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1 Introduction

Let A be a triangulation of a subset Q € R? with polygonal boundary dQ. The polynomial spline
space Sj(A) is defined as

ST(A) i={s € C"(Q) : 5|7 € Iy for all T € A}, 1)

where d > r > 0 are given integers and II; is the linear space of bivariate polynomials of degree
<d. A basis {B;}-, for a spline space S} which satisfies

killelloo < 11D €iBlloo < kallefloo 2)

i=1

for all choices of the coefficient vector ¢, is called a stable basis. Here k; and ks are constants
which depend only on the smallest angle in A.

Finding stable bases for spline spaces S7(A) is a non trivial task for r > 0, and can only be
done for general triangulations A when d > 3r + 2 [4]. In this paper we study C' continuous
piecewise quadratic splines, with » = 1 and d = 2. Because there exists no solution for general
triangulations, we restrict ourselves to Powell-Sabin (PS) refinements A* of A. The corresponding
splines are called Powell-Sabin splines. They appear to be very valuable for CAGD applications
[10]. Dierckx [1] proposed a stable algorithm to construct a normalized B—spline representation for
such a spline space S3(A*).

In this paper we prove that the normalized B—spline basis for Powell-Sabin splines is a stable
basis. We follow a similar approach as in [5], where it is proven that the Bernstein polynomials of
degree d on a triangle 7 form a stable basis for II;. Related work has been done for a Hermite
basis for quadratic splines. Upper bounds were derived for the Hermite basis functions and for
their first derivatives [8].



The paper is organized as follows. In section 2 we recall some general concepts of polynomials
on triangles and we give the definition of the space of Powell-Sabin splines. This section also
covers the relevant aspects of the construction of a normalized B—spline basis. Section 3 is devoted
to some useful properties of triangulations. The main theorem, which states that the normalized
B-spline basis for PS—splines is a stable basis, is established in section 4. Section 5 extends the
main theorem to the L, norm and in section 6 we treat a special case for the max norm, where we
assume that all PS—triangles have minimal area.

2 Powell-Sabin splines

2.1 Polynomials on triangles

Consider a non—degenerated triangle T (Vi1, V2, V) in a plane, having vertices V; with Cartesian
coordinates (z;,y;), ¢ = 1,2,3. This triangle will be denoted as the domain triangle. We define
the barycentric coordinates 7 = (71,72, 73) of an arbitrary point (z,y) € R? with respect to 7 as
the unique solution to the system

T1 T2 I3 T1 x
Yyr Y2 Y3 T2 = Yy (3)
1 1 1 T3 1

Each polynomial Py(z,y) € II; on 7 has a unique representation

Py(w,y) :=bF(r) = Y brABL(7), (4)
Al=d

with X\ = (/\1, Ag, )\3), A; > 0 a multi-index of length |)\| = A1 + A2+ A3 =d, and

the Bernstein—Bézier polynomials on the triangle [2].
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Figure 1: Positions of the Bézier ordinates for d = 2 .

The coefficients by are called the Bézier ordinates. By associating each ordinate by with the
Bézier domain point ()‘71, ’%, Ad&) in the triangle 7 we can display this Bernstein—Bézier represen-

tation schematically, as in figure 1.

2.2 The linear space S;(A*)

Consider a simply connected subset Q@ C R? with polygonal boundary §Q. Suppose we have
a conforming triangulation A of 2, being constituted of triangles 7;, 7 = 1,...,¢, and having



vertices V; with Cartesian coordinates (x;,y;), i = 1,...,n. The Powell-Sabin refinement A* of A
divides each triangle 7; into six smaller triangles with a common vertex. It can be constructed as
follows (see figure 2):

Figure 2: A PS-refinement A*.

1. Choose an interior point Z; for each triangle 7}, so that if two triangles 7; and 7; have a
common edge, the line joining Z; and Z; intersects this common edge at a point R;; between
its vertices. We will choose Z; as the incenter of triangle 7;.

2. Join the points Z; to the vertices of 7;.
3. For each edge of T;

e which belongs to the boundary €2, join Z; to any point on this edge.

e which is common to a triangle 7;, join Z; to R;;.

