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Abstract

We describe a methodology for upgrading existing attribute value

learners towards �rst order logic. This method has several advantages: one

can pro�t from existing research on propositional learners (and inherit its

e�ciency and e�ectiveness), relational learners (and inherit its expressive-

ness) and PAC-learning (and inherit its theoretical basis). Moreover there

is a clear relationship between the new relational system and its proposi-

tional counterpart. This makes the ILP system easy to use and understand

by users familiar with the propositional counterpart. We demonstrate the

methodology on the ICL system which is an upgrade of the propositional

learner CN2.

Keywords: propositional learning, relational learning, learning from in-

terpretations, inductive logic programming, classi�cation.

1 Introduction

Current machine learning systems are often distinguished on the basis of their

representation, which can either be propositional or �rst order logic. Systems

belonging to the �rst category are often called attribute value learners, systems

of the second category are called relational learners or inductive logic program-

ming systems.

In this paper, we shall argue that it is e�ective to develop �rst order learners

that have existing propositional machine learning systems as a special case.

Advantages include: ease of understanding and use of the �rst order system by
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users familiar with the propositional case; potential exploitation of all expertise

(and heuristics) available for the propositional learner; a clear relation between

the propositional learner and its �rst order variant, resulting in e.g. identical

results on identical (propositional) data.

Given this viewpoint we develop a methodology for upgrading propositional

learners towards �rst order logic and demonstrate it at work. This methodo-

logy is perhaps the most important lesson learned during the development of

several inductive logic programming systems and results (including [21], Tilde

[9, 7], ICL [23], Claudien [20], Warmr [26]) of the machine learning group

in Leuven. The methodology starts from an existing propositional learner and

provides a recipe for upgrading it towards the use of �rst order logic. The

recipe involves the use of examples which correspond to sets of ground facts

(interpretations), the adaptation of the representation of hypotheses towards

Prolog, the employment of �-subsumption to structure and search the space

of hypotheses, the introduction of a declarative bias, and otherwise recycles as

much as possible from the original system. Following the methodology, it should

be easy to turn virtually any propositional symbolic learner into an inductive

logic programming system.

To show how the methodology works, we demonstrate it on upgrading the

well-known CN2 [14, 13] learning algorithm towards ICL [23]. In Section 6 we

give an overview of other systems that follow the same methodology.

The paper is structured as follows: we �rst elaborate on the characteristics

of the propositional and the �rst order knowledge representation and we show

how the relational representation can overcome limitations of the propositional

representation. After describing the propositional learner CN2, we present our

methodology for upgrading a propositional learner and illustrate each step w.r.t.

CN2 resulting in the relational learner ICL. We also present some experimental

results with ICL that show that the methodology is worthwhile. In the last

section we discuss some related results and conclude.

2 Knowledge Representation

2.1 Attribute value learning

Consider Figure 1. Each example or scene can be described by a �xed number of

attributes: shape-left, size-left, color-left, shape-right, size-right,

color-right and class. The data-set can be summarized in one table as in

Figure 1, where each row (or in relational database terms, each tuple) represents

one example. Many well-known systems like C4.5 [55, 56] and CN2 [14, 13] are

based on this attribute value representation (also called propositional represent-

ation), and are as such called attribute value learners. Also, data mining mainly

focusses on learning from single tables.

The examples in Figure 2 however, cannot easily be described by a �xed

number of features. A scene or example consists of a variable number of geo-

metrical objects (such as lines, points, squares, triangles, circles,...), each having

2



Negative

Positive Positive Positive

Negative Negative

Figure 1: A simple classi�cation problem. One scene (example) consists of a

left-side and a right-side object. Each scene is tagged with a class (positive or

negative).

Table 1: An attribute value representation for Figure 1 (with id a unique iden-

ti�er for each example).

id shape- size- color- shape- size- color- class

left left left right right right

1 triangle large white circle large black positive

2 triangle large black circle small black positive

3 circle small white triangle small black positive

4 circle small white circle large grey negative

5 triangle large black circle large grey negative

6 circle large black triangle small black negative
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Figure 2: A more complex classi�cation problem: Bongard problem 47, de-

veloped by the Russian scientist M. Bongard in [10]. It consists of 12 scenes (or

examples), six of class � and six of class 	. The goal is to discriminate between

the two classes.

a number of di�erent properties (e.g., white, black, small, large, horizontal,...),

and a variable number of relations between objects. Representing these scenes

with a �xed set of attribute value pairs results in a number of problems (cf. [19]).

First, one should �x the maximum number of objects in a scene. Given a bound

b on the number of objects, one could then list attributes A

i;1

; :::; A

i;j

charac-

terizing each object i. Some of these attributes will yield nil values since not all

scenes may possess the same number of objects and not all attributes/properties

are meaningful for each object. Secondly, one should also order the objects in

a scene, which is more problematic. Indeed, reconsider scene 1 in Figure 1.

Its representation in Table 1 assumes that the order is from left to right. In

general, the objects will be essentially unordered (as in Figure 2). Without

determining the order of objects within a scene there is an exponential number

of equivalent representations of a scene (in the number of objects). Scene 1 of

Figure 1 corresponds to one such representation, another representation (based

on a di�erent order) would swap the left and right object. For similar reas-

ons, the representation of rules will also require one such ordering. These two

problems prohibit an e�cient encoding of �rst order problems into the attribute

value representations employed by typical machine learning systems. Thirdly,

one should provide an attribute for each possible relation between each pair of

objects (in a speci�c order). E.g. the �rst object is left of the second object, the

�rst object is left of the third object,... Again, the number of such attributes

(relations) grows exponentially in the number of objects available.

Though the above problem is a toy-problem, it is very similar to real-life

problems in e.g. the �eld of molecular biology (see [42, 11]) where essentially

the same representational problems arise. Data consists of a set of molecules,

each of which is composed of several atoms with speci�c properties (like charge).

