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Abstract

We give the solution of a discrete least squares approximation problem in terms
of orthonormal polynomial vectors. The degrees of the polynomial elements of these
vectors can be different. An algorithm is constructed computing the coefficients of
recurrence relations for the orthonormal polynomial vectors. In case the function values
are prescribed in points on the real axis or on the unit circle, variants of the original
algorithm can be designed which are an order of magnitude more efficient. Although
the recurrence relations require all previous vectors to compute the next orthonormal
polynomial vector, in the real or the unit-circle case only a fixed number of previous
vectors are required.

1 Introduction

In this paper, we want to solve the following discrete least squares approximation problem:
Given the points z; € C, i = 1,2,...,m and the weight vectors F; € C**™, compute the
polynomial vector P € ([z]"*! with a componentwise upper bound for the degree

8P < A :=[61,...,6n) (componentwise), A € (NuU{-1})"*!,

such that

m

> P¥(z)F{ FiP(x)

i=1
is minimal.
The problem in this form will always have the trivial solution P = 0. Therefore, we add the
condition that one of the elements of P has to be monic, i.e. we have precise degree for the
monic component. We will solve this discrete least squares approximation problem using
polynomial vectors orthogonal with respect to the discrete inner product

(P,Q) := i PH(z)FE F.Q(%).

=1

We will give an algorithm to compute the building blocks of a recurrence relation from which
these orthogonal polynomial vectors can be computed. We show that if all the points z;
are real or all the points z; are on the unit circle, the complexity of the algorithm can be
reduced an order of magnitude.

In previous publications [4, 14, 15], we have considered special cases of the approximation
problem described above. In [14], we gave an algorithm to solve the problem with real points
zj, n = 2 and §; = 63. The algorithm is a generalization of the algorithm of Reichel [11],
which looks for the optimal polynomial fitting some given function values in some real
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points z; in a least squares sense. Reichel’s algorithm itself is based on the Rutishauser-
Gragg-Harrod algorithm [13, 10, 1] for the computation of Jacobi matrices. Similar results
were obtained in [3, 7]. In section 10, we investigate the real point case for arbitrary n and
arbitrary degrees 6;,i1=1,2,...,n.

Based on the inverse unitary QR algorithm for computing unitary Hessenberg matrices
[2], Reichel, Ammar and Gragg [12] solve the approximation problem when the given function
values are taken in points on the unit circle. In [15], we generalized this for n = 1 to n =2
with equal degrees §; = §;. Section 11 handles the general problem on the unit circle. When
n = 2, we refer the reader to [4], which summarizes [14] and [15] and handles the case of
arbitrary degrees §; and 8.

In [14, 15], we have given some numerical examples showing that the algorithms can be
used to compute rational interpolants or rational approximants in a linearized discrete least
squares sense. In section 8, we give the conditions for having an interpolating polynomial
vector. In a next publication, we shall show how we can use the theory developed here,
to compute matrix rational interpolants or matrix rational approximants in a linearized
discrete least squares sense.

2 Discrete least squares approximation problem

Definition 2.1 (inner product, norm) Given the points z; € C, (not necessarily differ-
ent from each other) and the weight vectors F; € C'*", i = 1,2,...,m we consider the
following discrete inner product (P, Q) for two polynomial vectors P,Q € Clz]"*:

m

(P,Q) := Y PH () FF FiQ(z). (1)

=1

The norm ||P|| of a polynomial vector P € C[z]"*! is defined as:

IlP|| := V/(P, P).
We consider the following approximation problem

Definition 2.2 (discrete least squares approximation problem) Given the points z; €
C and the weight vectors F; € C**™,i=1,2,...,m, the degree vector A := [61,82,...,6m)T €
(NU{-1})"*? and some degree indez va € {1,2,...,n}.

With A := (A,va) (the extended degree vector) and P := [Py, P;,..., P,)T € Clz]**,
consider the seis Pp and Px

Pa = {Ped™*'|8P <A},
Py = {P€Pa|dP, =6, and P,, is monic}.

The discrete least squares approzimation problem looks for the polynomial vector P such that
|P]| = minger, ||QI|-

3 Orthonormal polynomial vectors

To solve the discrete least squares approximation problem, we could easily transform it into
a linear algebra problem. Note that F; P(z;) € C is a scalar. Therefore, the original problem
is equivalent to the m linear equations

F;P(%)=0, i=1,2,...,m

which have to be solved in a least squares sense, i.e.
- _
Y " Iri|? is minimal with r; = F; P(z)
=1
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(with P € Pg). Because P is a C-vector space having dimension |A] := 377_, (6 + 1), we
can choose a basis for P, and write out the least squares problem using coordinates with
respect to this basis. Introducing the normality condition, i.e. P,, has to be monic, we can
eliminate one of the coordinates. We obtain an m x (|A| — 1) least squares problem. The
amount of computational work is proportional to m|A|? (e.g. using the normal equations
or the QR factorization).