Now we consider the space of piecewise quadratic C! continuous polynomials on €2, the Powell-
Sabin splines. This space is denoted by Si(A*). Each of the 6t triangles resulting from the
PS-refinement becomes the domain triangle of a quadratic Bernstein—Bézier polynomial, i.e. we
choose d = 2 in equation (4) and (5), as indicated for one subtriangle in figure 2. Powell and Sabin
[7] showed that the following interpolation problem:

Os Os

S(Vk):fk; %(Vk)zfzka a_y(vk):fyk7 k:177n (6)

has a unique solution s(z,y) in S3(A*). Hence, the dimension of the space S} (A*) equals 3n.

2.3 A normalized B—spline representation
Dierckx [1] presented a normalized B—spline representation for Powell-Sabin splines

n 3

s(@y) =Y Y ci;Blz,y) , (v,9) €0 (7)

i=1 j=1
where the B—splines form a convex partition of unity on €, i.e.

Bi(w,y) > 0 for all z,y € 9, (8)



n 3

ZZBf(x,y) =1 for all z,y € Q. 9)

i=1 j=1

Furthermore these basis functions have local support: Bg (z,y) vanishes outside the so—called
molecule M; of vertex V;, which is the union of all triangles 7 containing V;. The molecule num-
ber m; is defined as the number of triangles in the molecule M;.

The basis functions sz (z,y) can be obtained as follows: find three linearly independent sets
(@i s Bijsvi)s § = 1,2,3 for each vertex V;. BJ(z,y) is the unique solution of the interpolation
problem (6) with (fi, fek, fyk) = (Okii,j, 0kiBi,j» OkiVi,j), Where Og; is the Kronecker delta.

The sets (aij, 8i,j,%.,5), J = 1,2,3 must be determined in such a way that equations (8) and
(9) are satisfied. To find appropriate sets (a,;, 3i,5,%i,5), J = 1,2,3 we use the algorithm from [1].

1. For each vertex V; € A, find its PS-points. This is a number of particular surrounding Bézier
domain points and the vertex V; itself. Figure 3 shows the PS—points S, S, S’ and V; for the
vertex V; in the triangle T (V7, Vs, V3).

2. For each vertex V;, find a triangle ¢;(Q;1, @42, Q;3) which contains all the PS—points of V; from
all the triangles 7 in the molecule M;. These triangles t;, ¢ = 1,...,n are called PS—triangles
and we denote their vertices with Q;;(X;;,Y:;). Figure 3 also shows such a PS—triangle ¢;.

3. Three linearly independent triplets of real numbers (e j, Bi.5,7i,5), § = 1,2, 3 can be derived
from the PS—triangle ¢; of a vertex V; as follows:

a; = (ay1,q4,043) are the barycentric coordinates of
V; with respect to t;,

Yio—Yi3 Yis—Yu Yiu—Ye
ﬁz - (/811;/822;,313)—( f ) f ) f >;
v = (v, vis) = (Xz' _Xi27Xi1_Xi3,Xz' _Xi1>7
f f f
where
Xa Ya 1
f=| X2 Yo 1
Xiz Yiz 1

We have |o;| = 1 and |3;] = || = 0.

A useful consequence is the notion of control triangles. First, we define the PS—control points
as

Cij(Xi g, Yij» Cig)- (10)
For fixed i, they constitute a triangle T;(C; 1, C; 2, C; 3) that is tangent to the surface at (V;, s(V;)).
The projection of the control triangles T; in the (x,y) plane are the PS—triangles ¢;. The area of
a PS—triangle t; equals
1 _ ]

A (0i1.0i0.0:3) = = 11
t; (QllaQ22:Qz3) 2|/311,712 _ 71‘1,81'2' 2 ( )




Q13

Figure 3: PS—points and PS—triangle.

3 Properties of triangulations and Powell-Sabin refinements

In this section we introduce some useful notation which will be used throughout the remainder of
this text, and we collect several properties needed later. Suppose 7 is a triangle, then

7| := the diameter of the smallest disk containing 7,
p1 = the radius of the largest disk contained in T,
07 := the smallest angle in the triangle T,

A7 := the area of the triangle 7.

Consider a triangulation A of a subset 2 € R? and its PS-refinement A*. Denote the PS-
refinement of triangle 7 € A as T*. We define

T = min |7
| | TPsET*' PS|’
pTe = I PThs,
0r- = min @

7 TpseT* Tes»

0a := the smallest angle in the triangulation A,
Oa+~ := the smallest angle in the PS-refinement A*
Aq := the area of Q.

The following lemmas give estimates of the above quantities.

