

([?; �℄). This interpretation


an be taken as a safe lower bound on what is false

(given that no atom is known to be true).

The pair (I

1

; J

1

) is the �rst improvement on (?;>).

It is pre
isely the pair produ
ed by the �rst iteration

of the general well-founded �xpoint de�nition given

earlier. It 
an now be used, in pla
e of (?;>), to

obtain an even more re�ned estimate, (I

2

; J

2

) and the

pro
ess 
ontinues until the �xpoint is rea
hed. The

resulting pair is the ultimate well-founded model of P .

This dis
ussion demonstrates that abstra
t algebrai



on
epts of ultimate approximations 
an be given a



sound intuitive a

ount.

We will now dis
uss the properties of the ultimate se-

manti
s for logi
 programs.

Theorem 5.1 Let P , P

0

be two programs su
h that

T

P

= T

P

0

. Then, the ultimate well-founded models

and ultimate stable models of P and P

0


oin
ide.

Proof: Theorem 4.5 implies that U

P

= U

P

0

. But then

all �xpoints of U

P

and U

P

0


oin
ide. Thus, the result

follows. 2

This assertion does not hold for the (standard) well-

founded and stable models. For instan
e, let P

1

=

fp  p; p  :pg and P

2

= fp  g. Clearly, T

P

1

=

T

P

2

. However, P

2

has a stable model, fpg, while P

1

has

no stable models. Furthermore, p is true in the well-

founded model of P

2

and unknown in the well-founded

model of P

1

.

Another appealing property is that the ultimate well-

founded model of a program P with monotone oper-

ator T

P

is the least �xpoint of this operator (the least

model of P ). This is a 
orollary of Proposition 4.8. It

is not satis�ed by the standard well-founded semanti
s,

as shown by the program P

1

.

In many 
ases, the ultimate well-founded semanti
s


oin
ides with the standard well-founded semanti
s. A


onsequen
e of Corollary 4.4 is that if the well-founded

model of a program is two-valued, then it 
oin
ides

with the ultimate well-founded model. Thus, we have

the following result dealing with the 
lasses of Horn

and weakly strati�ed programs [Prz90℄:

Proposition 5.2 If a logi
 program P is a Horn pro-

gram or a (weakly) strati�ed program, then its ulti-

mate well-founded semanti
s 
oin
ides with the stand-

ard well-founded semanti
s.

Proof: Let P be a Horn program or a weakly strati�ed

program (the argument is the same). Let WF

P

be the

well-founded model of P . Let T

P

be the van Emden-

Kowalski operator for P , and let T

P

be the 
orrespond-

ing 3-valued operator [Fit85℄. Then, T

P

is an approx-

imation of T

P

and the well-founded model of P satis-

�es WF

P

=WF(T

P

) [DMT00a℄. Moreover, for weakly

strati�ed programs, WF

P

is two-valued [VRS91℄. By

Corollary 4.4

WF

P

=WF(T

P

) �

p

WF(U

P

):

Sin
e WF(U

P

) is 
onsistent, and WF

P

is 
omplete, it

follows that WF

P

= WF(U

P

), as required. 2

We now show that in general, attra
tive properties of

ultimate semanti
s 
ome at a pri
e. Namely, we have

the following two theorems.

Theorem 5.3 The problem \given a �nite proposi-

tional logi
 program P , de
ide whether P has a 
om-

plete ultimate stable model" is �

P

2

-
omplete.

Theorem 5.4 The problems \given a �nite propos-

itional logi
 program, 
ompute the ultimate well-

founded �xpoint of P" and \given a �nite propositional

logi
 program, 
ompute the ultimate Kripke-Kleene �x-

point of P" are in the 
lass �

P

2

.

These results might put in doubt the usefulness of ulti-

mate semanti
s. However, for wide 
lasses of programs

the 
omplexity does not grow. Let k be a �xed integer.

We de�ne the 
lass E

k

to 
onsist of all logi
 programs

P su
h that for every atom p 2 At(P ) at least one of

the following 
onditions holds:

1. P 
ontains at most k 
lauses with p as the head;

2. the body of ea
h 
lause with the head p 
onsists

of at most two elements;

3. the body of ea
h 
lause with the head p 
ontains

at most one positive literal;

4. the body of ea
h 
lause with the head p 
ontains

at most one negative literal.