Similar to a scene, there exists a number of relations between atoms (like bonds,
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structures,. . . ).

2.2 First order representations

The above sketched problems can be overcome using a relational/�rst order

representation. We propose the following representation for examples:

an example is a set of ground facts

Ground facts are tuples in a relational database.

From a logical point of view this is called a (Herbrand) interpretation because

the facts represent all atoms which are true for the example, thus all facts not

in the example are assumed to be false. From a computational view this can

be seen as a a small relational database or a Prolog knowledge base, so we can

make use of a Prolog interpreter for querying an example.

To illustrate this representation, let's reexamine the Bongard problem in

Figure 2. The upper left scene consists of a small triangle, pointing up, and

which is in a large circle. This scene can be speci�ed as follows:

fclass(positive), object(o1), object(o2), shape(o1, circle), size(o1, large),

shape(o2, triangle), size(o2, small), pointing(o2, up), in(o2, o1)g.

The other scenes can be encoded in the same way. The number of objects in

one scene is not limited, and objects are not ordered (they could be called a

and b instead of o1 and o2). Di�erent objects can have di�erent properties, e.g.

a triangle can be pointing up or down, but this property makes no sense for a

circle. And �nally, the number of relations between objects is unlimited.

This �rst order representation is more general and more expressive than the

attribute value representation which is a special case of it. Indeed, an attribute

value table with k attributes can be mapped to a set of interpretations/examples

as follows:

For each example (a tuple/row in the attribute value table), con-

struct the fact fexample(val

1

, ..., val

k

).g, where val

i

is the value of

the ith attribute of the example in the table. Then each of these

facts is the interpretation of the corresponding example.

Instead of mapping to one fact, an alternative is to map each row or

example to a set of k facts fatt

1

(val

1

), ..., att

k

(val

k

)g where val

i

is

the value for the ith attribute.

For instance, the �rst example in Figure 1 can be represented by

fexample(triangle, large, white, circle, large, black, positive)g

or

fshape-left(triangle), size-left(large), color-left(white),

shape-right(circle), size-right(large), color-right(black),

class(positive)g
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At this point, it is worth noting that in the attribute value representation each

example must have a single value for a given attribute. Therefore, if we know

that the value of e.g. size-left=large, we also know that size-left6=small.

This corresponds to making a kind of closed world assumption at the level of

each example (cf. [37]). Due to the use of Prolog (and the implicit negation as

failure), the meaning of each example in the above representation is correctly

captured! (i.e. if color-left(black) then ?-color-left(X) will only succeed

for X=black.)

This framework and use of Prolog is quite similar to what happens in the

older work on structural matching (e.g. [38, 39, 70, 71, 72]).

2.3 Background knowledge

It is useful to use not only factual knowledge in the examples, but also Prolog

rules (or de�nite clauses). If these rules are common to all the examples, they

are referred to as background knowledge. Such knowledge can take various

forms: e.g. abstraction of speci�c values into a taxonomy or interval, deriving

new properties from a combination of existing ones, summarizing or aggregating

values of several facts/tuples into a single value, etc.

For our Bongard problem in Figure 2, we could add the following de�nitions:

polygon(X) :- triangle(X).

polygon(X) :- rectangle(X).

number objects(NO) :- setof(O, object(O), LO), length(LO, NO).

The �rst two clauses state that a polygon can be either a triangle or a rectangle.

The last clause calculates the number of objects in an example by creating a set

of all objects and counting the number of elements in this set.

As background knowledge is visible for each example, all the facts that can

be derived from the background knowledge and an example are part of the

extended example

1

. When querying an example, it su�ces to assert the back-

ground knowledge and the example; the Prolog interpreter will do the necessary

derivations.

2.4 Note

The above representation of examples is known in the literature as learning

from interpretations [21, 18]. It is only one of the possible representations used

within inductive logic programming. More details on the relation among various

inductive logic programming settings can be found in [18].

3 The propositional learner CN2

CN2 is a well-known attribute value learning system which is described in [14,

13]. Originally, it induced an ordered list of rules using entropy as its search

1

Formally, an extended example is the minimal Herbrand model of the example and the

background theory.
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Table 2: Learn a theory for one class.

Learn-For-One-Class(Examples, Class) return Hypothesis;

1. let P := fe 2 Examples j example e is of class Classg;

2. let N := fe 2 Examples j example e is not of class Classg;

3. let H := ;;

4. repeat

(a) BestRule = Find-Best-Rule(P , N);

(b) if BestRule found then

i. add BestRule to H;

ii. remove from P all examples e covered by BestRule;

until BestRule not found or P is empty;

5. return H;

heuristic [14]. Two improvements to the algorithm are described in [13]: the

use of the Laplace error estimate as evaluation function and the generation of

unordered rules instead of ordered rules. In the rest of the paper we will only

consider the algorithm for learning unordered rules.

Informally, CN2's problem speci�cation is: given a set of (AV) examples E

(represented as described in Section 2.1) and a set of classes C (each example

belongs to one class), �nd an unordered set of rules of the form class=class

if condition (with condition a conjunction of attribute-value tests) such that

each example is classi�ed correctly. To classify an example, one collects all

rules which �re (i.e. all rules that cover the example

2

) and predict the class

by a simple probabilistic method to resolve clashes. For the moment, we will

concentrate on the task to induce a set of rules for one class c: the set of positive

examples P are all the examples belonging to the class c, the set of negative

examples N are all the others (so E = P [N).

Reconsider the classi�cation problem in Figure 1. CN2 might learn the

following hypothesis for class positive (as an unordered set of rules):

class=positive if color-left=white and color-right=black

class=positive if size-right=small and shape-right=circle

To learn a theory for one class, CN2 performs a covering approach on the

positive examples: it repeatedly �nds a single rule that is considered best (that is

maximizes the positive examples covered and minimizes the negative examples

covered). The best rule is then added to the hypothesis H and all examples of

P that are covered by the rule are removed from P . This process terminates

when no best rule can be found or when no more positives have to be covered.

