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tHAL is a new logi
 language that makes it easy to implement 
onstraint solvers. HAL getsmost of its eÆ
ien
y from 
ompiling to Mer
ury 
ode. The main mismat
h between HAL andMer
ury is that HAL supports variables a la Prolog, while Mer
ury re
ognises basi
ally only theinstantiations new and ground. We des
ribe here the s
hema that over
omes this mismat
h: itrelies on a Parma representation of variables. Its main advantage is that on
e a datastru
ture isground, it has the same internal representation as a Mer
ury ground term. Experiments showthat our s
hema is very 
ompetitive with any other logi
 implementation that supports unboundterms. We also dis
uss the implementation of delay for the Herbrand solver.1 Introdu
tionMer
ury relies on mode information - either inferred or provided by the user - to obtain high speed[5℄. Modes des
ribe a transition from one instantiation of a term to another instantiation, wherean instantiation is a des
ription of the extent to whi
h a term is bound. Mer
ury distinguishesbasi
ally only between new and ground; new means that the term is not bound and has no othero

uren
es. This last restri
tion means that in Mer
ury one 
an build a list of (distin
t) freevariables, but one 
annot use the elements of this list. This pre
ludes the 
lassi
al use of di�eren
elists in Mer
ury. In pra
ti
e, this restri
tion is over
ome by reordering goals in a 
lause (performedby Mer
ury) or by rewriting the program. However, a smoother transition from Prolog to Mer
urywould be possible if a 
lean version of the Prolog variable were present in Mer
ury. Clean meaning:without the non-logi
al predi
ates var/1, nonvar/1 ...We are also interested in Mer
ury supporting a Prolog variable from the point of view of theHAL proje
t [3℄: HAL is a logi
 language 
urrently under development at Monash and Melbournewhi
h o�ers support for writing 
onstraint solvers. The implementation of HAL is by way of
ompiling HAL 
ode to Mer
ury. HAL supports a ri
her set of instantiations than Mer
ury does.It is entirely possible to treat a set of terms - a type - whi
h allows the Prolog variable style ofinstantiation, as just another solver type, i.e. su
h terms 
ould belong to a solver over Herbrandterms and be treated by the 
ompilation pro
ess as any other solver. The drawba
k is that thissolver needs better support from within the HAL implementation in order to be reasonably eÆ
ient,meaning \at least as fast as a fast 
urrent Prolog system".The main requirement for any s
hema that enhan
es Mer
ury with the Prolog variable is thatit 
an 
o-exist with the 
urrent implementation from Melbourne, i.e. we want to reuse most of the�This is a HAL working do
ument - started July 1997, �nished September 1998



implementation te
hnology of Mer
ury team. Moreover, the s
hema should have minimal impa
ton the e�e
ien
y of Mer
ury when the logi
al variable is not used in a parti
ular program.Our s
hema employes the PARMA ([6℄) representation of unbound variables. The advantagesand drawba
ks of this representation 
ompared to a WAM representation ([1℄) are dis
ussed in[4℄. The main point we 
an
ontribute to this dis
ussion is that within the PARMA representations
hema, when a term be
omes ground, it has exa
tly the same internal representation as a groundMer
ury term 
onstru
ted in the usual Mer
ury way. The advantage of this is huge: no dereferen
ingis ever needed on
e a term is known to be ground, so the eÆ
ien
y of Mer
ury is within rea
h forground terms 
onstru
ted by the Herbrand solver. Within the WAM representation s
hema, thiswould not be true, unless program analysis 
an derive this.We have implemented partly the PARMA and WAM s
hema, just enough to make a 
omparisonon a parti
ular ben
hmark program. We 
ompare also with Mer
ury and by doing so indire
tlyalso to Aquarius.Our s
hema has the following 
hara
teristi
s:� it reserves a Mer
ury tag for the unbound variable� the representation of unbound variables is based on PARMA� a trail is requiredWe assume some knowledge of Prolog implementation in general; see for instan
e [1℄. In se
tion2 we des
ribe the representation of variables as in PARMA. In se
tion 3 we des
ribe the instantiationold whi
h in HAL denotes a possible unbound obje
t. Se
tion 4 des
ribes the implementation ofthe Herbrand solver. Se
tion 5 dis
usses some ben
hmark results and se
tion 6 
on
ludes.2 The PARMA representation of variablesIn PARMA ([6℄) a new free variable is represented by a self referen
e (on the heap). When twofree variables are bound to ea
h other, they are made to point to ea
h other. In general, if N freevariables have been bound to ea
h other, the representation of this binding is a ring of N heap 
ells.When su
h a set of N variables is bound to a non free term, every of the N 
ells is �lled in with theterm. The main advantage is that dereferen
ing is a 
onstant time operation, as external pointers(e.g. argument registers or lo
al environment variables) point dire
tly into the ring.There are also a few disadvantages:� 
he
king whether two free variables are di�erent is more involved� when instantiation a variable 
hain, (
onditional) trailing must o

