
Compiling the HAL variable toMer
uryBart DemoenMar��a Gar
��a de la BandaWarwi
k HarveyKim MarriottPeter S
ha
htePeter Stu
keyReport CW273, September 1998

n Katholieke Universiteit LeuvenDepartment of Computer S
ien
eCelestijnenlaan 200A { B-3001 Heverlee (Belgium)

Compiling the HAL variable toMer
uryBart DemoenMar��a Gar
��a de la BandaWarwi
k HarveyKim MarriottPeter S
ha
htePeter Stu
keyReport CW273, September 1998Department of Computer S
ien
e, K.U.LeuvenAbstra
tHAL is a new logi
 language that makes it easy to implement
onstraint solvers. HAL gets most of its eÆ
ien
y from
ompiling toMer
ury
ode. The main mismat
h between HAL and Mer
ury isthat HAL supports variables a la Prolog, while Mer
ury re
ognisesbasi
ally only the instantiations new and ground. We des
ribe herethe s
hema that over
omes this mismat
h: it relies on a Parma rep-resentation of variables. Its main advantage is that on
e a datastru
-ture is ground, it has the same internal representation as a Mer
uryground term. Experiments show that our s
hema is very
ompetitivewith any other logi
 implementation that supports unbound terms.We also dis
uss the implementation of delay for the Herbrand solver.

Compiling the HAL variable to Mer
ury �Bart Demoen, Mar��a Gar
��a de la Banda, Warwi
k Harvey,Kim Marriott, Peter S
ha
hte and Peter Stu
keyDepartment of Computer S
ien
e, Katholieke Universiteit Leuven, BelgiumDepartment of Computer S
ien
e, University of Monash, AustraliaDepartment of Computer S
ien
e, University of Melbourne, AustraliaAbstra
tHAL is a new logi
 language that makes it easy to implement
onstraint solvers. HAL getsmost of its eÆ
ien
y from
ompiling to Mer
ury
ode. The main mismat
h between HAL andMer
ury is that HAL supports variables a la Prolog, while Mer
ury re
ognises basi
ally only theinstantiations new and ground. We des
ribe here the s
hema that over
omes this mismat
h: itrelies on a Parma representation of variables. Its main advantage is that on
e a datastru
ture isground, it has the same internal representation as a Mer
ury ground term. Experiments showthat our s
hema is very
ompetitive with any other logi
 implementation that supports unboundterms. We also dis
uss the implementation of delay for the Herbrand solver.1 Introdu
tionMer
ury relies on mode information - either inferred or provided by the user - to obtain high speed[5℄. Modes des
ribe a transition from one instantiation of a term to another instantiation, wherean instantiation is a des
ription of the extent to whi
h a term is bound. Mer
ury distinguishesbasi
ally only between new and ground; new means that the term is not bound and has no othero

uren
es. This last restri
tion means that in Mer
ury one
an build a list of (distin
t) freevariables, but one
annot use the elements of this list. This pre
ludes the
lassi
al use of di�eren
elists in Mer
ury. In pra
ti
e, this restri
tion is over
ome by reordering goals in a
lause (performedby Mer
ury) or by rewriting the program. However, a smoother transition from Prolog to Mer
urywould be possible if a
lean version of the Prolog variable were present in Mer
ury. Clean meaning:without the non-logi
al predi
ates var/1, nonvar/1 ...We are also interested in Mer
ury supporting a Prolog variable from the point of view of theHAL proje
t [3℄: HAL is a logi
 language
urrently under development at Monash and Melbournewhi
h o�ers support for writing
onstraint solvers. The implementation of HAL is by way of
ompiling HAL
ode to Mer
ury. HAL supports a ri
her set of instantiations than Mer
ury does.It is entirely possible to treat a set of terms - a type - whi
h allows the Prolog variable style ofinstantiation, as just another solver type, i.e. su
h terms
ould belong to a solver over Herbrandterms and be treated by the
ompilation pro
ess as any other solver. The drawba
k is that thissolver needs better support from within the HAL implementation in order to be reasonably eÆ
ient,meaning \at least as fast as a fast
urrent Prolog system".The main requirement for any s
hema that enhan
es Mer
ury with the Prolog variable is thatit
an
o-exist with the
urrent implementation from Melbourne, i.e. we want to reuse most of the�This is a HAL working do
ument - started July 1997, �nished September 1998

