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Abstract

In the state of the art on the ramification problem, it is acknowl-

edged that ramifications of actions are not logical consequences of state

constraints and require explicit representation through causal laws. Yet,

causal laws are still tightly coupled with state constraints in that their

syntactic form is derived from state constraints or in that they merely

serve to restore integrity of state constraints. In this paper, we cut this

strong connection. Our focus is not on state constraints but on the propa-

gation of physical or logical forces and effects through the dynamic system.

Causal laws are considered representations of how these forces and effects

propagate. As such, causal laws may be but do not need to be related

to state constraints. We define a semantics for causal laws which allows

for representing cyclic dependencies between effects and combined effects

on complex fluent formulae. The effect propagation process is construc-

tive. To adequately model this process, we propose a semantics for causal

laws based on the main mathematical constructive principle: inductive

definitions. Our approach is language-independent and can be embedded

in Situation Calculus, Event Calculus, A-type or STRIPS-type languages.

We discuss the relation with other recent approaches based on a restricted

notion of nondeterminism.
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1 Introduction

In reasoning about actions in dynamic systems, at least three types of informa-
tion are important:

• State constraints represent properties that hold at each state in the dy-
namic system. In this paper they will be represented by formulae of the
form:

∀S : Holds(F, S)

where F is a fluent formula and S a variable of the sort representing time
(e.g. situation or time point, depending on the adopted time structure).1

• Effect rules represent the effects that may occur in the world. One can
distinguish between direct effect rules (action laws), representing the prim-
itive effects of actions, and derived effect rules (causal laws), representing
indirect effects or ramifications, i.e. how the initiation of certain fluents
or fluent expressions can cause other fluents to become true or false. The
first sort of rules will be represented by rules of the form:

a causes l if F

with a an action constant, l a fluent literal (a fluent or its negation) and
F a fluent formula. Derived effect rules will be represented by rules of the
form:

initiating F causes l if F ′

with F, F ′ fluent formulae, and l a fluent literal. The ramification problem
is defined as the problem of determining all direct and derived effects of
certain actions.

• Action preconditions or action qualifications specify necessary conditions
on the states in which an action may occur. An action precondition will
be represented by formulae:

∀A,S : Act(A,S) ∧ a ∈ A→ Holds(F, S)

with a an action constant, A a term representing a set of actions and F

a fluent formula. The qualification problem is in this paper defined as the
problem of determining the preconditions of actions entailed by a theory.2

1In what follows, we will use a slightly simplified terminology and talk about S as a state.
More precisely we then mean the state of the world at time S. Only in the discussion on
nondeterminism will an explicit distinction between a time and the state at that time become
relevant.

2Observe that we do not handle the general qualification problem which is concerned with
default reasoning on such conditions.
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Often action preconditions and effect rules are related to state constraints.
The state constraint ∀S : Holds(walking → alive, S) stating that one must be
alive to be walking, corresponds to an implicit action precondition on the action
start walk: ∀A,S : Act(A,S)∧start walk ∈ A→ Holds(alive, S), and to a de-
rived effect “dying ends walking”: initiating ¬alive causes ¬walking if true.

In the state of the art approaches to the frame problem, it is acknowledged
that neither action qualifications nor ramifications can be derived automatically3

from state constraints ([6], [5], [11], [15]) and require explicit representation
through action preconditions and causal laws. Yet, to date, action preconditions
and especially causal laws are still considered to be tightly coupled with state
constraints. In some approaches, e.g. [12], [13], [10] and [8], causal laws include
an implicit state constraint component4 . In the approach of [17], the semantics
of causal rules is defined in terms of the state constraints (the same causal rule
may have different semantics in contexts with different state constraints); causal
rules are also (suggested to be) derived from state constraints augmented with
additional influence information.

We argue in this paper that in general, action preconditions and causal laws
may be entirely independent of state constraints.

With respect to qualifications, an obvious example of an action precondition
which does not correspond to a state constraint is that in a chess game moving a
piece from one position to another is only possible if the moved piece is initially
on the starting position. On the other hand, the state constraint that the
player who has just made a move may not be in check represents an implicit
precondition on moves which is not easily represented explicitly.