Assume however that we have an orthonormal basis for P4 such that the basis vectors
Bj := [Bj.l, Bja,.--, Bj.n] satisfy 8B, < 6., 1 =1,2,..., |A| -1, and 8BIA|I|;A = Goys
then we can write every P € Pp in a unique way as:

|al
P= ZB,'G_,', a; €C

i=1

Because P,, has to be monic of degree 6,,, aja| is fixed. The other coordinates aj, j =
1,2,...,|A| — 1 can be choosen freely. We get

IPII* = (P,P)
14| |al
= <ZBjGJ',ZBjGj>
§=1 §=1
|a]
= Z|aji2 (because (B;, Bj) = 6;j).
J=1

Therefore, to minimize || P||, we can put aj, j =1,2,...,|A| — 1 equal to zero or
P = Bjajaja; and ||P|| = |ajal-

Hence, to solve the least squares approximation problem we can compute the orthonormal
polynomial vector Bja| and this will give us the solution (up to a scalar multiplication to
make it monic).

Up till now, the degree condition for the orthonormal basis vectors B; was very mild. There
is still a lot of freedom in choosing the Bj. We could start with any basis for Pa: with
A':=A-U,, and U; :=[0,0,...,0,1,0,...,0]7 (1 on the j-th place).

Using the inner product, we can apply Gram-Schmidt to get an orthonormal basis for Pa..
Finally we can add an arbitrary polynomial vector € Pz and use Gram-Schmidt to obtain
an orthonormal basis for Po. Let us concentrate for a while on the scalar case (n = 1).
Suppose that we are not only interested in the solution of the least squares problem with a
fixed degree (vector) A but also in the solutions of degree AF) = Atk k=1,2,... Ifwe
have an orthonormal basis B(¥) for A(¥), it is easy to get an orthonormal basis for A(%+1),
Because A(*+1)" .= A(x+1) _ 1 — A(¥) we can use the orthonormal basis of the previous
step and use Gram-Schmidt to orthogonalize an arbitrary polynomial of degree A(*+1) with
respect to these orthonormal basis vectors.

If we start initially with A = 0, we get a sequence of orthonormal basis vectors { By, By, B3, ...}
with corresponding degree sequence {0,1,2,...}. The only possibility for the degree index
va in the scalar case is: vp) = 1. However, we need this degree index in the vector
case (n > 1). This generates more freedom in the choice of the degree vector sequence
corresponding to the sequence of orthonormal polynomial vectors.

Suppose we are not only interested in a solution having a fixed extended degree vector
A := (A, va) but also in the solutions with

AlF) .= (A(k], Vam)
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Figure 3.1: The original and the projected polyline of example 3.1

where )
k=:np+q (0<g<n) (pg€Z)
AR :=A-U}L +(p+1)U-U]

Vam) =4
‘ U,.l::[1,1,...,1,0....,0]T
j ones
Up i= WM ——

j Zeros
Tim 1,100,435,

“

We get for £k = va, i.e. p = 0 and ¢ = va, that A() = A, hence that the solution has
extended degree A = A(¥2) = (A, va).

If we put the degree vectors in an n-dimensional table, we want to walk along a “diagonal”.
In the scalar case, it is clear that we can start our sequence of degrees by taking A = 0.
Then, Pa has dimension one. For the vector case, things are a little bit more complicated.
The idea is to arrive in A(¥) = A € Z" for some k. We shall follow a diagonal path in
the n-dimensional space Z"*!. Each move on the diagonal from AK) to A¥) 4 U will be
decomposed in n elementary steps in each of the coordinate directions A¥+1) = A(¥) 4 U,
AG+2) = A(R) gl . Alk+7) = A(¥) 4 U} which results in a staircase-like polyline.
This works quite well as soon as A(¥) > 0 (componentwise). The starting point of this
diagonal however will be outside the positive part of the coordinate system. As soon as
some §; < 0, the corresponding polynomial will be zero and it will remain zero, no matter
how negative §; will get. This means that whenever A(*) falls outside (NU {—1})"**, Paw)
will be equal to some Ppqy with Al) € (NU {-1})"%'. Therefore, we shall project the
polyline onto the part (NU {—1})*%! of Z"*, such that A(*) < A(*+1) for all k > 0, which
means that dimPpx+1) = dimPp) + 1, starting with A(®) — _U, which corresponds to
Paw = {[0,0,..., O]T} with dim Py ) = 0.

Example 3.1 Take n = 2, A = [3,1]T and va = 2. Figure 3.1 shows the original and
projected polylines in Z?. The same results are summarized in the following table



polyline in Z"*?

k ... —6 -b —4 -3 -2 -1 0 1]12|3 4
= 1 ok =3 b ¥ =l o 0811 1
g ... 2 1 % & 9% 1 &% i1]3|1 2
AT -1 0 0o 1 1 2 2 3|3|4 4
e. =3 =3 -2 -2 -1 -1 0 0f1]1 2
Vot 1w 2 F 4 1 % 1 ¥ 1L]2]1 %

projected polyline in (NU {—1})"*!

(renumbering by algorithm 3.1)
k 0 1 Z 3 4 5(6|7 8
Al -1 0 1 2 2 3|34 4
-1 -1 -1 -1 0 0{1]1 2
VA(») 1 1 1 2 1|2} 2

Since all components of A(¥) k < —6 are negative, Pax)y = {[0,0]T} for all k < —6.
Furthermore, we have Pp(-s) = Pa(-+) and Pp(-3) = Pa(-2).
We will therefore change the numbering and select only those A(¥) such that
dimPpm+1) = dimPuy + 1.