Lemma 3.1 Consider a triangle T. Then

7] 4

LR e —

pr ~ tan(f7/2)
Proof It is well-known that

a+b-c
pr = tan(9r/2) - =7,

with a, b and c the side lengths of the triangle. Side length ¢ corresponds to the side opposite to
the angle 67, and thus has the smallest value. Denote the longest edge of T with epax, then the
following inequalities hold:

2 _a+b-c > |émax| > |7'|/2'

tan(07/2) PT pT PT



The following lemma is due to Lai and Schumaker [6].

Lemma 3.2 Suppose A* is the Powell-Sabin refinement of a given triangulation A. Then Ga- >
O sin(fa)/4.

Proof See [6]. O

Lemma 3.3 Suppose T is a triangle in A with PS—refinement T*. Denote the longest edge in the
PS-refinement T* of the triangle T as émax. Then

1 4
<

pr+ — sin(f1+)* tan(07+ /2)|emax|

Proof Let e and € be two edges of the same triangle Tps € T*. Then
sin(07-)el < Il (12)

Suppose we want to compare two arbitrary edges e; and e; in 7*. Then there always exists a

series of edges in T* such that
4
1
< | — . 13
< (g ) (13)

Evidently this equation also holds for the maximum and minimum edge. By Lemma 3.1 the
following holds:
|emin| S |T | S 4 ‘
pr= ~ pr+ ~ tan(67-/2)
Substitute (13) in (14) to prove the lemma. O

(14)

Lemma 3.4 Consider two triangles T; and Ty in A with a common edge. Denote the longest edge
in the PS—refinement T;* of the triangle T1 as emax(77") and the longest edge in the PS—refinement
TS of the triangle Ty as emax(75*). Then

e lemn (T ( | )
sin0a)" < oo < \snan )

Proof From equation (13) we find that

emas ()] < (ﬁ) g

1! \
< (G om0 (15)
and likewise
1 4
el T < (g ) leman(T0) (16)

with € a common edge of 7;* and 7,*. Combining equation (15) and (16) yields the result. O



4 Stability for the max norm

We will now prove that the basis functions {BZJ (%,9) }i=1...n,j=1,2,3, introduced in section 2.3, form
a stable basis for S%(A*), i.e. that there exist constants ki and ko such that for all choices of the
coefficient vector ¢

n 3
killelloo < 1D €iiBl(m,y)lloo < kalleloo
i=1 j=1

with ||¢||eo := max; j |¢; ;| and ||s|eo := maxgq |s(z,y)|.

Before we prove the main theorem, we introduce two lemmas. The first lemma (Lemma
4.1) gives an upper bound for [|Dys(@,y)llcc,7es and | Dys(z,y)llec, 7es, Where [|[Doslloo,75s =
maxr,s |Dzs(z,y)| and Tps is a triangle in the PS-refinement A*. This upper bound will be
useful in the proof of Theorem 4.3.

Lemma 4.1 Suppose s(z,y) € S3(A*). Consider a triangle Tps of the PS-refinement A* of A.
Then

2
lls(; Y)llco, o5

Teps

1D28(z, y)lloo, 705 <

and

”Dys(may)“OO,TPS < ||8(x’y)||00,TPS‘

PS
Proof We can write s(z,y)|7,¢ in its unique Bézier representation:
8(2,Y)|7ps 1= 8(1) = Z bXBg\(T)
[Al=2

Denote the vertices of Tps as Vi(z;,yi), i = 1,2,3. Let u = Va — Vi = (22 — 21, y2 — y1) and
v="V;—V; = (x3 — 21, y3 — y1) define two vectors. Then the derivatives of s(z,y)|7.s with
respect to u respectively v are given by

Dys(t) = (22 —21)D2s(7) + (y2 — y1) Dys(1),

Dys(t) = (z3 —21)Das(7) + (y3 — y1) Dys(7).

Solving for D,s(7) and Dys(7) gives

D,s(t) = (ys —y1)Dys(1) — (y2 — Z’Jl)DvS("—)7

f
D,s(r) = (®2 — 21)Dys(1) — (23 — ZL‘l)DuS(T),
f
from which we find that
1D25(0)lle < 2D, + B D)
The area At, is bounded below by
pTPS|y3 - Z/1| < At pTPs|y2 - yll < Arps-