Theorem 5.5 The problem \given a �nite proposi-

tional logi
 program from 
lass E

k

, de
ide whether P

has a 
omplete ultimate stable model" is NP-
omplete.

Theorem 5.6 The problem \given a �nite proposi-

tional logi
 program from 
lass E

k

, 
ompute the ulti-

mate well-founded �xpoint of P" is in P.

We will now prove these results. If P is a �nite pro-

positional program, then it follows dire
tly from the

de�nition of the ultimate Kripke-Kleene �xpoint of T

P

(that is, the ultimate Kripke-Kleene model of P ) that

it 
an be 
omputed by means of polynomially many

(in the size of P ) evaluations of the operator U

P

(I; J),

where I � J are interpretations, with all other 
ompu-

tational tasks taking only polynomial amount of time.

Let us also note that I is a 
omplete ultimate stable

model of P if and only if I = lfp(U

P

(�; I)). Thus, to

verify whether I is a 
omplete ultimate stable model, it

is enough to iterate the operator lfp(U

P

(�; I)) starting

with the empty interpretation. The number of itera-

tions needed to rea
h the least �xpoint is again poly-

nomial in the size of P with all other needed tasks tak-

ing polynomial time only. A similar dis
ussion shows

that the ultimate well-founded model of P 
an be 
om-

puted by means of polynomially many evaluations of

the form U

P

(I; J).

It follows that evaluating U

P

(I; J), where I � J , is

at the heart of 
omputing the ultimate Kripke-Kleene,



well-founded and 
omplete stable models of a program

P . Hen
e, we will now fo
us on this task.

Let P be a logi
 program and let p be an atom in P .

For every rule r 2 P su
h that p is the head of r, we

de�ne B

r

to be the 
onjun
tion of all literals in the

body of r. For every atom p, we denote by B

P

(p) the

disjun
tion of all formulas B

r

, where r ranges over all

rules in P with the head p. When p is the head of no

rule in P then we set B

P

(r) = ? (empty disjun
tion).

Every logi
 program P has a normal representation.

It is the 
olle
tion of rules p B

P

(p), where p ranges

over all atoms of P . The de�nition of the operator T

P

extends, in a straightforward way, to the 
ase when P

is given in its normal form de�ned above. Moreover,

if P is a logi
 program and Q is its normal repres-

entation, T

P

= T

Q

. Thus, in the remainder of this

se
tion, without loss of generality we will assume that

programs are given by means of their normal repres-

entations.

Let us re
all that

U

1

P

(I; J) = glb(T

P

([I; J ℄)) =

\

I�K�J

T

P

(K)

and

U

2

P

(I; J) = lub(T

P

([I; J ℄)) =

[

I�K�J

T

P

(K):

Let I and J be two interpretations su
h that I � J .

We de�ne the redu
t P

I;J

of P to be the program ob-

tained from P by substituting in ea
h body formula

B

P

(p), any atom r by f if r =2 J and any atom r by t

if r 2 I . Note that all body atoms of P

I;J

are elements

of J n I .

We have the following simple properties. An atom p

of P belongs to U

1

P

(I; J) if and only if for every inter-

pretation K 2 [;; J nI ℄, the formula B

P

I;J

(p) is true in

K (or, equivalently, if and only if the formula B

P

I;J

(p)

is a tautology). An atom p of P belongs to U

2

P

(I; J) if

and only if for some interpretation K 2 [;; J n I ℄, the

formula B

P

I;J

(p) is true in K (or, equivalently, if and

only if the formula B

P

I;J

(p) is satis�able).

>From the se
ond property it follows that 
omputing

U

2

P

(I; J) is easy | it 
an be a

omplished in polyno-

mial time (in the size of P ). Indeed, sin
e B

P

I;J

(p) is a

DNF formula, its satis�ability 
an be de
ided in poly-

nomial time and the 
laim follows. Thus, from now on

we will fo
us on the task of 
omputing U

1

P

(I; J).

The problem to de
ide whether a DNF formula is a

tautology is 
o-NP-
omplete. Thus, the problem to


ompute the ultimate Kripke-Kleene and well-founded

models of a program P is in the 
lass �

P

2

. Con-

sequently, Theorem 5.4 follows.