With respect to ramifications, rather than focusing on state constraints and
how they can be maintained through indirect effects, the problem is to model
the reality of the physical or logical forces and effects in the dynamic system
and how they propagate through the system. We consider causal laws to be
representations of how these forces and effects propagate. As such, causal laws
may be but do not need to be related to state constraints. An obvious example of
a system exhibiting indirect effects unrelated to state constraints, is an electronic
counter in a digital network. Assume the network has many input signals, which
can be directly modified through actions, an arbitrary internal structure, and
one or more outputs lines. A counter on one of these output lines counts the
number of times the output voltage changes from 0 to 1. It seems natural to
represent this information by derived effect rules like

initiating out causes count(n+ 1) if count(n)
initiating out causes ¬count(n) if count(n)

3This is obvious e.g. in the above example, where the same state constraint represents
a precondition on one action and leads to ramifications on other actions (those terminating
alive).

4or a constraint relating different states in the case of delayed effect rules in [8]
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These indirect effects are in no way related to a state constraint: there is no
relation between the contents of the counter and the current state of the network.
What is happening here is just a propagation of effects. Indirect effects of this
kind cannot be correctly modeled in state constraint based approaches.

The direct and derived effect rules we consider have a very general form and
allow for representing cyclic dependencies between effects as well as for effects
dependent on the initiation of complex fluent formulae. Derived effect rules
with complex fluent formulae allow for a natural and concise representation of
many quite common effect propagations; moreover as an interesting side-effect
such rules turn out to be remarkably suitable and robust for representing the
combined effects of simultaneous actions. This is illustrated by the following
problem from [4]: a table is considered which can be lifted on the left and right
sides; on top is a glass of water which will spill its contents as soon as the table
is in a non-horizontal position.

The effects of the actions lift l and lift r (and similarly drop l and drop r)
are represented by the direct effect rules

lift l causes upl if true
lift r causes upr if true

The rule that the glass spills its content when the table is moved into a non-
horizontal position is expressed through

initiating ¬(upl ↔ upr) causes spill if on table

Assuming the table is initially on the floor, executing either one of the lift actions
will cause the water to spill, but if they are executed at the same time there
is no spilling. A representation without complex fluent formulae in the derived
effect rule would require a careful case analysis of different possible states and
actions leading to at least four different rules, like “the water is spilled if upl is
initiated while upr is false and upr is not itself initiated”.5

A natural example of cyclic effect rules is the following. Consider two con-
nected gear wheels. Any action which makes one of them turn, makes the other
one turn as well, and any action which stops one wheel, stops the other one.
The propagation of the forces executed by the gear wheels on each other, can
be represented by the rules:

initiating turn 1 causes turn 2 if true
initiating ¬turn 1 causes ¬turn 2 if true
initiating turn 2 causes turn 1 if true
initiating ¬turn 2 causes ¬turn 1 if true

Despite the natural appearance and the intuitive clarity of effect rules, defin-
ing their semantics is a non-trivial mathematical problem, in which the following
issues need to be addressed:

5Lin utilises complex causal laws in [12]. These laws differ from our derived effect rules in
that they incorporate a state constraint component, as most other approaches.
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• With cyclic dependencies, the semantics should not derive self-supported
effects. E.g. in the gear wheel example, it should not be derived that the
first gear wheel is caused to turn because the second one is caused to turn
and vice versa. Without any exterior cause, the state of the gear wheels
should not change. Typically, a Clark completion-style semantics would
run into the problem of allowing such self-supported effects. This problem
calls for a strategy of minimisation of the set of causations; therefore a
technique like circumscription would be more appropriate. However, also
circumscription runs into problems, due to the next problem.

• Derived effect rules with complex fluent formulae hide implicit negative
dependencies between causations, as in the table example above. Accord-
ing to the rule initiating ¬(upl ↔ upr) causes spill if on table, spill
will be caused when upl is initiated and upr is false, provided that in the
same state upr is not initiated, i.e. provided that there is no cause for upr

(otherwise, ¬(upl ↔ upr) would not be initiated after all). The effect on
spill thus depends on the absence of an effect on upr. Applying circum-
scription to rules incorporating such negative dependencies runs into the
same sort of problems as the (naive) application of circumscription to the
Yale Turkey Shooting problem ([9]).