The algorithm can be found in Table 2.

2

A rule covers an example if the condition of the rule is true for the example.
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Table 3: Beam search algorithm to �nd the best rule.

Find-Best-Rule(P ,N);

1. let mgr := most general rule in the search space;

2. let Beam := mgr;

3. let BestRule := ;;

4. while Beam is not empty do

(a) let NewBeam := ;;

(b) for each rule R in Beam do

for each re�nement Ref of R do

i. if (Ref is better than BestRule and Ref is statistically signi�cant)

then let BestRule := Ref ;

ii. if Ref is not to be pruned

then

� add Ref to NewBeam;

� if size of NewBeam > MaxBeamSize

then remove worst rule from NewBeam;

(c) let Beam := NewBeam;

5. return BestRule;
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To �nd a best rule, CN2 has to search through the space of rules. The

structure of this search space is implied by the subset test. Re�ning a rule is

simply done by adding a new attribute test to the body of the rule (also called

condition). CN2 starts with the most general rule of the search space (usually

the rule with an empty body: class :- true). It then performs a beam search. At

each step/level, all re�nements of the rules in the current beam are evaluated. If

the rule is statistically signi�cant and better than the current best, it becomes

the current best rule. From all the re�nements, the MaxBeamSize best rules

are kept in the new beam. This search repeats until no more rules are in the

beam. The algorithm for �nding a best rule can be found in Table 3.

4 Upgrading CN2

In Section 2, we have motivated the need for relational representations and we

have introduced a �rst order representation for examples. Now, we can focus

on the methodology for upgrading propositional learners.

The methodology is summarized in Table 4 and discussed in detail below

through a case study with CN2 [14, 13] and ICL [23]. The �nal section will

brie
y review a number of other cases with the methodology.

4.1 The propositional task and algorithm

Suppose that we are asked to design a learning system for Bongard type prob-

lems. Machine learning researchers would observe that Bongard problems are

classi�cation problems (another popular task is that of descriptive learning, for

example discovering association rules [2, 1, 65]). So, the range of possible pro-

positional learning algorithms to consider includes AQ [46], TDIDT [56] (like

C4.5 [55]), and CN2 [14, 13]. Suppose we fancy the latter algorithm because it

combines the advantages of AQ and TDIDT, i.e. it produces understandable

rules, it is e�cient and can cope with noisy data. So, we decide to base our

�rst order learner on CN2. Then we have also accomplished the �rst step of

the methodology:

Step 1 : Identify the propositional learner that best matches the learning

task.

Given the goal of upgrading CN2 to �rst order logic, the question is how to

realize this. At this point, the reader may notice that CN2 will not work on

the Bongard problem because:

� the representation of the examples is propositional

� the representation of the rules is propositional

� the search operators are propositional

We will now discuss these issues in detail.
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Table 4: An overview of the methodology for upgrading propositional learners

to �rst order logic.

Step 1 : Identify the propositional learner that best matches the learning task.

Step 2 : Use interpretations to represent examples.

Step 3 : Upgrade the representation of propositional hypotheses by replacing

attribute-value tests by �rst order literals and modify the coverage test accord-

ingly.

Step 4 : Use �-subsumption as the framework for generality.

Step 5 : Use an operator under �-subsumption. Use that one that corresponds

closely to the propositional operator.

Step 6: Use a declarative bias mechanism to limit the search-space.

Step 7: Implement.

Step 8: Evaluate your (�rst order) implementation on propositional and

relational data.

Step 9: Add interesting extra features.
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4.2 Examples are Interpretations

The propositional representation of examples should be upgraded to a �rst or-

der one. We propose to use interpretations for this (see Section 2) as it is a

natural representation for examples and there is a clear relation with attribute

value learning [19, 18]. This will alleviate the �rst problem. Also, if desired,

background knowledge can be formulated in Prolog as in Section 2.3.

Step 2 : Use interpretations to represent examples.

4.3 First order hypotheses

As the expressiveness of the examples (inputs) has been extended, we should

also extend the expressiveness of the hypotheses (outputs).

Let us have a closer look at the concept representation in CN2. Recall from

Section 3 that CN2 learns an unordered set of rules of the form class=class if

condition, with condition a conjunction of attribute-value tests (e.g. color-left

=white). An attribute-value test can be seen as a special case of a literal. For

example, color-left=white can be mapped to color-left(white) (cf. also the

mapping in Section 2.2). So if we allow literals (with possibly more than one

argument, and with variables or terms as arguments) instead of just attribute-

value tests, the hypothesis will be a kind of �rst order expression. When using

rule sets with literals (the variables in the literals are existentially quanti�ed),

we can learn the following rule for the Bongard problem in Figure 2:

class=� if 9T,C: shape(T, triangle) and shape(C, circle) and in(T, C).

which states that there exists a triangle and a circle (thus an instantiation for

the variables T and C) such that the triangle is inside the circle. At this point,

the condition of the rule corresponds to a Prolog query. Furthermore, instead

of the 'if' notation in rule-based approaches it is common in logic programming

and Prolog to write ':-', yielding a typical Prolog clause:

class(�) :- shape(T, triangle), shape(C, circle), in(T, C).

As a result, a �rst order upgrade of unordered rule sets for CN2 is of the form:

class(class) :- l

1;1

; :::; l

1;n

1

...

class(class) :- l

k;1

; :::; l

k;n

k

where all l

i;j

are literals and all the variables appearing in the literals are exist-

entially quanti�ed. Note that the variables are independent between di�erent

rules.