Substituting in the previous equation gives

1

[[D28(7)[|o0 < % (1Dus(7)llco + 1Dws(7)|oo)-

PS



The estimate for ||Dys(7)||co can be established in the same way.
Vector u has barycentric coordinates (-1,1,0). The derivative of s(7) with respect to u is given by
[3]
Dys(r) =2 Z (=brtes + b>\+e*2)B}\(7')
[Al=1

with €1 = (1,0,0) and €3 = (0,1,0). We now have

1Dus(@, 9)lloo, 705 <2 Y (2lIblloc) BA(T) = 41b]|co-
Al=1

The same reasoning gives an analogous estimate for ||Dys(2,y)||co,7ps - Combining these two
estimates yields

4
|1 Dzs(z, Yoo, 7os < [16]] o
PS
and 4
|1 Dys(z; y)loo, o5 < [16]] o
PS

It suffices to prove that
[1blloc < 3I5(2; )loo, Tos-

Define

A1 A2 A
fz{(éagag) |A1+A2+)\3=2, A,ZO}

as the set of Bézier domain points. Then

[5(€)]6x1 = [BX(€)]exe6 - [balox1-

Since interpolation at the Bézier domain points £ by polynomials in II, is unique, [B3(£)]exe is
invertible, and we find

< IBX(E)sxello - lls(E)oxtlloo
< B Olsxello - 5@, 9)lloo,7es-

It can easily be verified that ||[B2(£)]gu6lloc = 3. O

[[blloo

The second lemma (Lemma 4.2) deals with the choice of the PS—triangles [9]. Recall figure
3. It is clear that there are infinity many choices for the PS—triangle ¢1(Q11,Q12, @13), because
the only condition for ¢; to be a valid PS-triangle is that ¢; contains the PS—points V4, S, S and
S'. Also in a general situation there are infinity many triangles that form a valid PS—triangle
for a vertex V; € A. The actual choice of a PS—triangle is important, because, as explained in
section 2.3, the B—spline basis functions depend on these PS—triangles. As a logic consequence the
approximation constants in (2) will be different for another choice of basis functions or another
choice of PS—triangles.

Now, suppose we are given a vertex V; and its surrounding PS—points. Let C; be the small-
est circle with center V; that contains all the PS—points and denote its radius as p;. It is clear
that an equilateral triangle with barycenter V; and inradius kp; with £ > 1 is a valid PS-triangle
for V;. It is also clear that for every vertex V; there exists a constant K; > 1 such that the ac-
tual PS—triangle ¢; is contained in such an equilateral triangle with barycenter V; and inradius K;p;.

Let K = max; K;, then Lemma 4.2 is used in Theorem 4.3 to reduce the dependence of the
approximation constants in (2) on the PS-triangles ¢; to dependence on the constant K. We
mention that a scaling operation on the domain does not change the value of K.



Lemma 4.2 Let an arbitrary vertex V; € A be given. Consider the surrounding PS—points of
vertex V; and denote the PS—point with the longest distance to vertex V; as S. Define C; as the
circle with center V; and radius K|SV;| where K € R is a constant and K > 1. It is clear that
C; contains all the PS—points. Define Tg € A* as either one of the two triangles that contains the
PS-point S and define To, as the set of equilateral triangles that have C; as its inscribed circle.
Suppose t; is a valid PS-triangle and suppose t; is contained in a triangle 75, € Tc,. Then

|ema.x(tz)|
eman(To)] < V3K

(See figure 4)

Figure 4: Circle C; and a triangle 7/, € 7¢, for K = 1.

Proof Because t; is contained in 7/, it is sufficient to prove that

lemax (7, )|
R G < V3K,
lemax(7s)| —
Clearly,
lemax(T¢,)| = 2V3K|SVi). (17)
We also know that
lemax (Ts)| > 2|SV;l. (18)

Combining (17) and (18) proves the lemma. O

Now we come to the main theorem of this paper which states that the normalized B—spline
basis functions form a, stable basis.

Theorem 4.3 Consider a triangulation A of a subset Q € R? with polygonal boundary Q. Sup-
pose A is constituted of triangles T;, j =1,...,t which have vertices V;, i =1,...,n. Define A*
as the PS-refinement of A. Suppose that there exists a constant K such that every PS—triangle t;
is contained in a triangle 75, € Tc, where To, is defined as in Lemma 4.2. Then there exists a
constant K1 depending only on K and on the smallest angle in the underlying triangulation such
that for all Powell-Sabin splines s(x,y) € Ss(A*) in their normalized B—spline representation (7),

lls(,y)lloo < llelloo < Kills(z,y)llco- (19)