• Due to the absence of syntactical constraints on effect rules, theories of
effect rules can be constructed which cannot be given a consistent seman-
tics. A simple example is the effect rule initiating a causes ¬a if true.
In other cases, contradictions may appear in more subtle ways. A math-
ematical technique is needed to detect these contradictions and to deal
with them. It is unclear to us if a more refined circumscription policy
might solve these problems. The many increasingly complex variants of
circumscription proposed to date suggest that a general solution is not
evident, even though distinct variants yield solutions for particular classes
of theories.

The solution we propose is the following. The effect propagation process is
a constructive process. As remarked in [16], essential properties are :

• each effect should be caused, either by a primitive action or by another
effect;

• there cannot exist self-supported effects;

• effect causation is well-ordered; there should not be an infinite chain of
effects in which each effect is caused by the next effect in the chain.

To adequately model this propagation process, a constructive semantics with
the same features as the process itself seems appropriate. We base our approach
on the main mathematical constructive principle: the principle of inductive
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definition ([2, 14, 1]). We define a conservative extension of this principle which
allows for dealing with non-stratified definitions, using techniques inspired by
those used in the definition of logic programming semantics.

In the following section, we formally define the principle of inductive defi-
nition and show how to use it to give a natural semantics to effect rules. The
introduction of limited nondeterminism will be addressed in a third section, and
be used as the basis for a comparison with related work in the fourth and final
section.

2 Formal Semantics

In this section we define the semantics of the formulae introduced above, as
a state transition function dependent on the occurring actions and the effect
rules. As such the approach is not restricted to one particular action language.
In particular embeddings in e.g. Situation Calculus and Event Calculus can be
readily obtained.

Intuitively, the semantics we propose for a set of effect rules is to read them
as an inductive definition of predicates Caus and Init. This is formalised below.

2.1 Principle of Inductive Definition

The semantics and expressiveness of inductive definitions are studied in a sub-
area of mathematical logic, the area of Iterated Inductive Definitions (IID) ([2,
14, 1]). The semantics proposed there require the definitions to be stratified. For
our purposes this is not sufficient, as indicated above. However, as it appears,
the problems of defining the semantics of non-stratified inductive definitions
are analogous to the problems of defining the semantics of non-stratified logic
programs. Consequently, techniques from logic programming semantics can be
used to design a conservative extension of the IID semantics, extending it to
non-stratified definitions.

We need the following concepts.

Definition 1 (VP,≤F ) Given a set of ground atoms P, the set VP of (3-valued)
valuations on P is the set of all functions P→ {t,u, f}. On VP, a partial order
≤F is defined as the pointwise extension of the order u ≤F t,u ≤F f; more
precisely, ∀I, I ′ ∈ VP : I ≤F I ′ iff ∀l ∈ P : I(l) ≤F I(l′).

It is easy to prove that VP,≤F is a chain complete poset with least element
⊥, the valuation which assigns u to each atom.

Definition 2 (inductive definition) Given a set of ground atoms P, we de-

fine P̂ = P ∪ {¬l|l ∈ P} ∪ {t, f}.6 Valuations can be naturally extended to P̂.

6u should never occur explicitly in a definition.
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A definition rule in P is an object l ← B where l ∈ P and B ⊆ P̂. l is called
the head, B the body of the rule. A definition on P is any set D of rules in P.

Given P and a definition D on P, we need to characterise a valuation ID
which defines the truth values of all atoms according to D. In IID this involves
stratifying the definition, but the following techniques inspired by logic pro-
gramming semantics formalise the same intuitions in a more general and syntax
independent way.

Definition 3 (proof tree) A proof tree T for an atom p ∈ P is a tree of

elements of P̂ such that

• the root of T is p

• for each non-leaf node n of T with immediate descendants B, “n ← B”
∈ D or B = {f} (Hence, each atom has at least one (false) proof tree.)

• T is maximal, i.e. atoms occur only in non-leaf nodes. Leaf nodes then
contain only t, f or negative literals.