implementation te
hnology of Mer
ury team. Moreover, the s
hema should have minimal impa
ton the e�e
ien
y of Mer
ury when the logi
al variable is not used in a parti
ular program.Our s
hema employes the PARMA ([6℄) representation of unbound variables. The advantagesand drawba
ks of this representation
ompared to a WAM representation ([1℄) are dis
ussed in[4℄. The main point we
an
ontribute to this dis
ussion is that within the PARMA representations
hema, when a term be
omes ground, it has exa
tly the same internal representation as a groundMer
ury term
onstru
ted in the usual Mer
ury way. The advantage of this is huge: no dereferen
ingis ever needed on
e a term is known to be ground, so the eÆ
ien
y of Mer
ury is within rea
h forground terms
onstru
ted by the Herbrand solver. Within the WAM representation s
hema, thiswould not be true, unless program analysis
an derive this.We have implemented partly the PARMA and WAM s
hema, just enough to make a
omparisonon a parti
ular ben
hmark program. We
ompare also with Mer
ury and by doing so indire
tlyalso to Aquarius.Our s
hema has the following
hara
teristi
s:� it reserves a Mer
ury tag for the unbound variable� the representation of unbound variables is based on PARMA� a trail is requiredWe assume some knowledge of Prolog implementation in general; see for instan
e [1℄. In se
tion2 we des
ribe the representation of variables as in PARMA. In se
tion 3 we des
ribe the instantiationold whi
h in HAL denotes a possible unbound obje
t. Se
tion 4 des
ribes the implementation ofthe Herbrand solver. Se
tion 5 dis
usses some ben
hmark results and se
tion 6
on
ludes.2 The PARMA representation of variablesIn PARMA ([6℄) a new free variable is represented by a self referen
e (on the heap). When twofree variables are bound to ea
h other, they are made to point to ea
h other. In general, if N freevariables have been bound to ea
h other, the representation of this binding is a ring of N heap
ells.When su
h a set of N variables is bound to a non free term, every of the N
ells is �lled in with theterm. The main advantage is that dereferen
ing is a
onstant time operation, as external pointers(e.g. argument registers or lo
al environment variables) point dire
tly into the ring.There are also a few disadvantages:�
he
king whether two free variables are di�erent is more involved� when instantiation a variable
hain, (
onditional) trailing must o

ur for every of the N
ellsin the ring; i.e. binding a variable is always linear in the size of the ring� when
reating a stru
ture whi
h
ontains an already existing variable, the ring of variablesgrows (and trailing o

urs potentially)For a more thorough dis
ussion see [4℄.From the point of view of HAL, the PARMA binding s
hema is attra
tive be
ause after a Prologobje
t has be
ome ground, its representation is su
h that dereferen
ing is not needed: as su
h, itmeans that the representation is exa
tly as if Mer
ury
reated the term. Sin
e the HAL
ompilertransforms HAL
ode to Mer
ury
ode, this is interesting be
ause it allows the writing of programsthat work with partially instantiated data for some time (sin
e HAL allows this) and then on
e thedata is ground, pro
ess it further with regular Mer
ury
ode.2