So far, we have only sketched a syntactic adaptation. We also need to modify

the semantics of hypotheses. This boils down to specifying when an example is

covered by a hypothesis. An example e will be covered by a hypothesis H (a set

of rules for class(c)) if H^e j= class(c). Thus to test coverage, one asserts the

hypothesis H (resp. a rule) and the example e in a Prolog knowledge base (one
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could also use a relational database system) and runs the query ?-class(c). If

this query succeeds, the example is covered; otherwise it is not.

Note that this coverage test is more complex in both time and space than

its propositional counterpart (which is a simple subset test).

The reader familiar with CN2 may observe that CN2 also uses a simple

probabilistic method to resolve con
icts/clashes when an example is covered by

rules belonging to multiple classes. These probabilities can straightforwardly be

used here too. It is merely the test for coverage that needs to be changed.

The third step of the methodology can be summarized as follows:

Step 3 : Upgrade the representation of propositional hypotheses by replacing

attribute-value tests by �rst order literals and modify the coverage test accord-

ingly.

This third step alleviates the second problem concerning CN2, mentioned

earlier.

Note that this step also works for a wide range of propositional hypo-

thesis/concept representations, like ordered or unordered rule sets, decision

trees, regression trees, association rules,. . . . Indeed, all these concept descrip-

tions have one thing in common: they are all based on attribute-value tests.

For instance, in a decision tree each branch is based on an attribute-value test,

and an association rule is a set of attribute-value tests.

For example, Tilde [9, 7] introduces �rst order logical decision trees -

FOLDT (of which binary trees are a special case). A FOLDT is a binary decision

tree in which the nodes of the tree contain a conjunction of literals. Moreover,

di�erent nodes may share variables, under the restriction that a variable that is

introduced in a node (meaning that it does not occur in higher nodes) does not

occur in the right branch of that node

3

. An example of a logical decision tree

is shown in Figure 3. Note the sharing of the variable T in both literals.

4.4 Structuring the search-space

Nearly all symbolic machine learning systems structure the search-space by

means of the is more general than relation. When working with propositional

representations this relation is often quite simple. For instance, in the CN2

algorithm one rule is more general than another rule if all literals (i.e. attribute-

value tests) occurring in the �rst rule are a subset of those occurring in the

second rule.

On the other hand, when working with �rst order representations the frame-

works for generality become rather complex. Various frameworks have been

proposed, including �-subsumption (from Plotkin [53]), inverse implication, in-

verse resolution and inverse entailment (cf. [49] for an overview). However, in

3

The need for this restriction follows from the semantics of FOLDT. A variable X in a

literal is existentially quanti�ed within the conjunction of that node. As the the right subtree

is only relevant when the conjunction fails (thus saying there is no such X), further references

to X are meaningless in the right branch.
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in(T, X)

shape(T, triangle)

Figure 3: An example of a �rst order logical decision tree that discriminates

between the classes � and 	 for the Bongard problem in Figure 2.

practice, the large majority of ILP systems (including Foil [57], Golem [50],

Progol

4

[48], Claudien [20], and Tilde [9, 7],...) uses �-subsumption. This

is due to the excellent computational properties of �-subsumption (as com-

pared to inverse resolution and inverse implication, which are both computa-

tionally intractable and less understood yet). Another important property of

�-subsumption is that it works at the level of single clauses instead of sets of

clauses (as inverse resolution). This is similar to propositional systems which

also structure the space at the level of individual rules. On the other hand,

working at the level of single clauses only may cause problems when learning

recursive clauses or multiple predicates (cf. [22, 4]). However, in our opinion,

recursion is not essential for most real-life applications of relational machine

learning and data mining. Indeed, the authors are only familiar of a few re-

cursive rules in the mesh-design [27]. Most other current real-life applications

of inductive logic programming do not involve recursive regularities (see [31, 11]

for overviews). So, in most applications �-subsumption is the right framework

for generality when upgrading propositional systems to �rst order logic.

Step 4 : Use �-subsumption as the framework for generality.

Before showing in the next section how to adapt the operators, we provide

a brief review of �-subsumption and its properties.

Let us �rst introduce the de�nition:

Clause C

1

�-subsumes clause C

2

i� 9�: C

1

� � C

2

.

A clauses (rule) is a set of literals and a variable substitution � (=fV

1

/t

1

,. . . ,V

n

/t

n

g)

maps each variable V

i

to its corresponding term t

i

. For instance:

C

1

= father(X, Y) :- parent(X, Y), male(X). is more general than clause C

2

=

father(jef, wim) :- parent(jef, wim), parent(jef, ann), male(jef), female(ann).

because C

1

� � C

2

with � = fX/jef, Y/wimg.

Note that the propositional ordering on the search space is a special case

of �-subsumption. This is an important property in the light of the upgrading

4

In Progol, the �-subsumption lattice is searched top-down but is bounded from below by

a clause computed using inverse entailment.
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procedure. For instance: the clause class(positive) :- color-right(black) is

more general than class(positive) :- color-left(white), color-right(black).

At this point it is important to realize that �-subsumption generalizes the

well-known turning constants into variables introduced by [47]. For example, p :-

q(X,Y), q(Y,X) is more general than p :- q(a,a) under �-subsumption, but would

not be regarded a generalization using the turning constants into variables. A

second point where �-subsumption generalizes Michalski's framework is that it

also works for structured terms. E.g. p :- q(f(a)) is a specialization of p :- q(X).

Some more theoretical properties of �-subsumption include (for more details

see [53, 52, 49, 67]):

� it induces a quasi-order (re
exive and transitive) on the space of �rst order

rules

� if c

1

�-subsumes c

2

then c

1

j= c

2

, i.e. c

1

logically entails c

2

.

� there exist clauses c

1

6= c

2

that are equivalent under �-subsumption, e.g.

p :- q(X,Y) and p :- q(X,Y),q(X,Z).