• T is finite, i.e. contains no infinite branches

Given a valuation I ∈ VP, for each l ∈ P we define its supported value w.r.t. I,
denoted SVI(l), as the truth value proven by its “best” proof tree. Formally:

Definition 4 (supported value)

• SVI(l) = t if l has a proof tree with all leaves containing true facts w.r.t.
I;

• SVI(l) = f if each proof tree of l has a false fact w.r.t. I in a leaf;

• SVI(l) = u otherwise; i.e. if each proof tree of l contains a non-true leaf,
and some proof tree contains only non-false leaves.

Consider for example the rules for the two gear wheels above, plus appro-
priate direct effect rules (we rewrite the rules as a definition of Caus; below we
will elaborate on how to do this in general):

Caus(A,S, turn2)← Caus(A,S, turn1)
Caus(A,S, turn1)← Caus(A,S, turn2)
Caus(A,S,¬turn2)← Caus(A,S,¬turn1)
Caus(A,S,¬turn1)← Caus(A,S,¬turn2)
Caus(A,S, turn1)← Ha(start1, A)
Caus(A,S, turn2)← Ha(start2, A)
Caus(A,S,¬turn1)← Ha(stop1, A)
Caus(A,S,¬turn2)← Ha(stop2, A)
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In these rules, Ha(a,A) can for now be considered as atoms denoting a ∈ A.
Assume the wheels are at first not turning, i.e. S = {¬turn1,¬turn2} and a
single action start1. Caus(A,S, turn1) has two loop-free finite proof trees: one
in which it has as only immediate descendant the leaf Ha(start1, A), and one in
which it has Ha(turn2, A) as immediate descendant and hence Ha(start2, A)
as only leaf. The former proof tree determines that the supported value of
Caus(A,S, turn1) is t. Similarly, Caus(A,S, turn2) has supported value t due
to the proof tree Caus(A,S, turn2) — Caus(A,S, turn1) — Ha(start1, A).
The finite proof trees of Caus(A,S,¬turn1) and Caus(A,S,¬turn2) all have
a false leaf (either Ha(stop1, A) or Ha(stop2, A)), hence these literals have f as
supported value.

For a definite (or positive) definition D like the above one, we define ID as
the valuation mapping each p ∈ P to SV⊥(p), i.e. each atom is mapped to its
supported value (w.r.t. ⊥). E.g. we find that in the given example both wheels
start turning. For non-definite definitions, ID is obtained as a fixpoint of the
above operation:

Definition 5 (PID) The positive induction operator PID : VP → VP : I → I ′

is defined such that ∀p ∈ P : I ′(p) = SVI(p).

It can be proven that this operator is monotonic and hence always has a
least fixpoint PID ↑. This allows us to define ID as:

Definition 6 Given < P,D >, ID = PID ↑.

For a stratified definition, the fixpoint construction basically mimics a layer
by layer truth assignment: each iteration determines the truth values of the
initiations in the lowest layer that has not yet been dealt with. After a number
of steps equal to the number of layers, all initiations are determined to be true
or false. As an example, assume we add a rule to the gear wheel domain stating
that an alarm should go off whenever one wheel starts turning but the other
does not.7

initiating turn1 ∧ ¬turn2 causes alarm if true

As we will show below, this rule roughly corresponds to the following low-level
definition rules for Caus:

Caus(A,S, alarm) ← Caus(A,S, turn1),Caus(A,S,¬turn2).
Caus(A,S, alarm) ← Caus(A,S, turn1),Holds(¬turn2, S),

¬Caus(A,S, turn2).
Caus(A,S, alarm) ← Caus(A,S,¬turn2),Holds(turn1, S),

¬Caus(A,S,¬turn1).

7Clearly it is impossible for this to occur given the other domain knowledge, but of course
nothing prevents us from modeling this rule, while a more “useful” example would force us to
complicate the domain description, which is not particularly helpful.
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This definition is stratified with alarm in a higher level than turn1 and turn2

(alarm depends negatively on turn1 and turn2, which depend only positively
on each other). Starting with a truth value u for all Caus literals, in a first
iteration the three rules for alarm yield proof trees with undefined leaves, so
that Caus(A,S, alarm) remains u. However, as indicated above, in this same
iteration Caus(A,S, turn1) and Caus(A,S, turn2) get truth values t. Then,
in the second iteration the proof trees for Caus(A,S, alarm) have only true or
false leaves, and Caus(A,S, alarm) is assigned a new truth value f. At this
point the fixpoint is reached.