Proof The left inequality immediately follows from equation (9). We now establish the right
inequality. From (7) and the construction of the B-spline basis functions we have

s(Vi) = aqci + aipci + auzcs,
D,s(Vi) = Paca + Biacio + Piscia,
Dys(V;) = ~vaci + viaCiz + VisCis,
or
s=A-¢,
s(V3) o o Qg3 ci1
D.s(V;) | =| B Bz Pis Ci2
Dys(V;) Yir Y2 i3 Ci3
If we take into account that a;3 = 1 — a1 — aya, Bizs = —Bi1 — Biz and v;3 = —y;1 — iz, then we
find that the inverse of A is equal to
1 ma fa
A= 1 n W |,
1 ms s

where

= Qa2 Qi + 8172 — 8527
“ Birvi2 — Biava ’
a1 Bi2 — a2 Bi — 051 B2 + 05284

Birvie — Biavil

Tij
Suppose that ||¢||co = |¢ij|. Then
llelloo = [s(Vi) + mij Das(Vi) + i Dys(Vi)|-
Define Ts as in Lemma, 4.2. Lemma 4.1 applied to triangle Tg, together with equation (11), yields

12
lelloo < l18(, 9)lloor7s (1 + s — auria + Gy — Sl 24y ot

Ts

12
|ai1 Biz — o Bin — 81 8i2 + Jj28i | - 24y, - ) .
PTs
If we use the explicit formulas for g;; and «;;, we get

24 A4, (2|Xi3 — Xio| + 2| X5 — Xiz| 4+ 2|Yis — Yir| +2]Yi2 — Yz3|>]
24, ‘

lello < l15(z9)lloe.7s [1 N

Ts

Here we have also used the fact that |a;;] < 1 and |6;;] < 1.
We apply Lemma, 3.3 to the equation and find that

lelloo < 118(259)lloo. 7 [1 N 48 - (8lemax(ti)|) ] |

Sin(Oa4)? tan(0a«/2)|emax(Ts)]
By Lemma 4.2 and Lemma 3.2 it follows that

lls(z, )l < llelloe < Kills(, )l
with

) 384V3K
Ky = [1 " sin(fa sin(6a)/4)* tan(0a Sin(eA)/g)] -

The assumption that there exists a constant K such that every PS—triangle t; is contained
in a triangle 7/, € 7T¢, is equivalent with the statement that the area of the PS-triangles has
to be bounded. As a consequence we remark that the smaller the PS-triangles the better the
approximation constants.

10



5 Stability for the L, norm

Theorem 5.1 extends Theorem 4.3 to the L, norm. As before, A is a given triangulation of a subset
Q € R? with polygonal boundary 6Q. A basis {B;}"_, for a spline space S7(A) (1) which satisfies

" B
kallell, < 12= 0Bl ey, (20)
AQ

for all choices of the coefficient vector c, is called a stable basis for the L, norm. Here ||c||, :=

>, |c,-|p)1/p and ||s||, := ([, |s(z,y)|Pdzdy) /P We are interested in constants k; and k, which
depend only on the smallest angle in the tr1a,ngu1at10n A.

Theorem 5.1 Consider a triangulation A of a subset Q € R? with polygonal boundary 6Q. Sup-
pose A is constituted of triangles T;, j =1,...,t which have vertices V;, i = 1,...,n. Define A*
as the PS-refinement of A. Suppose that there exists a constant K such that every PS—triangle t;
is contained in a triangle 77, € Tc, where To, is defined as in Lemma 4.2. Then there exists a
constant Ko depending only on K and on the smallest angle in the underlying triangulation such
that for all Powell-Sabin splines s(x,y) € S3(A*) in their normalized B-spline representation (7)

. 1/p
minyea 477 1 lls(z, )|l
ﬁ llellp < 7’3 < llellp (21)
Q
for 1 <p< 0.
Proof We have »
lstzllp = | % sBia.g)| dody,
i=1 j=1

Let 1/p+ 1/g = 1, then by Holder’s inequality:

n 3
ls(z,9)ll; < /QIICII£ ZZ(Bf(w,y))q) dxdy

IN

L el {33 Bl | dady

llellp - Ag-

This proves the right inequality.

To prove the left—hand side of (21), we use the fact that all norms on a finite dimensional vector
space are equivalent. Consider a triangle 7 € A. By mapping 7 to the standard simplex 7; =
{(z,9)0 < z,y < 1,z +y < 1}, we get that

(2, Y)lloo,7. < Kslls(z,y)llp, 7.