It also follows that 
he
king whether for an interpreta-

tion J , J = lfp(U

1

P

(�; J)) is in �

P

2

. Hen
e, the problem

to de
ide whether a program has a 
omplete ultimate

stable �xpoint is in the 
lass �

P

2

.

We will now show the �

P

2

-hardness of the problem of

existen
e of a 
omplete ultimate stable model of a pro-

gram P . Let ' be a propositional formula and let I

be an interpretation (a set of atoms). We re
all that

the following problem is �

P

2

-
omplete: Given a DNF

formula ' over variables x

1

; : : : ; x

m

, y

1

; : : : ; y

n

, de
ide

whether there is a truth assignment I � fx

1

; : : : ; x

m

g

su
h that '

I

is a tautology, where '

I

is the formula ob-

tained by repla
ing in ' all o

urren
es of atoms from

I with t, and by repla
ing all o

urren
es of atoms

from fx

1

; : : : ; x

m

g n I with f.

We will redu
e this problem to our problem. For ea
h

x

i

, i = 1; : : : ;m, in ' we introdu
e a new variable

x

0

i

. We also introdu
e two new atoms p and q. By '

0

we denote the formula obtained from ' by repla
ing

literals :x

i

in the disjun
ts of ' with new atoms x

0

i

.

We de�ne a program P (') to 
onsist of the following


lauses:

1. x

i

 not(x

0

i

) and x

0

i

 not(x

i

), for every i =

1; : : : ;m

2. y

i

 '

0

, for every i = 1; : : : ; n

3. p '

0

4. q  not(p);not(q).

We will show that there is I � fx

1

; : : : ; x

m

g su
h that

'

I

is a tautology if and only if P (') has an ultimate


omplete stable model.

It is easy to see the that the following properties hold

for every �xpoint M of T

P (')

:

1. q is false in M (if q is true in M , T

P (')

does not

derive q);

2. p is true in M (otherwise T

P (')

derives q);

3. y

1

; ::; y

n

are true in M (sin
e their rules have the

same bodies as p);

4. for ea
h x

i

, either x

i

or x

0

i

is true in M .

For a subset I � fx

1

; : : : ; x

m

g, let us de�ne I = I [

fx

0

i

: x

i

=2 Ig. It follows from the properties listed

above that for ea
h �xpointM of T

P (')

and, a fortiori,

ifM is a 
omplete ultimate stable model of P ('), there

exists an I su
h that

M = I [ fp; y

1

; : : : ; y

n

g:

Thus, it suÆ
es to show that if I � fx

1

; : : : ; x

m

g then

M = I [ fp; y

1

; : : : ; y

n

g is a 
omplete ultimate stable



model of P (') if and only if '

I

is a tautology.

It is easy to verify that for every set M = I [

fp; y

1

; : : : ; y

n

g and for every J � M , U

1

(J;M) sat-

is�es the following properties:

1. U

1

P (')

(J;M) \ fx

1

; ::; x

n

; x

0

1

; ::; x

0

n

g = I

2. U

1

P (')

(J;M) \ fy

1

; ::; y

n

; p; qg is either ; or

fy

1

; ::; y

n

; pg, sin
e bodies of rules of y

1

; ::; y

n

; p

are identi
al.

Thus, we �nd that U

1

P (')

(J;M) is either I or M and,


onsequently, U

1

P (')

(�;M) has a least �xpoint, whi
h

is either I or M . Hen
e M = I [ fp; y

1

; : : : ; y

n

g

is a 
omplete ultimate stable model of P (') if and

only if I is not a �xpoint of U

1

P (')

(�;M), that is if

U

1

P (')

(I;M) =M . Consequently, all we need to prove

is that p 2 U

1

P (')

(I;M) if and only if '

I

is a tautology.

Let us re
all that p 2 U

1

P (')

(I;M) if and only if

for every interpretation K 2 [;;M n I ℄, the formula

B

P (')

I;M

(p) is true in K, that is, if and only if the for-

mula B

P (')

I;M

(p) is a tautology. Let us observe that

B

P (')

(p) = '

0

. Thus, it is easy to see that B

P (')

I;M

(p)

is logi
ally equivalent to '

I

. Consequently, the 
laim

and Theorem 5.3 follows.