It follows from the construction that the truth value u occurs in the fixpoint
of a definition only (but not necessarily) if some atoms negatively depend on
each other, or one atom on itself, i.e. only if the definition is not stratified.8 We
interpret this truth value as indicating an error, in the sense that the definition
is not constructive. Thus nonsensical and ambiguous definitions are detected
and dealt with.

The least fixpoint of the positive induction operator has been proven to co-
incide with the least fixpoint of the well-founded operator of [19]. This is an
argument for the position that the well-founded semantics represents a gener-
alised inductive definition principle. The interpretation of logic programming
under well-founded semantics as an inductive definition logic deviates consid-
erably from other well-known knowledge theoretic interpretations given by the
embeddings of logic programming in default and autoepistemic logic, for exam-
ple in that in the inductive definition reading, negation is objective, whereas
in the default and autoepistemic readings negation is seen as a modal oper-
ator. Our treatment of effect rules in this paper and the motivations given
for it are therefore also an indication that this alternative perspective on logic
programming provides a very promising framework for general knowledge rep-
resentation, which formalises important KR principles. However this issue is
outside the scope of this paper.

2.2 Tackling the Ramification Problem

We now show how to handle effect rules using an inductive definition based
semantics. The problem we want to deal with is the following: given the state
of the world at a certain time (described using the Holds predicate in the usual
way), a set of actions occurring at that time and a set of direct and derived
effect rules, calculate the state of the world resulting after this set of actions.
We denote a set of actions as A and a time as S. The set S is the set of all
times.

We reduce direct and derived effect rules to an inductive definition of Init
and Caus. These predicates intuitively denote strong and weak initiation, re-

8If there is a mutual negative dependency and yet the fixpoint contains no u, this means
that the dependency is only of a syntactic, not a semantic nature. For an example and a more
in-depth discussion of this phenomenon we refer to [3].
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spectively: Init(A,S, l) means that l does not hold at S but holds immediately
after the application of the set of actions A at S. Caus(A,S, l) means that l
holds immediately after the occurrence of A, but possibly also already at S.
The successor state of a state S after A contains those fluent literals l that are
initiated (by A) and those that are true in S and of which the negation l is not
initiated.

The intended reading of a derived effect rule
initiating F causes l if F ′ is that given F ′, strong initiation of F causes weak
initiation of l. To formalise this for complex F we introduce the concept of a
supporting set. This concept is based on a disjunctive normal form of the
formula. Since a definition can have 3-valued interpretations, this normal form
needs to be equivalence preserving under 3-valued FOL semantics. The 2-valued
disjunctive normal form does not satisfy this property (since e.g. F ∧¬F is not
3-valued equivalent to f), but it is easy to derive a 3-valued variant:

Definition 7 (3-valued disjunctive normal form) The 3-valued disjunctive
normal form 3dnf(F ) of a fluent formula F is obtained by applying the following
rewriting rules to F or its constituents (if ↔, → or ← occur in F we assume
they are rewritten in terms of ¬, ∧, ∨ as usual) until no further rules apply:9

• replace ¬¬F by F

• replace ¬(F ∧G) by ¬F ∨ ¬G

• replace ¬(F ∨G) by ¬F ∧ ¬G

• replace F ∧ (G ∨H) by (F ∧G) ∨ (F ∧H)

• replace F ∧ F by F

• replace F ∨ (F ∧G) by F

The following properties can be proven. The rewriting process always termi-
nates. The resulting normal form 3dnf(F ) is unique10 , i.e. independent of the
order in which subformulae are processed. 3dnf(F ) is always a disjunction of
conjunctions of literals. 3dnf(F ) is equivalent to F under 3-valued as well as
2-valued semantics. Finally, under either semantics, if F and G are equivalent
then so are 3dnf(F ) and 3dnf(G).

We define the concept of supporting set as follows:

Definition 8 (supporting set) Let F be a fluent formula and F ′ = (l11 ∧ .. ∧
l1n1

)∨ ...∨ (lm
1
∧ ..∧ lmnm

) its 3-valued disjunctive normal form. A supporting set
L of F is any set {li

1
, .., lini

}, ∀1 ≤ i ≤ m.