Therefore we introduce shift parameters defined by

A% = 0] 8 =AU
For notational simplicity, we assume that

526 2>...26,20

which can always be obtained after reordering.
The reader can check that the following algorithm generates a sequence of degree indices
va(w) and degree vectors A(*) corresponding to the projected polyline such that

dimPpm+1) =dimPuyy +1, k> 0.
Algorithm 3.1 Given the shift parameters
B >85>,...,620, &eN,
we construct the two sequences
{a™} and {vam}
k—0
for 6 := —67,—67+1,...do

fori:=1,2,...,ndo
if 6 +6F > 0 then

k—k+1
A*)  max{6U + A* —U?,-U}, (componentwise)
VA 1
with
¥ = Bibeasdl”
A = B85 BT = AT,
Ul s= [lidiesndy0,0;0000 -
j ones
U2 4= 0,000 010 .
i zeros
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k Alk) V)
1 (0,-1,-1,...,-1) 1
2 (1,-1,-1,...,-1) 1
6 — 65 +1 (§¢ - 63,-1,-1,...,-1) 1
6 —65+2 (6 - 6%,0,-1,...,-1) 2
6 —65+3 (6% — 65 +1,0,—1,...,-1) - 1
6F — 65 +4 (6F - 65 +1,1,-1,...,-1) 2
(67 — 635,65 -85 —1,-1,...,-1) 1
(65 — 63,65 — 65,—-1,...,-1) 2
§F + 65 — 265 +3 (6F — 63,65 — 65,0,—1,-1) 3
T Gk~ (- 1)8F +5 | (65— 63,65 —6F,..., 601 —685,0,-1,...,-1) | j

Table 3.1: The sequences {A(*)}2, and {vam},

&

-8 sk —8% —&3 —&% .
1 ® * ¥ * * * * * e * *
2 0 0 0 ® * * * * * * 3
3 0 0 0 0 0 0 ® & * * *
4 0 0 0 0 0 0 0 0 * * *
n—1 0 0 0 0 0 0 0 * * *
n 0 0 0 0 0 0 0 0 0 ® +*

i]

Table 3.2: Degree structure table

Algorithm 3.1 generates the sequences {A(*)} | and {v ) }§2, given in table 3.1. Another
way to represent this result is as follows. Based on the shift parameters 65 > 65 > ... >
&% > 0, we can construct the degree structure table 3.2. Algorithm 3.1 runs through the
entries of this table column by column, starting at the top of each column going downwards.
A x indicates that §U + A* — U? is a degree vector which we have not encountered before.
A 0 indicates that §U + A* — U? gives no new degree structure. The entries where a new
component comes into play are indicated as ®.

In the next section, we will introduce several indices to facilitate the formulation of the
algorithm described in section 5.

4 Indices

In the next section, we give an algorithm with input our initial data (the points z;, the
weights F;) and output the building blocks of a recurrence relation generating the desired
orthonormal polynomial vectors. This transformation process is influenced by the shift
parameters _ _

= 6185 81T



with
1>26>...26,>0, &eN.

Because of this ordering, we shall start with P, = [0,0,...,0]T. Then the first component
will become nonzero. Its degree will raise till §§ — 5. The next step is to introduce a second
component which is nonzero, following a staircase in the subspace [6, 62, —1,..., —1]7, until
you reach [6% — 6%,6% — 85,—1,...,—1]7. Now we introduce a nonzero polynomial in the
third position, etc. The indices k of A(®) where the nonzero polynomial in position j is
introduced will be denoted by u;. We call them jump indices. So, the n shift parameters

¥, ..., 0% will define uniquely the n jump indices
pr=1< pa<pa<...< pin (2)
with oy
i
PJ=Z€;:—(J—1)6;+J, i=L2,...,n
k=1

For a proof we refer to theorem 7.3.
Once we have the jump indices, we define the so-called pivot indices m, k =1,2,...,m
as follows (pn4+1 = +00)

if k = pj then 7, =3
else pj < k < pj4q for some j € {1,2,...,n} and then ;g =k —j+n

Why we define the pivot indices in this way will become clear later on when we shall show
that the algorithm which we describe below will indeed give the solution of our problem
having the prescribed degree structure. The previous definition of the pivot indices means
that we basically take the sequence of numbers {n+1,n+2,n+3,...,m—n} and introduce
the numbers j = 1,2,...,n just before position u;, where we renumber each time.

Example 4.1 Take n = 3 with jump indices p; = 1, pz = 4, pg = 5. We start with the
sequence {4,5,6,7,8,9,10,11,...,m — 3}

1 is introduced before the position pu;: {1,4,5,6,7,8,9,10,11,...,m — 2},
2 is introduced before the position us: {1,4,5,2,6,7,8,9,10,11,...,m — 1},
3 is introduced before the position ua: {1,4,5,2,3,6,7,8,9,10,11,...,m}.

<

The pivot indices play an important role in the definition of the algorithm. They define the
position (%, x;) of the pivot elements in the elimination procedure which we describe below.