� the quasi-order can be turned into a partial order (also anti-symmetric)

by de�ning equivalence classes in the usual way. There is then also a

unique (up to variable renaming) representative of each equivalence class,

which is called the reduced clause. The reduced clause r of a clause c

is de�ned as the smallest subset of literals in c such that r is equivalent

under �-subsumption with c. E.g. p :- q(X,Y) is the reduced clause of p

:- q(X,Y),q(X,Z).

� at the level of equivalence classes, one obtains a complete lattice, i.e. any

two equivalence classes have a unique least upper bound (also called the

least general generalization, the lgg) and a unique greatest lower bound.

4.5 Adapting the search operators

Now that we have chosen a framework for generality, we still need to de�ne

operators for searching the corresponding rule space. Given the advice of step

4, we will limit the discussion here to operators under �-subsumption only.

Let us consider three typical operators used by concept learners. A special-

ization, resp. a generalization, operator that operates on a single clause, and

a generalization operator that computes the least general generalization of two

clauses.

The typical propositional specialization operator will basically add a condi-

tion to a rule. Using clauses, a condition can be added in two manners: either

by adding a literal or by applying a substitution to the given clause. E.g. the

clauses p :- q(X,Y),r(X), p :- q(X,X) and p :- q(X,a). are specializations of the

clause p :- q(X,Y).

This yields the so-called re�nement operators (cf. [52, 67]). There are some

additional complications when using re�nement operators wrt propositional sys-

tems:
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� when simply adding literals, one might stay within the same equivalence

class, and there might be in�nite chains of such re�nements, e.g. when

re�ning p :- q(X,Y) to p :- q(X,Y), q(X,Z) and then to p :- q(X,Y), q(X,Z),

q(X,W) ...

� it could be that even some proper re�nements of a clause do not a�ect the

coverage of the examples, this is known as the determinacy problem [58].

E.g. re�ning class(pos) :- atom(X) to class(pos) :- atom(X), bond(X,Y).

As any atom will have bonds to other atoms, merely adding bond(X,Y) will

not modify the coverage of the clause. This may misguide the heuristics

of the learning engine.

Both di�culties can be alleviated by using a declarative (language) bias that

will be discussed in the next section.

The typical propositional generalization operator will delete (or relax) a

condition in a rule. Under �-subsumption there are two ways of relaxing a

clause: either delete a literal, or apply an inverse substitution to the clause. The

�rst case is the easy one: e.g. generalize p :- q(X,Y), r(Y) towards p :- r(Y).

The second case is more complicated and generalizes the turning constants into

variables rule. If the constant (or term) to be generalized occurs only once in

the clause, there is no problem: it can merely be generalized into a variable not

yet occurring in the clause. E.g. p :- q(a,b) into p :- q(X,b). However, if the

constant or term to be generalized occurs multiple times, generalization can be

quite complex. Indeed, consider p :- q(a,a). This can be generalized into p :-

q(X,X) or p :- q(a,X),q(X,a). One problem is the existence of in�nite chains.

I.e. the clause positive :- q(a,a) has the following generalizations: positive :-

q(X,X), positive :- q(X,Y), q(Y,X), ... The most speci�c generalization is the

in�nite rule positive :- q(X

1

,X

2

), q(X

2

,X

3

),...,q(X

i

,X

i+1

),...).

This problem and the existence of a lgg operator (cf. below) explains why plain

generalization operators are less popular in ILP than re�nement operators. The

problems with generalization operators can again be reduced by an appropriate

declarative bias mechanism.

A third popular operator is the (generalization) operator that computes the

least general generalization (lgg) of two clauses.

A clause g is a least general generalization (lgg) of the clauses C

1

and C

2

if and only if

g �-subsumes C

1

and g �-subsumes C

2

, and for every clause g

0

such that

g

0

�-subsumes C

1

and g

0

�-subsumes C

2

, g

0

also �-subsumes g.

Plotkin has given a procedure to compute the lgg of two clauses: The lgg of two

identical terms is the term itself (lgg(t; t) = t). The lgg of the terms f(s

1

; :::; s

n

)

and f(t

1

; :::; t

n

) is f(lgg(s

1

; t

1

); :::; lgg(s

n

; t

n

)). The lgg of the terms f(s

1

; :::; s

n

)

and g(t

1

; :::; t

m

) where f 6= g is the variable v where v represents this pair of

terms throughout. The lgg of two atoms/literals p(s

1

; :::; s

n

) and p(t

1

; :::; t

n

) is

p(lgg(s

1

; t

1

); :::; lgg(s

n

; t

n

)), the lgg being unde�ned when the sign or the pre-

dicate symbols are di�erent. Finally, the lgg of two clauses C

1

and C

2

is then
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1

2set(C

1

);l

2

2set(C

2

)

lgg(l

1

; l

2

).

For example, the lgg of father(luc,soetkin) :- parent(luc,soetkin),male(luc),female(soetkin)

and father(jef,wim) :- parent(jef,wim),male(jef),male(wim) is father(X,Y) :-

parent(X,Y), male(X),male(Z).

The lgg is used in speci�c to general inductive logic programming systems like

Golem [50]. The problem with the lgg operator is that the complexity of the

lgg (i.e. the number of literals) may grow exponentially with the number of

examples in the worst case.

Step 5 : Use an operator under �-subsumption. Use that one that corres-

ponds closely to the propositional operator.

In the ICL system, we choose a specialization operator under �-subsumption.

Due to the problems sketched above, we will embed it within a declarative bias

mechanism.

4.6 The need for bias

In the previous section, several problems with pure �-subsumption operators

were mentioned. These problems are mainly due to the combinatorics of the

search-space, the fact that the space is in�nite rather than �nite (as in the pro-

positional case) and the determinacy problem. To make the search tractable

and e�cient, it is thus necessary to constrain the search space in some way.