A formula is true if and only if all literals of some supporting set of it are true.
It follows that F is initiated iff F is not already true and for some supporting
set L of F , all literals of some Li ⊆ L are initiated and all literals in Lp = L\Li

are true and not terminated. This leads to the formalisation below.
9We assume commutativity and associativity are applied whenever needed.

10modulo commutativity and associativity
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Definition 9 (notations) In what follows Ha(a,A) is the truth value of “a ∈
A” and Ho(F, S) is the truth value of “Holds(F, S)”. We define Init(A,S, L)
as {Init(A,S, l) | l ∈ L} and Caus(A,S, L) as {Caus(A,S, l) | l ∈ L}. Further,
from now on we use the notation f = ¬f , ¬f = f , L = {l | l ∈ L} for any set
of literals L, and P = {¬p | p ∈ P} for any set of Init or Caus atoms P .

Definition 10 (grounding of effect rules)
The grounding of a rule “a causes l if F” is

{Caus(A,S, l)← Ha(a,A), Ho(F, S) | A ⊆ A, S ∈ S}.

The grounding of “initiating F causes l if F ′” is

{Caus(A,S, l)←Init(A,S, Li), Init(A,S, Lp),
Ho(Lp, S),¬Ho(F, S), Ho(F ′, S)

| A ⊆ A, S ∈ S and Li ∪ Lp is a supp. set of F}.

The grounding of a set of effect rules Πe is Dinit = Dg ∪ {Init(A,S, l) ←

Caus(A,S, l),¬Ho(l, S) | A ⊆ A, S ∈ S, l ∈ P̂}, where Dg is the union of the
groundings of all rules in Πe.

Dinit is an inductive definition on the atom domain P′ = {

Init(A,S, l),Caus(A,S, l) | A ⊆ A, S ∈ S, l ∈ F̂}, for which IDinit
is the

least fixpoint of PIDinit
.

In case the interpretation of Caus contains any truth value u or in case
this interpretation is contradictory in that for some fluent f both f and ¬f
are caused, the resulting successor state is considered invalid. The set of ac-
tions leading to this state is then disallowed, like in the case of violated state
constraints discussed below.

The rules Init(A,S, l)← Caus(A,S, l),¬Ho(l, S) are the only rules for Init.
Since the completion of the definition rules is entailed by the well-founded and
therefore also the inductive definition semantics, the rules imply

∀A,S, l : [Init(A,S, l)↔ Caus(A,S, l) ∧ ¬Ho(l, S)]

and thereby capture the intended relation between strong and weak initiation.
The mutual recursion in the definitions of Init and Caus indicates that

strong initiations may provide causes for literals to become true; only if these
literals are not already true, i.e. if they are actually changed, they can themselves
give rise to further ramifications.

As an example of the grounding definition, consider the rule

initiating turn1 ∧ ¬turn2 causes alarm if true

11



The formula turn1∧¬turn2 is in disjunctive normal form and has one supporting
set {turn1,¬turn2}. Hence, the grounding of this rule is exactly

Caus(A,S, alarm) ← Init(A,S, turn1), Init(A,S,¬turn2),
¬Ho(turn1 ∧ ¬turn2, S).

Caus(A,S, alarm) ← Init(A,S, turn1), Ho(¬turn2, S),
¬Init(A,S, turn2),¬Ho(turn1 ∧ ¬turn2, S).

Caus(A,S, alarm) ← Init(A,S,¬turn2), Ho(turn1, S),
¬Init(A,S,¬turn1),¬Ho(turn1 ∧ ¬turn2, S).

Caus(A,S, alarm) ← Ho(¬turn2, S),¬Init(A,S, turn2),
Ho(turn1, S),¬Init(A,S,¬turn1),
¬Ho(turn1 ∧ ¬turn2, S).

Observe that the last rule has a trivially false body due to the conflicting Ho
conditions.