5 The algorithm

The algorithm starts with a scheme which looks as follows:

|
F] Z1
Fg F4]

Fr '
and transforms this using similarity transformations on A into
[Q¥F | Q"AQ] = Q¥[F | A] [ ™ ]
(Q unitary) such that-[Q®F | Q¥AQ] has zeros below the pivot positions (i,7;), i =

1,200
The following algorithm will do the job:



Algorithm 5.1 Transformation of the initial data mairiz D := [F | A] into a matriz
[QHF | QHAQ] having zeros below the pivot elements

for i:=1 to m do
forj:=1toi—1do
* make element d; ; zero
by using a Givens rotation (or reflection) JH
with the pivot element (3, x;):
D—JHD

*De—D [ In J ] (similarity transformation)

Algorithm 5.1 constructs
m
Y (G-1)=(m-1)m/2
=1
Givens rotations. For a certain 1 and j, the Givens rotation is applied to the left on 2 vectors

of length (i + n + 1 — j) and to the right on 2 vectors of length < (j + n + 1). The total
number of Givens rotations applied to 2 numbers is therefore limited by

ii[(i+n+1~j)+(i+“+1n
m(m—l—l();(:!m-{- 1) +(2ﬂ+2_ 1)m'(mT+l)—(2n+ 2)m
= O(m3/2).

Counting 4 multiplications for each application of a Givens rotation, this results in O(2m?)
multiplications. Note that also a Householder variant of Algorithm 5.1 could be designed.

6 Recurrence relations for the columns of the unitary
transformation matrix Q

In the previous section we have transformed the initial data matrix D := [F | A] into

ria G o)=Ela

We can write

F = QEF, (3)
AQ = QG. (4)
Knowing E =: [e;;] and G =: [g;;], we can reconstruct the columns Qi of Q, k =

1,2,3,...,m based on the pivot indices. There are the following two possibilities:

a) 1 < m < n: We know that e;,, = 0, i > k, because E is zero below pivot position
(k,7x). Therefore, writing out equality (3) for the m;-th column gives us (Fj denotes
the j-th column of F)

Fr. =[@1Qa...Q:] | By,

with gy 5° =
E,, = 6“‘




So, we can write Q} as
k-1

erm Qs = Fi, — ) &x Qs (5)

t=1

b) m —n=:m}, > 0. We know that g;; =0,i> k.
Writing out equality (4) for the x}-th column gives us:

AQx = [Q1Q2...Qk] |: i jl

4
G,.:[ ":.]_
2 0

So, we can write @3 based on the previous columns of Q as:

with

k-1

GeriQr = AQui — D giny Qi (6)

=1

Note that k > 7}, because 1 < 7, < n, k > 1, with
n=k—n, =#{xj]1 <x; <n,j <k}

As long as ek, and gi .« are different from zero, we can use (5) and (6) as a recurrence
relation to compute the columns Q, k =1, 2,3,4,...

7 Recurrence relations for a sequence of orthonormal
polynomial vectors

Similar to the recurrence relations (5) and (6) for the columns Qj, we can construct a

sequence of polynomial vectors {¢x}{2,, ¢ € C[z]*** as follows:

a) 1< 7 <m

k-1
ek dr(2) = Uny — ) €im $i(2) (7)
i=1
b) mx —n=:7; > 0:
k-1
Gr,xl, Ok (2) = 2621 (2) — de,w; i(2). (8)

Theorem 7.1 (relationship between Qi and ¢x(z)) Let Fy denote the rows of F and
F} the columns of F':

Fy
F,
T P o T
Frm
“Then
Qr = F*¢}
with
Pi(z1)
F* := block diagonal {Fy, Fa,...,Fn}, and ¢} :=
r(zm)



Proof. True for k = 1, because (U = [1,0,...,0]T)

Uy
' * Ul
e Q1 = Fi=F < |
U,
U,
U,
e1161(2) = Ui, hence enidi=| .
U,
Thus
QIZF*¢;.

Induction hypothesis: Suppose the theorem is true for Q;, i =1,2,...,k— 1.
a) 1 < m; < n: Take the recurrence relation (5) for Qu:

k-1

et Qe =Fp, — ) ein Qi

i=1

We use the induction hypothesis:
Qi=F*¢r: i=12,...,k—1,

to get
U,
U.,,, k-1
ek,:.Qk = M : - F* Z €, 7n @:‘
N =1
Ur,

= F*(ek."l'hos:)'

b) mx — n > 0: The proof is similar.
o

Using the connection between the polynomial vectors ¢i(z) and the columns Qi of the
unitary transformation matrix @, we get

Theorem 7.2 (orthonormality of ¢;) The polynomial vectors, defined by (7) and (8),
satisfy

(Prs P1) = i

where the inner product is defined in (1).
Proof. This follows from the orthogonality of the columns Q:

(¢k: ¢l)

> ou(z) FH Figu(z)
=1

QfQ

br1

O

At this point, we have given an algorithm to compute the recurrence coefficients for a
sequence of orthonormal polynomial vectors ¢;. Now, we want to show that our choice of —
the jump indices 1, g3, . -, iin a8 defined in (2) gives indeed the desired degree structure of
the orthonormal polynomial vectors ¢, which was proposed by algorithm 3.1.
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Theorem 7.3 If we couple the jump indices p; to the shift parameter 85 in the following
way:

b = 1
i-1

pi = . &G-(G-18+4 i=23,...n
k=1

the orthonormal polynomial vectors ¢y, have the degree siructure given by algorithm 3.1.