The problems of interest restri
ted to programs from

the 
lass E

k

be
ome easier. Let us re
all that the

de
ision whether an atom p 2 At(P ) belongs to

U

1

P

(I; J) boils down to the de
ision whether the for-

mulaB

P

I;J

(p) is a tautology. If P is in the 
lass E

k

, this

question 
an be resolved in polynomial time. Thus, the

ultimate Kripke-Kleene and the well-founded models

for programs in E

k


an be 
omputed in polynomial

time. Thus, Theorem 5.6 follows.

Similarly, it takes only polynomial time to verify

whether an interpretation I satis�es I = lfp(U

1

P

(�; I)).

Thus, the problem to de
ide whether a program from

E

k

has a 
omplete ultimate stable model is in NP. To

prove 
ompleteness, we observe that for purely negat-

ive programs:

1. there is no di�eren
e between 
omplete stable �x-

points and 
omplete ultimate stable �xpoints

2. purely negative programs are in E

k

3. the problem of existen
e of 
omplete stable

�xpoints for purely negative programs is NP-


omplete.

Thus, Theorem 5.5 follows.

6 CONCLUSIONS AND

DISCUSSION

We extended our algebrai
 framework [DMT00a,

DMT00b℄ for studying semanti
s of nonmonotoni


reasoning systems. The main 
ontribution of this pa-

per is the notion of an ultimate approximation. We

argue that the Kripke-Kleene, well-founded and stable

�xpoints of the ultimate approximation of an operator

O 
an be regarded as the Kripke-Kleene, well-founded

and stable �xpoints of the operator O itself. In earlier

approa
hes, to study �xpoints of an operator O one

needed to sele
t an appropriate approximation oper-

ator. There were, however, no prin
ipled, algebrai


ways to do so. In the present paper, we �nd a dis-

tinguished element in the spa
e of all approximations

and propose this parti
ular approximation (ultimate

approximation) to study �xpoints of O.

A striking feature of our approa
h is the ease with

whi
h it 
an be applied in any 
ontext where semanti
s

emerge as �xpoints of operators. We applied this ap-

proa
h here in the 
ontext of logi
 programming and

obtained a family of new semanti
s for logi
 programs:

the ultimate Kripke-Kleene, the ultimate well-founded

and the ultimate stable-model semanti
s. These se-

manti
s are well motivated and have attra
tive prop-

erties. First, they are preserved when we modify the

program, as long as the 2-valued provability operator

stays the same (the property that does not hold in

general for standard semanti
s). Se
ond, the ulti-

mate Kripke-Kleene and the well-founded semanti
s

are stronger (in general) than their standard 
ounter-

parts, yet approximate the 
olle
tion of all �xpoints

of O and the 
olle
tion of all stable �xpoints of O,

respe
tively. The disadvantage is that their 
omplex-

ity is higher. But, as we noti
ed, for large 
lasses of

programs there is a
tually no loss in eÆ
ien
y of 
om-

puting ultimate semanti
s.

This approa
h 
an also be applied to default and au-

toepistemi
 logi
s and results in new semanti
s with

appealing epistemologi
al features

2

. It was also re-


ently used to de�ne a pre
ise semanti
s for logi
 pro-

grams with aggregates [DPB01℄.

We end this dis
ussion with 
omments on a possible

broader role of the approximation theory. One 
om-

mon 
on
ern when designing semanti
s of nonmono-

toni
 logi
s is to avoid models justi�ed by ungroun-

ded or self-supporting (
ir
ular) arguments. The well-

founded �xpoints (semanti
s) avoid su
h arguments.

Groundedness is also a fundamental feature of indu
-

2

We will in
lude a more extensive dis
ussion of these

appli
ations in the journal version of the paper.



tion, a 
onstru
tive way in whi
h humans spe
ify 
on-


epts both in 
ommonsense reasoning settings and in

formal 
onsiderations. In its simplest form indu
tion

relies only on positive information. In general, how-

ever, it may make referen
es to negative information,

too. In either form it is a nonmonotoni
 spe
i�
ation

me
hanism. As argued in [Den98℄, the well-founded

semanti
s generalizes existing formalizations of indu
-

tion (for instan
e, positive indu
tion and iterated in-

du
tion .
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