ur for every of the N 
ellsin the ring; i.e. binding a variable is always linear in the size of the ring� when 
reating a stru
ture whi
h 
ontains an already existing variable, the ring of variablesgrows (and trailing o

urs potentially)For a more thorough dis
ussion see [4℄.From the point of view of HAL, the PARMA binding s
hema is attra
tive be
ause after a Prologobje
t has be
ome ground, its representation is su
h that dereferen
ing is not needed: as su
h, itmeans that the representation is exa
tly as if Mer
ury 
reated the term. Sin
e the HAL 
ompilertransforms HAL 
ode to Mer
ury 
ode, this is interesting be
ause it allows the writing of programsthat work with partially instantiated data for some time (sin
e HAL allows this) and then on
e thedata is ground, pro
ess it further with regular Mer
ury 
ode.2



3 A new instantiation: old4 The 
ompilation of Herbrand uni�
ationHerbrand uni�
ation 
an be spe
ialised when something is known about the mode. Mer
ury doesthis and has few 
ases to 
onsider, sin
e basi
ally only ground and new exist as instantiations. Wealso 
onsider only two \sor
e forms" of uni�
ation:X = Yand X = f(A1,...,An)In the latter one, the allowed instantiation of the Ai depends on the instantiation of X (andpossibly on whether f/n belongs to a Herbrand type or not).We list in the subsequent subse
tions all 
ases (apply symmetry if needed).Note that the 
orre
tness of the translation depends on Mer
ury not reordering goals anymore.We start with des
ribing the polymorphi
 lower level predi
ates. The 
ode is very expli
it aboutthe internal representation of Parma variables and is not taking into a

ount se
ondary tags.4.1 var/1Var/1 is used internally in the uni�
ation routines: it is at this stage not 
lear whether var/1 willbelong to HAL.:- pred var(T).:- mode var(oo) is semidet.:- pragma 
_
ode(var(Var::oo),will_not_
all_mer
ury," { Word Dereffed;if ((Var & 0x3) == 0x3){ Dereffed = *(Word *)(Var & ~0x3);SUCCESS_INDICATOR = ( (Dereffed & 0x3) == 0x3 );}else SUCCESS_INDICATOR = 0;}").4.2 promise ground/1:- pred promise_ground(T).:- mode promise_ground(og) is det.:- pragma 
_
ode(promise_ground(X::og),will_not_
all_mer
ury,""). 3



4.3 deref/2:- pred deref(T,T).:- mode deref(oo,ng) is det.:- pragma 
_
ode(deref(X::oo,Y::ng),will_not_
all_mer
ury," if ((X & 0x3) == 0x3)Y = *(Word *)(X & ~0x3);else Y = X;").4.4 unify var var/2:- pred unify_var_var(T,T).:- mode unify_var_var(oo,oo) is det.:- pragma 
_
ode(unify_var_var(X::oo,Y::oo),will_not_
all_mer
ury," { Word *PX, QX, QY, *PY, BX, BY;BX = X; BY = Y;PX = (Word *)(BX & ~0x3);PY = (Word *)(BY & ~0x3);QX = *PX; QY = *PY;/* first determine equality of X and Y *//* do this in a symmetri
al way */
he
k_equal:if (QX == BY) goto they_are_equal;if (QY == BX) goto they_are_equal;if ((QX != BX) && (QY != BY)){ PX = (Word *)(QX & ~0x3);QX = *PX;PY = (Word *)(QY & ~0x3);QY = *PY;goto 
he
k_equal;}/* they are not equal */PX = (Word *)(BX & ~0x3);PY = (Word *)(BY & ~0x3);MR_trail_
urrent_value(PX);MR_trail_
urrent_value(PY);QX = *PX;*PX = *PY;*PY = QX;they_are_equal: /* nothing needs to be done */4