This implies that
K3
||8(£U,y)||00,7‘ < 1 ||5($ay)||p77"
AP
T

11



So,

S S

llellp <
TeA \ilver j=1
< 3 (el )
TeA
< X (9K l1s(z, )12, 7)
<y (9K” sl )
TeA
< 9KP——3 z,y
< orp X el
Because ) 1 lIs(@,9)Il? 7 = |Is(z,y)l|5, we have proven that there exists a constant K, =
9'/P K, K5 such that
K,
llellp <

lls(z; y)llp-
mingyeA A¥p i

Theorem 5.1 shows that the basis functions form a stable basis for the L, norm, but the constant
/ P ’
. 1/p
k1 from (20) contains a factor mmTA%EﬁPAL. Nevertheless our approximation constant is satisfactory

Q
because its value does not change by a scaling operation on the domain.

6 Minimal PS—triangles

By using the PS—control points (10) we can interactively change the shape of a PS—spline surface.
In order to have a good local control over the spline surface we want the PS—triangles ¢; (which
are the projection of the control triangles in the (z,y) plane) to be as small as possible. Therefore
we are interested in the PS—triangle t; with the smallest area. To determine these minimal PS—
triangles we have to solve a quadratic programming problem as mentioned in [1].

In section 4 we explained that there are infinity many choices for the PS—triangles. In this
section we will assume that only the PS—triangles with minimal area are used. For this special
case we derive an estimate for the constant K, introduced in section 4, which only depends on the
smallest angle in the triangulation A.

Theorem 6.1 Suppose V; is a vertez in the triangulation A with molecule M; and molecule number
m; and suppose that V; ¢ 6Q. Let t; be the PS—triangle with minimal area that contains all the
PS—points of vertex V;. Denote the PS—point with the largest distance to vertex V; as S and define
C; as the circle with center V; and radius K|SV;|. If

3
>
~ 25in(fa sin(fa)/8) sin(fa sin(fa)/4)47/0a+4

(22)
then there exists an equilateral triangle Téi with C; as its inscribed circle that contains t; (see figure
4).

Proof The PS—points surrounding vertex V; form a polygon P with m; corners. It is clear that
the PS—triangle ¢; contains this m;—gon.
Because V; ¢ 09 we know that V; lies inside this polygon P. The distance from an edge of the

12



polygon P to vertex V; can be bounded below. If we use the same reasoning as in equation (12),
then we get for an arbitrary edge ep of the polygon P that

1
lepVi| > 5 efélliél* le| sin(@ax/2).

Here, M is defined as the molecule of vertex V; in the PS—refinement A* of A.
From this inequality we can conclude that the height h;, of PS—triangle ¢; can be bounded below
by
. > mi i * .
he, > eréli/% le| sin(fa+/2) (23)

As in Lemma 4.2, we know that there exists a triangle Tg € M} such that (18) is satisfied. Define
triangle 7; € A as the triangle that contains triangle 7s € A* and define triangle 7; € A as the
triangle that contains edge é € M; for which |é] = min.ens |e|. Then 7; and 7; belong to the
same molecule M; and by Lemma 3.4

1 \*7
)) emax (7)),

Sin(@A*

eman (7)1 <
and by (18) and (13)
1 2m;+4
2I18Vi| £ | —— min y )
S () lemnT7)
where 7;* and 7" are the corresponding PS-refinements. Combining this with (23) gives
he; > 2sin(0a-/2) sin(a-)>™ SV (24)
Now, assume that for an arbitrary constant K > 1 we have that
|emax(ti)| > 2ﬁK|SW| (25)

This means that the PS-triangle ¢; is not contained in a triangle 7/, . The area of PS-triangle ¢;
can be bounded below by combining equation (24) and (25). We get

Ay, > % (2sin(@a~/2) sin(Ba-)>™|SV;]) (2\/§K|SV,~|) ) (26)

The area of a triangle T/, with K = 1 is equal to 3v/3|SV;|?. If this area is smaller than the
right—hand side of (26) we have a contradiction, because t; is supposed to be the PS—triangle with
minimal area. So, we have a contradiction if
3
K>
= 2sin(fa+/2) sin(Oa~)2mite’

or, by Lemma 3.2, if
3
K> — : : : '
= 2sin(fa sin(fa)/8) sin(fa sin(fa)/4)2mi+4
It is easy to see that the molecule number m; can be bounded by

m; < 2—7T (27)
(N

This proves the theorem. [
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