3 A new instantiation: old4 The
ompilation of Herbrand uni�
ationHerbrand uni�
ation
an be spe
ialised when something is known about the mode. Mer
ury doesthis and has few
ases to
onsider, sin
e basi
ally only ground and new exist as instantiations. Wealso
onsider only two \sor
e forms" of uni�
ation:X = Yand X = f(A1,...,An)In the latter one, the allowed instantiation of the Ai depends on the instantiation of X (andpossibly on whether f/n belongs to a Herbrand type or not).We list in the subsequent subse
tions all
ases (apply symmetry if needed).Note that the
orre
tness of the translation depends on Mer
ury not reordering goals anymore.We start with des
ribing the polymorphi
 lower level predi
ates. The
ode is very expli
it aboutthe internal representation of Parma variables and is not taking into a

ount se
ondary tags.4.1 var/1Var/1 is used internally in the uni�
ation routines: it is at this stage not
lear whether var/1 willbelong to HAL.:- pred var(T).:- mode var(oo) is semidet.:- pragma
_
ode(var(Var::oo),will_not_
all_mer
ury," { Word Dereffed;if ((Var & 0x3) == 0x3){ Dereffed = *(Word *)(Var & ~0x3);SUCCESS_INDICATOR = ((Dereffed & 0x3) == 0x3);}else SUCCESS_INDICATOR = 0;}").4.2 promise ground/1:- pred promise_ground(T).:- mode promise_ground(og) is det.:- pragma
_
ode(promise_ground(X::og),will_not_
all_mer
ury,""). 3

4.3 deref/2:- pred deref(T,T).:- mode deref(oo,ng) is det.:- pragma
_
ode(deref(X::oo,Y::ng),will_not_
all_mer
ury," if ((X & 0x3) == 0x3)Y = *(Word *)(X & ~0x3);else Y = X;").4.4 unify var var/2:- pred unify_var_var(T,T).:- mode unify_var_var(oo,oo) is det.:- pragma
_
ode(unify_var_var(X::oo,Y::oo),will_not_
all_mer
ury," { Word *PX, QX, QY, *PY, BX, BY;BX = X; BY = Y;PX = (Word *)(BX & ~0x3);PY = (Word *)(BY & ~0x3);QX = *PX; QY = *PY;/* first determine equality of X and Y *//* do this in a symmetri
al way */
he
k_equal:if (QX == BY) goto they_are_equal;if (QY == BX) goto they_are_equal;if ((QX != BX) && (QY != BY)){ PX = (Word *)(QX & ~0x3);QX = *PX;PY = (Word *)(QY & ~0x3);QY = *PY;goto
he
k_equal;}/* they are not equal */PX = (Word *)(BX & ~0x3);PY = (Word *)(BY & ~0x3);MR_trail_
urrent_value(PX);MR_trail_
urrent_value(PY);QX = *PX;*PX = *PY;*PY = QX;they_are_equal: /* nothing needs to be done */4

}").4.5 unify var val:- pred unify_var_val(T,T).:- mode unify_var_val(oo,oo) is det.:- pragma
_
ode(unify_var_val(Var::oo,Val::oo),will_not_
all_mer
ury," { Word *P, Q;P = (Word *)(Var & ~0x3);Q = *P;while ((Q & 0x3) == 0x3){ MR_trail_
urrent_value(P);*P = Val;P = (Word *)(Q & ~0x3);Q = *P;}}").4.6 X = Y and X and Y are newThis situation is dealt with in a later do
ument ([2℄).4.7 X = Y and X is newThis is an \assignment" and translated to Mer
ury as \X = Y" be
ause Mer
ury generates theright
ode for HAL.4.8 X = Y and both are groundTranslate to itself in Mer
ury.4.9 X = Y and X is oldY is not new otherwise a
ase above applies.X and Y belong to the same type t whi
h is a Herbrand type. T
ould be polymorphi
. Assumethat type t is de�ned in module m.Compile to the goal \m:hbu t n(X,Y)". hbu t n is the uni�
ation predi
ate for the type t (witharity n) and de�ned as::- pred hbu_T_n(t,t).:- mode hbu_T_n(oo,oo) is semidet.hbu_T_n(X,Y) :-(var(X) ->(var(Y) -> 5