}").4.5 unify var val:- pred unify_var_val(T,T).:- mode unify_var_val(oo,oo) is det.:- pragma 
_
ode(unify_var_val(Var::oo,Val::oo),will_not_
all_mer
ury," { Word *P, Q;P = (Word *)(Var & ~0x3);Q = *P;while ((Q & 0x3) == 0x3){ MR_trail_
urrent_value(P);*P = Val;P = (Word *)(Q & ~0x3);Q = *P;}}").4.6 X = Y and X and Y are newThis situation is dealt with in a later do
ument ([2℄).4.7 X = Y and X is newThis is an \assignment" and translated to Mer
ury as \X = Y" be
ause Mer
ury generates theright 
ode for HAL.4.8 X = Y and both are groundTranslate to itself in Mer
ury.4.9 X = Y and X is oldY is not new otherwise a 
ase above applies.X and Y belong to the same type t whi
h is a Herbrand type. T 
ould be polymorphi
. Assumethat type t is de�ned in module m.Compile to the goal \m:hbu t n(X,Y)". hbu t n is the uni�
ation predi
ate for the type t (witharity n) and de�ned as::- pred hbu_T_n(t,t).:- mode hbu_T_n(oo,oo) is semidet.hbu_T_n(X,Y) :-(var(X) ->(var(Y) -> 5



unify_var_var(X,Y); unify_var_val(X,Y)); (var(Y) ->unify_var_val(Y,X); unify_val_val_t(X,Y))).5 Performan
e measurements5.1 nrev:- pred nrev(list(bla),list(bla)).:- mode nrev(list_oo,(new -> list_of_old)) is det.nrev(In,Out) :-( In = [℄,Out = [℄; In = [X|S℄,nrev(S,R),Int = [X℄,get_address(Int,Address),
opy_address(Address,X),my_append(R,Int,Out):- pred my_append(list(bla),list(bla),list(bla)).:- mode my_append(list_oo,list_oo,(new -> list_of_old)) is det.my_append(In,Tail,Res) :-( In = [℄,Tail = Res; In = [X|R℄,my_append(R,Tail,NewR),Res = [X|NewR℄,get_address(Res,Address),
opy_address(Address,X)).5.2 The �guresAll the �gures are in MLIPS (mega-lips).� HAL-g: the list 
ontained non-variable obje
ts� HAL-f: the list 
ontained (distin
t) variable obje
ts6



length list Mer
ury HAL-g HAL-f SICStus-e SICStus-n10 3.35 2.35 2.0 0.46 2.6100 3.14 1.85 1.37 0.71 3.71000 2.58 1.62 1.21 0.74 3.230 3.75 2.36 1.94 0.61 2.6The mode of the HAL nrev and append were de
lared as old� > old and new� > old� SICStus-e: SICStus in 
ompa
t
ode mode� SICStus-n: SICStus in fast
ode mode (extrapolated)A strange thing 
an be noti
ed from the �gures: in WAM (SICStus), the longer the list, thehigher the LIPS. This seems not to hold for the MAM (Mer
ury and HAL). The reason is thela
k of real tail re
ursion optimisation in Mer
ury: it does a good approximation (middle re
ursionoptimisation) but for long lists, there is a negative e�e
t on speed.Mer
ury was also with trail - but this doesn't a�e
t the timings really.All �gures to be taken 
um grano salis.6 Con
lusionEÆ
ien
y was not the prime reason for our 
hoi
e of the PARMA binding s
hema, but the nrevben
hmark indi
ates that the 
hoi
e of the PARMA representation for variables within the Mer
urys
hema, is reasonable. Future work will 
on
entrate on implementing fully the des
ribed s
hema,extending it for polymorphi
 types and optimising it.A
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