In ILP, this is solved using syntactical or semantical declarative bias mechan-

isms. Various formalisms exist (see [51] for an overview), but the overall idea is

to limit the number of clauses considered. The most straightforward methods

merely employ some bounds on the number of variables, or literals in clauses

and make the search-space �nite. Other methods will specify syntactic limita-

tions on the clauses considered (from which an operator can be derived). E.g.

using a number of schemata to enforce that clauses satisfy certain patterns, e.g.

the pattern P(X,Y) :- Q(X), R(X,Y), where P, Q and R are 'predicate' variables

(see [41]). Other methods use a kind of grammar construction to explicitly

declare the range of acceptable clauses [16]. A third class of techniques uses

so-called mode-declarations to state how clauses can be re�ned, like in Progol

[48], Tilde [9, 7] and Warmr [26].

Step 6: Use a declarative bias mechanism to limit the search-space.

In ICL we selected the Dlab declarative bias formalism of [20], which en-

codes a kind of grammar

5

. An example is given in Table 5. Min-Max:List

means that at least Min and at most Max literals of List are allowed (len is the

length of List). Note that shape(Object, 1-1:[circle,triangle]) is a shorthand for

1-1:[shape(Object,circle), shape(Object,triangle)]. Recursion is allowed. There

is also a notion of dlab variable (not used in the example) that allows the user

5

We could have used as well the mode-declarations as in Tilde and Warmr.
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Table 5: A Dlab bias for the Bongard problem

dlab_template('

1-len:[shape(Object1, 1-1:[circle,triangle]),

size(Object1, 1-1:[small,large]),

shape(Object2, 1-1:[circle,triangle]),

size(Object2, 1-1:[small,large]),

1-1:[in(Object1, Object2), left_of(Object1,Object2)]

]').

to de�ne shortcuts for frequently occurring parts (like 1-1:[circle,triangle]).

Given a Dlab expression, a re�nement operator can be used to traverse the

(restricted) search space. A complete re�nement operator for Dlab is given in

[20]. For example, based on the Dlab expression in Table 5, the top rule of the

search space is

class(�) :- true.

The re�nement operator will generate the following re�nements for this rule:

class(�) :- shape(Object1, circle).

class(�) :- shape(Object1, triangle).

...

class(�) :- left of(Object1, Object2).

These rules again can be re�ned further on. For the �rst rule:

class(�) :- shape(Object1, circle), size(Object1, small).

...

class(�) :- shape(Object1, circle), shape(Object2, circle).

...

Note that class(�) :- shape(Object1, circle), shape(Object1, triangle). is not

a valid re�nement.

The advantage of Dlab is its expressive power. It allows the user to strongly

bias the learning system ICL. On the other hand, aDlab expression can become

very complex. Writing a Dlab (and bias in general) is an iterative process and

not always straightforward.

Note that some kind of lookahead can be performed by Dlab to overcome the

determinacy problem. Indeed, when using len-len:[List] in the template, all the

literals in List must be added in one step as a re�nement.

4.7 Implementing the algorithm

By now, we are ready to implement our �rst order learner. All basic modi�c-

ations needed have been sketched. In this step, it is important that as many

features of the original algorithm as possible are preserved, like search strategy,

heuristics, noise-handling, pruning, parameters,... For example, ICL uses the

same heuristics (Laplace estimate) as its propositional counterpart CN2.
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Some advanced and speci�c features of propositional learning algorithms

may need further changes. For example, discretization on numerical attrib-

utes cannot be mapped directly towards our relational representation (see Sec-

tion 4.9).

Step 7: Implement.

Currently, ICL is implemented in MasterProLog (formerly ProLog by BIM)

and freely available for academic use (runtime version for Solaris 2.5 is available

on request).

4.8 Evaluation of ILP system

A �rst evaluation is testing the implementation on a propositional problem, for

example the problem in Figure 1. The results should be compatible with the

results of the corresponding propositional learner. In the ideal case these should

be the same, but in reality some minor di�erences might occur. Many reasons

exist: small di�erences in implementation, lack of some features (like handling

of unknown values), a slightly di�erent hypothesis space for the propositional

and relational system,...

Next is learning on relational data that one is unable to learn on with a

propositional learner. A good starting point is some arti�cial problem, like the

Bongard problem in Figure 2, where one has already a solution (obtained by

hand or by some other relational learner). Experiments with these data can

give a good insight in the system (the parameters, the output, the behaviour of

learning, some problems,...).

Then one can start the real work and run the system on real-like problems.

A well-known application area is in molecular biology.

Step 8: Evaluate your (�rst order) implementation on propositional and

relational data.

In Section 5, some experimental results with ICL will be discussed.

4.9 Extensions to the basic system

Many propositional systems have been extended with extra features or optimiz-

ations. These can also be incorporated in its relational counterpart, if possible.

Some extensions can be plugged in as they are, others will need some adap-

tion/upgrade similar to the other steps in the sketched methodology. In this

way, ILP learners can reuse results from research on propositional learners.

Note that also ideas from other ILP systems can be incorporated. As such,

results from ILP can be reused by propositional learners, so both communities

can learn from each other.
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Step 9: Add interesting extra features.

The system ICL has many extensions/optimizations w.r.t. the basic system

described up to now (see [69, 68] for more details). To handle numerical data, we

upgraded the discretization method of Fayyad and Irani (see [36, 29]) towards

ICL. To handle multiple classes, we extended the CN2 method with a Bayes

approach (inspired by [54]). This result can be integrated in CN2 without

any problem (illustrating that results in the context of relational learners can

be mapped back to propositional learners). Other extensions/optimizations of

ICL include: learning both DNF and CNF theories, using the m-estimate (as

in [32]) instead of the Laplace estimate as heuristic, extra pruning of the search

space,. . .While CN2 has a speci�c handling of unknown values (* and ?), ICL

just assumes the closed world assumption.