unify_var_var(X,Y); unify_var_val(X,Y)); (var(Y) ->unify_var_val(Y,X); unify_val_val_t(X,Y))).5 Performan
e measurements5.1 nrev:- pred nrev(list(bla),list(bla)).:- mode nrev(list_oo,(new -> list_of_old)) is det.nrev(In,Out) :-(In = [℄,Out = [℄; In = [X|S℄,nrev(S,R),Int = [X℄,get_address(Int,Address),
opy_address(Address,X),my_append(R,Int,Out):- pred my_append(list(bla),list(bla),list(bla)).:- mode my_append(list_oo,list_oo,(new -> list_of_old)) is det.my_append(In,Tail,Res) :-(In = [℄,Tail = Res; In = [X|R℄,my_append(R,Tail,NewR),Res = [X|NewR℄,get_address(Res,Address),
opy_address(Address,X)).5.2 The �guresAll the �gures are in MLIPS (mega-lips).� HAL-g: the list
ontained non-variable obje
ts� HAL-f: the list
ontained (distin
t) variable obje
ts6

length list Mer
ury HAL-g HAL-f SICStus-e SICStus-n10 3.35 2.35 2.0 0.46 2.6100 3.14 1.85 1.37 0.71 3.71000 2.58 1.62 1.21 0.74 3.230 3.75 2.36 1.94 0.61 2.6The mode of the HAL nrev and append were de
lared as old� > old and new� > old� SICStus-e: SICStus in
ompa
t
ode mode� SICStus-n: SICStus in fast
ode mode (extrapolated)A strange thing
an be noti
ed from the �gures: in WAM (SICStus), the longer the list, thehigher the LIPS. This seems not to hold for the MAM (Mer
ury and HAL). The reason is thela
k of real tail re
ursion optimisation in Mer
ury: it does a good approximation (middle re
ursionoptimisation) but for long lists, there is a negative e�e
t on speed.Mer
ury was also with trail - but this doesn't a�e
t the timings really.All �gures to be taken
um grano salis.6 Con
lusionEÆ
ien
y was not the prime reason for our
hoi
e of the PARMA binding s
hema, but the nrevben
hmark indi
ates that the
hoi
e of the PARMA representation for variables within the Mer
urys
hema, is reasonable. Future work will
on
entrate on implementing fully the des
ribed s
hema,extending it for polymorphi
 types and optimising it.A
knowledgementsThe HAL team is grateful to the Mer
ury team for patient dis
ussions. We want to thank inparti
ular, Zoltan Somogyi, Fergus Henderson and Thomas Conway. Most of this work was donewhile the �rst author was a guest at the University of Monash and the University of Melbourne.Support from proje
t G.0218.95 of the Belgian FWO is also a
knowledged. Also support from theHAL proje
t ARC Large Grant is a
knowledged.Referen
es[1℄ H. A��t-Ka
i. Warren's Abstra
t Ma
hine: A Tutorial Re
onstru
tion. The MIT Press, Cam-bridge, Massa
husetts, 1991. WAM[2℄ Bart Demoen, Mar��a Gar
��a de la Banda,Warwi
k Harvey, Kim Marriott, Peter Stu
key Her-brand Constraint Solving in HAL. To Appear in the Pro
eedings of ICLP'99, Las Cru
es, NewMexi
o[3℄ Bart Demoen, Mar��a Gar
��a de la Banda, Kim Marriott, Peter S
ha
hte, Peter Stu
key HAL:a highly attra
tive language for writing (
onstraint) solvers Do
umentation Manual release 0.1- June 1997 7

[4℄ Thomas Lindgren, Per Mildner, Johan Bevemyr On Taylor's S
heme for Unbound VariablesUPMAIL Te
hni
al Report No. 116, O
tober 25, 1995, ISSN 1100-0686[5℄ Zoltan Somogyi, Fergus Henderson and Thomas Conway. The exe
ution algorithm of Mer
ury:an eÆ
ient purely de
larative logi
 programming language. Journal of Logi
 Programming,volume 29, number 1-3, O
tober-De
ember 1996, pages 17-64.[6℄ Andrew Taylor PARMA{Bridging the Performan
e Gap between Imperative and Logi
 Pro-gramming Journal of Logi
 Programming, volume 29, number 1-3, O
tober-De
ember 1996

8