The question which remains to be answered is what the role of state con-
straints and preconditions is in this context. As suggested by their syntax, these
are interpreted as classical FOL formulae. In other words, they are orthogonal
to the successor state calculation. In the general theory of action, which may
contain (complete or incomplete) information about occurring actions and ob-
served fluent values, they will be formulae that need to be satisfied. So, actions
can not occur when their preconditions are not met. Likewise, if the successor
state of a certain state after a particular action — which is determined by the
effect rules alone — violates a state constraint, this successor state can not exist
at any time and hence any action leading to it is impossible. In this paper we
do not aim at introducing a specific time structure (and therefore a formalisa-
tion of inertia), but rather at defining a state transition function that can be
incorporated in different time structures.

We now give some interesting results concerning the semantics. For proofs
we refer to [18].

Theorem 1 Given a state S, a set of actions A and a set of direct and derived
effect rules, the truth values of Init(A,S, l) for all l are uniquely determined.

The theorem guarantees that successor states generated by a set of deter-
ministic effect rules are unique. In this respect our approach differs from the
one in [17]. Unless nondeterminism is explicitly introduced, the theory leaves
no room for ambiguity.

The following results give some alternative characterisations of the above
semantics in special cases. They shed some light on the relation to existing
approaches to the ramification problem.

Definition 11 (fluent dependency)
A fluent f occurring in a rule initiating F causes f if F ′ or in a rule
initiating F causes ¬f if F ′ depends on a fluent f ′ if f ′ occurs in F , or if a
fluent which depends on f ′ occurs in F .
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Theorem 2 If the derived effect rules are acyclic, i.e. if no fluent depends on
itself, IDinit

is always 2-valued. Moreover IDinit
coincides with the unique model

of the Clark completion of the definition rules.

Theorem 3 If the body of each derived effect rule is a single literal, IDinit
is

always 2-valued, and coincides with the unique model of the parallel circumscrip-
tion of Init and Caus in the theory consisting of the definition rules read as
implications.

The above results show that for several classes of definitions for which other
semantics are known to assign the intended meaning to all predicates, the induc-
tive definition semantics coincides with these semantics. However the inductive
definition semantics is more general, also dealing with definitions that cannot
be dealt with by the more common semantics.

3 Nondeterminism

In this section we introduce a representation of nondeterministic actions and
ramifications where there is a possible effect rather than a definite one. This
extension is useful for representing incomplete knowledge about the direct and
indirect effects of actions, and will also be used for comparing our approach
with Thielscher’s further on.

The syntax of nondeterministic direct effect rules is

a possibly causes l if F

The meaning, for example, of

shoot possibly causes ¬alive if loaded

is that ¬alive is a possible but not certain effect of the action, in other words here
the hunter is less of an expert than in the usual formalisation of this problem.

Similarly we extend derived effect rules: a nondeterministic derived effect
rule has the form

initiating F possibly causes l if F ′

meaning that l may become true when F becomes true at a time when F ′ holds.
Our rules for nondeterministic actions are similar to those in [7], although

the semantics is defined in a different way and we also allow for nondetermin-
istic ramifications. Observe that only a limited form of nondeterminism can
be represented using these rules. A full treatment of nondeterminism, taking
into account for example actions with alternative effects11 can be obtained by

11A representation
a possibly causes l if F

a possibly causes l′ if F

is only an approximation for an action with alternative effects l and l′ since it allows for none
or both of l and l′ to be directly caused by a.
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extending the principle used in the semantics below, but is outside the scope of
this paper.

The meaning of a set of rules, including nondeterministic ones, is defined by
modifying definition 10 as follows: the grounding of a nondeterministic rule is
obtained considering, for each time S, either the grounding of the corresponding
deterministic rule, or nothing12 .

Definition 12 (nondeterministic grounding )
The restriction GS of a set of primitive definition rules G to a time S is the set
of all rules of G in which S occurs.

A grounding of a nondeterministic direct effect rule

a possibly causes l if F

is any set
⋃

S∈S
G′S , where G′S is either empty or it is the restriction GS of

the grounding G of the corresponding direct effect rule a causes l if F .
A grounding of a nondeterministic derived effect rule

initiating F possibly causes l if F ′

is any set
⋃

S∈S
G′S, where G′S is either empty or it is the restriction GS of the

grounding G of the corresponding derived effect rule
initiating F causes l if F ′.

A grounding of Πe = {rk | 1 ≤ k ≤ l} is any definition Dinit = Dg ∪

{Init(A,S, l) ← Caus(A,S, l),¬Ho(l, S) | A ⊆ A, S ∈ S, l ∈ P̂}, where Dg is
any set

⋃
k=1...lGk with each Gk a grounding of rk.