Proof. We have the following relationship between the jump indices {u;}7_;, the pivot
indices {7}, and the degree structure of ¢; (using recurrence relations (73 and (8)):

k T degree structure of ¢, Va(w)
a =1 1 (0,-1,-1,...,-1) 1
m+1| n+1 (3,78, ey 551) 1
pa—1|n+p—2 (65 — 85,-1,-1,...,-1) 1
M2 2 (6t — 63,0,-1,...,-1) 2
pa+1|n4p—1 (6f - 65 +1,0,-1,...,-1) 1
ﬂ2+2 n -+ 4z (6’;—-6;—{-*1,1‘—1,,—1) 2
pa—1|n+ps—3 (65 — 63,65 — 65,-1,...,-1) 2
K3 3 (67 — 63,65 — 65,0,—1,—1) 3
p3+1|n+puz—2 (65 — 65 +1,65 — 65,0,—1,-1) 1
us+2|n+pa—1 (6% — 6%+ 1,85 — 6 +1,0,-1,-1) 2
b — 1 Hn (‘5;.("6:'6;_6:;:--'1%—1_6:_11_-1) n—1
Hn n (86 — 65,65 —&%,...,6%_, — 65,0) n
pnt1 P +1 (65 — 6% +1,65—6%,...,65_,—8%,0) 1
pn +2 pn +2 (65 —6x+1,65—65+1,...,6;_, —6;,0) 2

Note that
(b= 1) —pj-1 = (5, - 6)G - 1)
is a multiple of (j — 1).
We can also look at table 3.2 to get the same result. The degree structure of an orthonormal

polynomial vector computed by using recurrence relation (7) is indicated as ®. The other
entries % are coupled to recurrence relation (8). Note that for an entry in the table with

-6 <6< 6, and 1< i<,

the value of 7 in (8) is such that ¢, is coupled to entry (3,6 — 1), i.e. lying on the same row
(strict degree for the same i) but with all degrees decreased by one. a

Note that if we want to use the orthonormal polynomial vectors ¢; to solve the discrete least
squares approximation problem of definition 2.2, we only have to compute $|a| using the
recurrence relations (7) and (8). Therefore, algorithm 5.1 can be adapted only computing
those entries of F and G needed in the recurrence relations. The computational work will
then be proportional to m|A|? instead of m3.

8 Singular case

Until now, we assumed all the entries e; ~, and g« to be different from zero, which-we
call the regular case.

‘Suppose now that these can be zero. Suppose that the first entry equal to zero is
11



(a) e, : In this case, we can not use recurrence relation (7) to compute ¢x(z). However,
we can compute a polynomial vector ¢} as follows:

¢k z) Z et Th ¢I(z
From (5), we know that
k-1
0= ei:‘thl‘- —- F‘:',. = Zei"hQi
i=1
k-1
= Fj, - einF*¢!
i=1
Ux,
U. =l
= | | =Y em el
: i=1
7
= P

Hence, Fj#,(2;)=0,i=1,2,...,m

(b) gx,x.: As in (a), we can prove that

$31(2) = z¢x(2) — Z—: 9i,x;, $i(2)

satisfies
Fi$p(2) =0, i=12,...,m.

In the regular case, the least squares approximation error || P|| = |aja|| is different from zero.
In the singular case, this error is zero and ¢} is an interpolating polynomial vector for the
given data.

Note that in the regular case the inner product from definition 2.1 is a true inner product
for the C-vector space Pu(n), i.e. as long as €j,x; and gj,xi are different from zero.

9 Related orthonormal polynomial vectors and matri-
ces

We can consider orthonormal polynomial vectors with respect to the generalized inner prod-
uct

. FO [ FO
(PQ):=) P(z)*| : : | Q)
k'=1 F(E) F(f)
with
P, Q & qz]nx 1
and —

Fec™, kK=1,2...,m, j=12,...,1L

This inner product can be written as

(P,Q) = Z ZP(z ) ED" FOQ(z0)
k'=1j=1
12



which can always be rewritten as:

(P,Q) = 3 P(a) FEFuQ(1)

k=1

reducing the problem of constructing a corresponding sequence of orthonormal polynomial
vectors to the original problem.
To get orthonormal polynomial matrices, we consider the following inner product:

(PQ) = 3 Pan) FEFLQ() € CX (9

k=1

with P, Q € Clz]"*!.
Taking the shift parameters A*, we can easily represent all polynomial matrices having a
degree

<[6U+A*-U,...,6U + A* - UJ)]

using the orthonormal polynomial vectors ¢(z).

By grouping together ! of these orthonormal polynomial vectors, we get (a kind of ) orthonor-
mal polynomial matrices with respect to (9).

We get the “classical” orthonormal polynomial matrices by setting | = n,

A* = [55,6,...,. 8 =0

and taking members of {¢:}§2, in groups of n columns to form a sequence of orthonormal
polynomial (n x n)-matrices. For more details, see e.g. [5, 8, 9, 6]

10 Recurrence relations if all points z; are real
If €R,i=1,2,...,m, then G := Q¥ AQ is Hermitian because
GH = (QFAQ)Y =QFAQ=aG.