5 Some experimental results with ICL

To illustrate the utility of the method and the e�ectiveness of ICL, we will give

an overview of some experiments performed with ICL.

5.1 Experimental settings

The experiments have been performed with ICL version 4.2, implemented in

MasterProLog (formerly ProLog by BIM). We used a Sun Ultra 2 with two 167

Mhz UltraSPARC processors running Solaris 2.6, and a SUN Ultra 10 with a

333 Mhz UltraSPARCII processor running Solaris 7.

Unless stated otherwise, we used the default settings of ICL. The most im-

portant ones: signi�cance level is 90%, heuristic is m estimate (with parameter

m the number of classes), the size of the beam is 5, and classes are pos and neg.

5.2 Propositional data

One of the nice properties of our methodology is its backward compatibility,

meaning that the upgraded relational system behaves similar as its proposi-

tional predecessor on propositional data. However, some de
ections occur due

to di�erences in implementation.

To simulate CN2 with ICL, we can use the following simple Dlab expres-

sion: 1-len:[att

1

= 1-1:[v

1;1

, ..., v

1;i

1

],..., att

k

= 1-1:[v

k;1

, ..., v

k;i

k

]], with v

i;j

the

values of the attribute att

i

.

We have run ICL on a few propositional data sets used in [13]: voting-

records, breast-cancer, lymphography and primary-tumor. Some information

on the data sets is given in Table 6. We have chosen these data sets because

they have no (or few) numerical values and only few unknown values. So this

allows a close comparison.

We performed a similar experimental procedure as in [13]. The accuracies

have been estimated by averaging the results over 20 runs (for each run, 2/3
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Table 6: Details of the propositional domains used in the experiments. We did

the same data conversions as documented in [13].

Domain Number of Unknown Numerical

Exs Atts Classes values values

voting-records 435 16 2 yes no

breast-cancer 286 9 2 few few

lymphography 148 18 4 no few

primary-tumor 330 17 15 yes no

Table 7: Comparison of ICL and CN2 on accuracy (with standard deviation)

and rule set size (number of attribute tests/literals). Results for CN2 are taken

from [13], Appendix 1.

Accuracy ICL CN2 (unordered) ICL

Sign. Threshold 0% 99.5% 0% 99.5% default settings

voting-records 94.1�1.5 92.5�2.0 94.8�1.8 93.3�2.1 94.1�1.9

breast-cancer 69.7�3.3 71.8�3.7 73.0�4.5 70.8�3.5 69.4�4.1

lymphography 80.3�4.0 76.2�6.3 81.7�4.3 76.5�5.3 81.9�5.8

primary-tumor 41.7�4.9 42.0�4.8 45.8�3.6 41.4�5.8 41.4�5.5

Rule set size ICL CN2 (unordered) ICL

Sign. Threshold 0% 99.5% 0% 99.5% default settings

voting-records 43.5 14.9 64.8 19.9 49.7

breast-cancer 158.5 17.4 100.5 18.0 136.1

lymphography 38.5 14.9 40.4 13.5 45.5

primary-tumor 267 115.35 351.0 131.4 253.6

of the data is selected randomly for training and the remainder for testing).

The results are shown in Table 7. We have run ICL with the same language

bias and the same settings as in [13]: beam=20 and heuristic=laplace. The last

column gives the result of the default ICL performance (with default paramet-

ers: beam=5, signi�cance level=90% and heuristic=m estimate).

When we look at the accuracy and rule set size, we can conclude that ICL's

performance is similar to CN2's, what we expected. Di�erences can be ac-

counted by the small di�erences between CN2 and ICL w.r.t. options and

implementation details There are however 2 boundary cases: for breast-cancer

and primary-tumor with signi�cance threshold 0% ICL performs less than CN2

w.r.t. accuracy. In both cases, the theories sizes also di�er signi�cantly. We

haven't found any explanation for this

6

.

6

In other papers we have found similar results for CN2 as ours. For example in [28], the

result for breast-cancer is 70.0�1.4 accuracy with a theory size of 114.5, and for primary-
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Table 8: Accuracies for the four di�erent backgrounds of the mutagenesis data

(estimated by a 10-fold cross-validation). The �rst three columns are results for

ICL (with the default settings, except for maxbody=8, and without discretiza-

tion). Pos and Neg are the two classes and for each of them a DNF theory is

learned and evaluated. Multi merges the 2 theories into a multi-class theory.

The results for Progol, Foil and Tilde have been taken from [8].

Accuracies (%)

Neg Pos Multi Progol Foil Tilde

BG1 79.3�8.2 67.6�5.1 80.9�7.4 76 61 75

BG2 80.3�8.9 74.5�6.9 82.4�7.4 81 61 79

BG3 85.1�8.7 83.5�5.9 86.7�10.0 83 83 85

BG4 85.1�7.7 86.2�7.6 88.3�8.0 88 82 86

5.3 Relational data

ICL has been used in many experiments with (real-life) relational data sets. We

will give some results, and refer to the literature for more details.

One of the most used data set in ILP is themutagenesis one (see [64]). The

data consists of 188 molecules, of which 125 are active (thus mutagenic) and

63 are inactive. A molecule is described by its atoms atom(AtomID, Element,

Type, Charge) (the number of atoms di�ers between molecules, ranging from

15 to 35) and the bonds bond(Atom1, Atom2, BondType) between these atoms.

Four di�erent sets of background have been used (same as in [64]). Background

1 uses only the information on atoms and bonds, background 2 allows tests

on the charge of an atom, background 3 adds 2 speci�c measures w.r.t. the

molecule (e.g. logP and �

LUMO

) and background 4 consists of descriptions of

higher-level structures that appear in the molecule (like aromatic rings).