4 Discussion

We have presented a new language-independent approach to the ramification
problem, which allows for ramifications unrelated to state constraints, and deals
with cyclic and negative dependencies between effects. We have discussed the
types of constructs required to reach those goals, and presented a semantics
based on the principle of inductive definitions. This semantics was chosen due
to its closeness to the intuitions underlying effect propagations (e.g. construc-
tiveness).

The approach most similar to ours is the one described in [17], which at
least syntactically uncouples causal rules from state constraints. However, a

12Observe that here the distinction between time point/situation and state becomes rele-
vant: a separate choice is made for each time, not only for each state. This represents that
at different times a nondeterministic action can have different effects, even if the state of the
world at those times is the same. To allow for hypothetical reasoning in branching time,
separate choices would be required also for each set of actions at each time.
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first essential difference is that in Thielscher’s approach all changes are optional:
we have proven that Thielscher’s causal rules of the form

a causes b

are exactly equivalent to our rules

a possibly causes b if true

The relation with rules a causes b if c is slightly more complex: as we shall
see below, these rules are strictly stronger, i.e. applicable in more cases, than
our a possibly causes b if c. However also application of these rules is always
optional.

Hence, any state obtained after applying any subset of applicable causal
rules, and satisfying the state constraints, is a valid successor state according
to Thielscher. As a result, effect propagations not related to state constraints
are not correctly dealt with. A simple example is the digital network discussed
before: assuming the presence of a causal rule like

out causes count(n+ 1) if count(n)

in Thielscher’s approach, in the absence of a state constraint there is nothing
enforcing application of this rule.

The second difference lies in the interpretation of the if condition in Thiel-
scher’s rules, as mentioned above. Thielscher proposes to apply causal rules
sequentially, i.e. the if condition can be checked not only at the beginning
of a batch of changes, but also after some changes have already taken place.
This is consistent with Thielscher’s view that small delays are involved in all
change propagations. (In our view, such delays should be modeled explicitly
if present, using delayed effect rules, but this issue is outside the scope of this
paper). It is due to this sequential application of rules that a causes b if c is
strictly stronger than our nondeterministic rule: our corresponding rules can
only be applied if the condition c holds in the starting state.

There is no room here for a detailed discussion of the impact of sequential vs
simultaneous application. However, it is interesting to note that a set of rules
of the form

out causes count(n+ 1) if count(n)

is problematic in a sequential approach, as they give rise to an arbitrary increase
of n: when out is initiated, the counter can take on any value as the rule can
be applied ad infinitum. Hence our point of view that one needs to distinguish
explicitly between immediate and delayed effect propagations.

As far as other approaches using causal laws are concerned, we have observed
that these can be mapped to a particular subset of Thielscher’s framework: in
Thielscher’s terms, the causal laws in these approaches can be seen as state
constraints with hard-wired influence information, e.g. in [13] a causal law φ⇒
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ψ represents the state constraint φ→ ψ plus the influence information that all
literals in φ can influence all literals in ψ and all literals in ψ can influence each
other.

With respect to approaches not based on causal laws, we refer to the ar-
guments presented in [17]: Thielscher’s and our approach differ in the same
essential aspects from these approaches.

Finally, we want to add a few words on further (and earlier) work on this
framework. We have embedded the proposal in a more complete action lan-
guage using a linear time structure, which we have called ER. In this theory
we deal with complete or partial information about action occurrences, action
order, initial state and given observations at arbitrary time points. These issues
are completely orthogonal to the approach to ramifications presented here. In
addition we have generalised the approach to nondeterminism described above,
and included rules for dealing with delayed ramifications. More details can be
found in [18].

We have provided a mapping of ER theories into Open Logic Programming,
an extension of logic programming with open predicates, i.e. predicates which
do not have a definition (and which correspond to abducibles in abductive logic
programming). This mapping is roughly based on the Event Calculus, and has
been proven sound and complete. The OLP theory can be used for various types
of reasoning — e.g. deductive, abductive or combinations thereof, with as most
important instances temporal projection, diagnosis and planning — using an
abductive resolution procedure.
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