Because g ; = 0, j < 7k, also gjx =0, j < ¢.
The recurrence relation (7) to compute a sequence of orthonormal polynomial vectors will

not change, but recurrence relation (8) will have a smaller number of terms in the right-hand
side:
k-1

hx, Bk(2) = 26ni(s) — D Gixt $i(2)- (10)
1=Ap
with
AR =T (=Tt — =k — T — Tt
] L] 1

The number 7; of polynomial vectors ¢; in the right-hand side of (10) is equal to:
m = (k=1)—A+1=k—-X

(k —xk) + (xh — 7))

= Tp+ Ty <27 < 2n.

Hence, to compute ¢, we need not more than the previous 2n orthonormal polynomial
vectors ¢; while in the general case we have to use all the previous ¢;. Let us look at some
special cases of this result:

a) When n = 1 (the scalar case), the recurrence relation (10) is just the classical 3-term
recurrence relation for scalar orthonormal polynomials:
g k—10k(2) = (2 — Ge—1,k-1)Pk-1(2) — gr-2,k-10x-2(2), k>1
with ' _
e11¢1(z) = Uy Emd do(z) = 0.
13



b) When x; =14, i=1,2,...,n, we use recurrence relation (7) to compute ¢, ¢2,..., dn.
For k > n, recurrence relation (10) gives us:

k-1

Ik k—ndr(2) = 2¢r-n(z) — Z i, k-n®i(2)

i=k—-2n
with ¢; =0, i < 1.

The computational work of algorithm 5.1 reduces by an order of magnitude in case all z;
are real. Each Givens rotation (or reflection) involves vectors of length < 2(n+ 1) instead of
vectors of length i + n+ 1 — j. Applying the Givens rotation to the left, requires < 8(n+ 1)
multiplications. Applying the Givens rotation to the right only requires 8 multiplications be-

cause of symmetry considerations. Therefore, the total number of multiplications is limited
by

3 i[s(n +1)+8] = 4(n+2)m(m-1)

i=1j=1

= O(4(n + 2)m?)

which is an order of magnitude m smaller compared to the general case. If we are only
interested in ¢||, the computational work is proportional to m|A|.
We can transform the recurrence relation for the polynomial vectors ¢ into a block

3-term recurrence relation. Because of the notational complexity, we give only an example
showing this equivalence.

Example 10.1 Suppose the transformed data matrix has the following structure:

I ® x x|x x 0 0 0 0 0 !
0 x x|® x x x 0 0 0
0 ® x |0 x x x x 0 0
(B G] = 0 0 x ([0 ® x x x Xx X
0 0 x |0 0 ® x x x X
0 0 ® |0 O O ¥ X O %
| 0 0 0|0 O 0 ® x x %X |
[ X ® x x Co 0 0 0 ]
0 x x |x A, |C{|0 0 O
0 x x |0 x 0 0
= 0 0 [Dg|O By X X X
0 o 0 Al | x x  x
0 0 x (0 0 O X X X
- L0 0 0 |0 0 0 |Bj|x x x |

The pivot elements (k, =), k = 1,2,...,7 are indicated by ®. If we define

$_1(2)
$1(2)

03, ‘:'0(2) = Ig — [U1 Ug U3], g B
[#1(2) Uz —e1,281(2) Us — ey,3¢1(2)),

14

.



2 2

By(z) = [pa(z) Ua— ) eindi(z) Us— ) eiadi(2)),

®3(z) := [¢a(z) ¢3(z) Us —Zei.:a@"i(z)]‘
®4(z) = [Pa(2) ¢s(2) Us "—Zei,aﬁf'i(z)],
P5 = [Pa(z) ¥s5(2) d6(2)], Pe(2) := [$7(2)],

they satisfy the block 3-term recurrence relation

®i(2) = Bp—1(2)Pr-1 + Br—2(2)ar-1, k=1,2,...,6,

with
Pl ot &3
21,1 21,1 1,1
Bo = 0 1 0 y ag:=03
0 0 1
F (2=g1,1) _(‘-h,d ___("’31.1)
g2,1 93,1€3,2 g3,1¢3,3
B = 0 1 0 y o1:=0g
0 0 1
1 0
,62 = 0 ﬁ —%:—% y Qg = 03
0 o0 1

(z — Ao)B;' —(z— Ao)By'Dy ]

Bs =

|
o= [ 0 02x1
|

This can be rewritten as:

(@ Pr1] = [Pr—1 B]Ve, k=0,1,2,...,6

with
0 (s 3%
Vi := A
k [ In JBk ]
Note that
Vi € R[z]****", k=0,1,2,...,5
and

Vﬁ & R{z]2nx[§+ 1}‘

By partitioning these Vi-matrices, one can construct matrix continued fraction formulas for
rational forms built up by components of the polynomial vectors ¢;. -

15



11 Recurrence relations if all points z; are on the unit
circle
If || =1, i = 1,2,...,m, then G := Q¥AQ is a unitary block Hessenberg matrix. This

will not influence recurrence relation (7). However, recurrence relation (8) can be rewritten
using a decomposition of the matrix G.