Experiments with ICL on this data set can be found in [68]. Results with ICL

version 4.2 are given in Table 8. We manually discretized the numerical values

(i.e. logP , �

LUMO

and the Charge of the atoms). It seems that the multi-class

theory is always better than the seperate (DNF) theory for each class. This is

not so surprising as the multi-class theory combines the two seperate theories

for each class, and resolves clashes between the two. The (multi-class) accuracy

of ICL is signi�cantly better than Foil for background 1 and 2, and marginally

better for background 3 and 4. ICL is also marginally better than Progol and

Tilde for background 1. For Background 2, 3 and 4 however, the performance

of ICL, Progol and Tilde are similar. Note that the accuracy increases as

more background is added.

Results on the biodegradability domain can be found in [68] (preliminary

results) and [34] (more recent results). The task is to predict the half-life in water

for aerobic aqueous biodegradation of a compound from its chemical structure.

tumor the accuracy is 39.9�1.0 with a theory size of 302.8. These are similar to our results.

The experiments in that paper used a beam of size 5 instead of 20. The other settings are the

same.
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Table 9: Accuracies of machine learning systems predicting Biodegradability.

Results are taken from [34]. We have left out the results of the regression

systems.

System Representation Accuracy Accuracy (+/-)

C4.5 P1 55.2 86.2

C4.5 P2 56.9 82.4

RIPPER P1 52.6 89.8

RIPPER P2 57.6 93.9

FFoil R1' 53.0 88.7

ICL R1 55.7 92.6

SRT-C P1 + R1 55.0 90.0

Tilde-C R1 51.0 88.6

Tilde-C P1 + R1 52.0 89.0

The biodegradation time has been discretized into 4 classes: fast, moderate,

slow and resistant. The structure of a compound is represented by facts about

atoms and bonds, much like in the mutagenesis domain. In [34] experiments

on the relational data (denoted R1) and 2 propositional versions of the data

(denoted P1 and P2) has been performed with the propositional classi�cation

systems C4.5 and RIPPER [15], and the relational learners FFoil [59], SRT

[45], ICL and Tilde. A short overview of the results can be found in Table 9.

Accuracy is classi�cation accuracy and Accuracy (+/-1) is the accuracy where

only misclassi�cation by more than one class counts as an error (e.g. slow as

fast, moderate as resistant,. . . ). ICL has only been applied to the relational

representation R1. Of all the relational learners using R1, ICL achieves the

highest Accuracy and Accuracy(+/-1). Compared to the propositional systems,

ICL is better than all systems in term of Accuracy(+/-1), except for RIPPER

on P2. For more speci�c results and discussions we refer to the paper.

ICL also participated in the PTE-2 challenge of which the results have

been published in [62, 63]. The challenge was to make carcinogenesis pre-

dictions for 30 compounds, based on models constructed by Machine Learn-

ing programs. There were 9 (legal) submissions using ILP systems (Tilde,

Warmr/Maccent, ICL, P-Progol) and combinations of propositional sys-

tems (like C4.5) and ILP (like rules from Warmr). ICL and the other ILP

systems perform unexpectedly well on scales of quantitative performance. ICL

itself is in the top 3 of ILP systems (with 78% accuracy). ILP assisted models

appear to be better than expert assisted ones (w.r.t. the PTE-2 data). Inter-

esting results are obtained with propositional prediction methods using results

from ILP systems (for example C4.5 using rules/sub-structures generated by

Warmr).

Other successful experiments with ICL include: �nite element mesh design

by [68]; automated acquisition of knowledge on tra�c problem detection by

[30, 33]; and the problem of diterpene structure elucidation from

13

C NMR
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spectra by [30].

To conclude, ICL performs as well as other well-known ILP systems, and

thus can be said to be a successful upgrade.

6 Related Work and Conclusions

There are plenty of other inductive logic programming systems whose develop-

ment more or less �ts in with the proposed methodology: Foil [57], RIBL [35],

SRT [45], Tilde [9, 7], Warmr [26, 25], Maccent [24], jk-CT learner [21],

Claudien [20], Probabilistic Relational Models [44], Cohen's Flipper (in [17]),

[60] and RDBC [43].

E.g. Quinlan's Foil can also be considered an upgrade of either Michalski's

AQ (1983) or CN2, RIBL upgrades the classical k-nearest neighbor algorithm

(using a �rst order distance due to [6]), SRT and Tilde upgrade the well-

known decision (and regression) tree paradigm incorporated in CART [12] and

C4.5 [55, 56], Warmr upgrades Apriori [2, 1], Maccent upgrades the Max-

imum Entropy approach in [5], De Raedt and Dzeroski's PAC-learning results

(as well as its incorporation in the Claudien system) for jk-CT are derived

from results in [66] for k-CNF, Reddy and Tadepalli's results are based on the

well-known results on learning horn-sentences by [3], Flipper upgrades Cohen's

earlier Ripper [15], Koller's probabilistic relational models upgrade (proposi-

tional) bayesian networks, and Kirste and Wrobel's cluster system upgrades

bottom-up agglomerative clustering algorithms to �rst order logic.

Hence, it is clear that the methodology we presented is not really new. It

has been applied - implicitly - several times before to obtain e�ective inductive

logic programming systems. One might even argue that it has been applied in

some of the pre-ILP work on relational learning (e.g. [70, 47]). The most im-

portant contribution of our work therefore is to describe the underlying recipe

explicitly and to show through a case study that it can be used to obtain novel

inductive logic programming techniques. By no mean we wish to imply that

this recipe is the only way to obtain inductive logic programming systems. Cer-

tainly, some systems, of which perhaps Progol [48] and MIS [61] are the best

examples of well-known inductive logic programming sytems that have been de-

rived from logical principles (without our recipe). Yet, we hope that our work

gives new insights into the �eld of inductive logic programming and its relation

to propositional machine learning.
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