Theorem 11.1 (generalized block Schur parameter decomposition) The unitary block
Hessenberg matriz G can be decomposed as

G =G1G1GCs...Cmer

with G; having the form

D13

with G} a unitary (A; x A;)-matriz (block Schur parameters) where A; := 1, + 1 with k such
that ), = i. In the sequel we will also need the following partitioning of G;

N T Y

with o; a scalar. The eniries v;,0j,X;,['; are called the block Schur parameters. The entry
oxt can be read off in the original mairiz G, Oxt = Gityrt -
Note that

2< <A €0, i<,

Proof.[by induction on ] The unitary block Hessenberg matrix G can be written as:
G =G,G.

Because the first column of G, is equal to the first column of G and because G is unitary,
we get that the unitary matrix G’ has the form:

Note that Oxt = Giext with 7, = 1. G" is also unitary and has the same block structure as

G, except for the first row and column. Therefore, the same reasoning can be applied again.

Note that g} . = Ik, x5 x>1 m]
Lhal Y

Instead of computing the unitary block Hessenberg matrix G, using algorithm 5.1, we con-
struct the blocks G, defined by (11), of the block Schur parametrization of G. This reduces
the order of computations by a factor m.

Suppose we know the decomposition for m points z;. Adding one point z,,41 with |z 1] =1,
and corresponding weight vector Fy, 11, gives us the following initial data structure:

== [ Fngr | 2mer 0] : _
B1G):=| " T g | withG=6iGa. G

Using unitary similarity transformations, this initial structure is transformed into

1H [ Fm+1 Zm41 0 ] I, 0 _ 1 1
—_ R Q- E - 0 = G‘ 0 Ql‘ '_[ElG]

L

having zeros under the pivot elements.

16



Algorithm 11.1 Transformation of the initial data matriz D := [E | G] into a matriz
having zeros below the pivot elements.
for i:=1 to m do

* make element d;41,x; zero by using a Givens rotation (or reflection) JH with the pivot
element (i, 7;):

E—J¥E (12)

G—JHG (13)

¥ G « GJ (similarity transformation).

Note that (12) can be skipped if r; = n.
If 7; < n only n — 7; nongero columns of E are involved. )
Instead of working with the unitary block Hessenberg matrix G, we work with its decompo-

sition
- Zm+1 1 1
o= [ " el on]

= GoG1G3...Gm—r..
which we transform into a decomposition for G’
o A A -
Algorithm 11.1 changes as follows.

Algorithm 11.2 Initilization

Hy « Go

* «— 0

for i:=1 tom do
{ The last pivot element used with x; > n was in column = of G}
{é e G;G; - G:.Hi_lf-;{é£+1 e ém—'r,,,ém—‘rm-ivl see G_m wtﬂl
Gm—‘r...-l-_f = dm+1, J =1,2,.. ‘sTm}
if 1 < m; < n then
* make element &1, zero by using a Givens rotation
(or reflection) JH with the pivot element & x,:

2~ JEE
H;, ~ JUH, ,GJ
else (m; > n)

* make element (i + 1, ;) of Hi_1 zero by using a Givens rotation
(or reflection) JH with the pivot element (i, ;) of Hi_1:

B JEBR
G;+1H“ — JHH"._lé"J,_‘er—Tr-i—l

{ Le. Gy, is the first block Schur parameter of JHH: G:J,
while H; is the tail of the generalized block Schur decomposition }
G:'n+1-—7...+1 = Hm N

17



Note that in the else-part, the elements (i + 1, 7;) and (i, ;) of H;_; are also the elements
at the same position in G.
For notational simplicity, we have written down the algorithm using (m + 1) x (m + 1;
matrices. However, when looking at the computational complexity, we have only to take
into consideration the nontrivial operations. Besides constructing the m Givens rotations, we
have the step F « JH E involving < 4n multiplications. The nontrivial part of J Hy, G;J
is a unitary matrix of size < (2n + 2) x (2n + 2). Therefore, adding one new data point
(#2m+1y Fm+1) requires a number of multiplications proportional to m and not to m? as in
the general case. Therefore, constructing [E | G] for m data points needs a number of
multiplications proportional to m?. Hence, the amount of computational work, like in the
real case, is also reduced by an order of magnitude m. Note that if we are only interested
in ¢|a|, the computational work is proportional to m|Al.

Once we have computed E and G,,Gj3,.. Gm_.,.m, we have the following recurrence
relations for the columns Q of @, k= 1,2,3,..

a) 1<m <mn
k-1

ek.'n.Qk = F;-.. - Zei.‘nQi (see (5)) (14)

i=l

b) mx —n=:x} > 0:
We know that: AQ = QG1G2...Gm—r,,-

For k= 1,2,...,m, we define Q(lk),Q(:},...,QE‘) as
@M @M...Q" @i, @Y, ... = Q616G

with
x; := max{x;|i < k}.

Note that if 7, — n =: 7}, > 0, we have

QP @*...Ql-M = QY ¢F...Q{" Qj41...Qx Qu41...Qm}.

Multiplying the previous columns by G, we get

QG1Gs...Gx1Gry = [Q7...QU0Y Qu...QmIG

= [QI...0f, o Qut1...Qm]. (15)
If we partition the nontrivial (73 + 1) x (75 + 1) part G; of G; (see (11)) using the block

Schur parameters as
e I >
= [ oj Tj ] :
with oj 1 X 1, we can rewrite (15) as
k- k-1 k— it
[Q( 1 Q(‘— +1)' ( 1} Q ] [ I‘.,: ] = [QE:") QE.-?+1 : ”QE:*_}l Qg)]‘ (16)

Remember from theorem 11.1 that ox: = gk ;. Because the w}-th column of

AQ = Q010+ Gy

is equal to the =}-th column of QG1G3...G,:, we get the following recurrence relation for
Q. by taking the first column of the left ha.ncf side of (16):

o Qs = AQu — Q%Y @) ol . (17)
18



In the next steps, we do not need QSE) anymore. Therefore, by taking the last columns of
left and right hand side of (16), we get the following recurrence relation for the auxiliary
columns Q_E;k), i=m 41,k

_ % )i
(@0 =10 e Qu [ T |. i

The recurrence relations (14), (17) and (18) can be rewritten as recurrence relations with
a limited number of terms. We are immediately rewriting this in terms of the orthonormal
polynomial vectors ¢;. For each k = 1,2,...,m, we start with

[Pa-n Sunsr..-Quoall 6. o051 IS SE-1)
\_"___J
e
with
k-1
SJ(_k-—l} ::Uj—ze.‘.j¢", j=m+1,m+2...,n
i=1

If 1 < m, < n, we can use recurrence relation (14) to get
[Br-ntr---Seoalbellel, .. 84211607150, - 5L

—  [rmnir--tuoalleltoD . gt IS TDISEIY L s 1

-7
with )
1
D, 0 0 0 0
- 0 0 i 0 0
0 “.1,,“ 0 ghll,: ™ “.l“ [ex,xu+1---€k,n]
0 0 0 0 In—n.—l
with
0 0 0
I 0 saw O
Dy=|: - - :|ecxt-n,
0
0 0 e 1

If 7 —n =: x}, > 0, we can use recurrence relations (17) and (18) to get:
k (k k)| ok
SRR TN T R PR S B

PR RN Y O RN 1 | B e O 1

19



with

T =

Note that

and

T = Ve Ops Ty = B7

-1
O’_._;l I‘,;.

—1f E;,H.

]
L]

0 0 0
Dy, o g ) ;:—f[fk.n.q»l .o €kyn]
1] 1] =
0 0 0
Y=t Tt Tw!
0 o || By — o2 Tay | s lerimasr - k]
1Y 1 1]
0 0 0 Lices

Hence, looking at the second and third block column of T}, we see a type of Szeg6 recurrence

relations.

These recurrence relations can be combined to get generalized block Szegé recurrence
relations. To avoid notational complexity, we only give an example of this result.

Example 11.1 Suppose the transformed data matrix has the following structure:

Let us define

[E]G]=

g =
@1 H

P,
P3
Py
&g

® x x|x
x x|®
® X
x
®
I

(61 S5 5]
= (9 539 5]
= [$2 ¢3 53]
= [¢3 P4 Ps)
= [¢6 ¢7 Ps)

X X X x X x
x x X x x b 4
x X b 4 x b4 b4
(€3] x x b 4 x x
X x X X X
@ %X X X X
® X X X
(€3] x x
¢"0:=03
@, :=[¢{" 0 0]
®; := (4§ 0 0]
@y := (45 45 0]
¥, = (65 65 6]
2, := 96" ¢ 457

XX XX X XXX

The polynomial matrices ®, satisfy the generalized block Szegd recurrence relation

[m¢u:@h1ﬁ4ﬂ

A
By _

1 Cra
1 Dea

20
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with

ro_1 —£1,3 —€1,3
€1,1 21,1 €1,1
Apg := 0 1 0 Bo := 03
| 0 0 1
Co H— 03 D() = 03
| & Zheys Fhen =N Sleyy =Sy
Al H— 0 0 0 Bl = 0 0 0
| 0 0 0 0 0 0
[ ZT; 0 0 =277 0 o0
= 0 0 0 Dy i= 0 0 0
| 0 0 0 0 0 0
1 0 0
Az = 0 -e:‘—.’ _‘—:'.‘;i Bg = 03
L0 0 1
"0 0 0 1 0 0
C;=|0 ;2 0 Dy:=|0 0 0
0 0 O 0 0 0
0 :T ;::n,: 0 =1 Ja 4,3
Az = 1 0 0 By 1= 0 73 932 6'--‘ ]
L0 0 1
[ &1 ::::,: noH  Jatas
Cy 1= 0 0 Dy 1= [ 0 az(‘)u.a ]
) 0
Ay = o'g.; Byi= —73‘503_.;
. -H R -
C4 = —’}'3|523.5 D4 = }33'5
with
G 1 1
3 1 G 1 _. | 135 Zas
1 1 Gs o3s I'zs

Note that the last block recurrence relation is just the classical block Szegd recurrence
relation. If we add more data points, we can use the latter relation to compute the next
block of 3 orthonormal polynomial vectors ¢;. <o

12 Conclusion

In this paper, we have constructed several variants of an algorithm which computes the
coefficients of recurrence relations for orthonormal polynomial vectors with respect to a
discrete inner product. When the points z; are real or on the unit circle, we have shown that
the number of computations reduces an order of magnitude. Also the recurrence relations
only require a fixed number of terms.

The orthonormal polynomial vectors were used to solve a discrete least squares approxi-
mation problem. Future work will show further applications of these orthonormal polyuno-
mial vectors.
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