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1 The primal scaling vector on

R
2

Consider the hexagonal lattice ∆ in R
2 which is de-

fined as the image of Z
2 by a linear transformation

corresponding to the matrix

Γ =

[
1 −1/2

0
√

3/2

]
,

and let ∆∗ be its refinement by drawing in the ad-

ditional grid lines y = l, y =
√

3
3 (x + m), and y =

−
√

3
3 (x + n), l, m, n ∈ Z. In fact, ∆∗ is the Powell–

Sabin 6-split of ∆, see Figure 1. Define S1
2(∆∗) as

the space of real-valued functions in C1(R2) whose re-
strictions on each triangle of the triangulation ∆∗ are
bivariate quadratic polynomials. Then each function
φ ∈ S1

2(∆∗) is called a uniform Powell–Sabin (PS)
spline.

Figure 1: Hexagonal lattice ∆ (black lines) with
Powell–Sabin 6-split ∆∗ (black and dotted lines)

Let k ∈ ∆, then the interpolation problem
[
φ(l),

∂

∂x
φ(l),

∂

∂y
φ(l)

]
= δk,l

[
α, β, γ

]
, l ∈ ∆,

(1)
has a unique solution φ ∈ S1

2(∆∗), see [10]. This al-

lows to define a function vector φ = [φ1, φ2, φ3]
T that

generates a multiresolution analysis (MRA). Let each
φi, i = 1, 2, 3, be the unique solution of (1) with

α =
1

3
, β =

8
√

3

9
− δi1

24
√

3

9
, γ =

(
(−1)i−1 − δi1

) 8

3
,

then the integer translates under Γ of the basis func-
tions φi form a basis for S1

2(∆∗). Furthermore they
form a partition of unity, see [3]. Define the 2× 2 dila-
tion matrix D given by

D =

[
2 0
0 2

]
,

then we consider the refinement ∆j := D−j∆, which
can be obtained by midedge subdivision, and the corre-
sponding PS 6-split ∆∗

j := D−j∆∗. This yields nested
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subspaces Vj = S1
2(∆∗

j ) ⊂ L2(R
2), j ∈ Z, such that

Vj ⊂ Vj+1, j ∈ Z, (2)

the closure of their union is L2(R
2), and their inter-

section contains only the zero function. In general, the
basis functions on all standard refinements ∆j of ∆ can
be written as

φj,k(u) = φ(Dj(u − k)), k ∈ ∆j , u ∈ R
2,

and the set
{
2jφj,k | k ∈ ∆j

}
forms an L2-stable ba-

sis of Vj , i.e., for c = {ck}k∈∆j
∈ l3×1

2 (∆j), ck :=

(c1,k, c2,k, c3,k)T ,

∥∥∥∥∥∥

∑

k∈∆j

cT
k 2jφj,k

∥∥∥∥∥∥
L2(R2)

∼ ‖c‖l
3×1

2
(∆j)

,

see [7, 8]. With l3×1
2 (∆j) we denote the Banach

space of all sequences of 3 × 1 vectors ck for which√∑
k∈∆j

‖ck‖2
2 < ∞, and we always mean by a ∼ b

that a can be bounded above and below by constant
multiples of b.

Because of properties listed above we say that the
sequence of closed subspaces {Vj}j∈Z of L2(R2) forms
a MRA of multiplicity 3, and the function vector φ
is called scaling vector, see [9]. The nestedness (2)
of the MRA implies that φ needs to satisfy a matrix
refinement equation of the form

φ(u) =
∑

k∈Z2

Akφ(Du − Γk), u ∈ R
2, (3)

where Ak are 3×3 mask coefficient matrices. Moreover,
A(−1,−1) and A(0,−1) are given by

1

4




1 0 2

0 1 2

0 0 0




,

1

4




1 0 0

2 0 2

0 0 1




,

A(−1,0), A(0,0) and A(1,0) are given by

1

4




0 2 2

0 1 0

0 0 1




,

1

6




4 1 1

1 4 1

1 1 4




,

1

4




0 0 0

2 1 0

2 0 1




,

and A(0,1) and A(1,1) are given by

1

4




1 2 0

0 0 0

0 2 1




,

1

4




1 0 0

0 1 0

2 2 0




,

see e.g. [13].

2 Construction of a dual scaling

vector

The main idea is to start with a hierarchical basis and
apply a local correction process on the basis functions
at each level in order to achieve certain regularity prop-
erties for the dual function vectors. This technique fits
in the framework of both the lifting scheme [11] and
the stable completion technique [1].

For a vertex k ∈ ∆j , we define Nj(k) to be the
neighbouring vertices in ∆j of vertex k, and we set
Λj = ∆j+1 \ ∆j . Each scaling vector φj,k, k ∈ ∆j , is
refinable in the sense that φj,k, k ∈ ∆j , can be writ-
ten as linear combination of φj+1,l, l ∈ ∆j+1. In fact,
using (3),

φj,k = A(0,0)φj+1,k +
∑

l∈Nj+1(k)

AΓ−1Dj+1(l−k)φj+1,l.

(4)
We define the hierarchical wavelets by

ψh
j,l = φj+1,l, l ∈ Λj . (5)

From (4) we get that each φj+1,l, l ∈ ∆j+1, can be
obtained as a linear combination of the scaling vectors
φj,k, k ∈ ∆j , and the wavelet vectors ψh

j,l, l ∈ Λj ,
according to

φj+1,l = (6)




A−1
(0,0)

[
φj,l −

∑
λ∈Nj+1(l)

AΓ−1Dj+1(λ−l)ψ
h
j,λ

]
, l ∈ ∆j ,

ψ
h
j,l, l ∈ Λj .

Equation (6) implies that the space W h
j spanned by

ψh
j,l, l ∈ Λj , is a complement space of Vj into Vj+1,

and we have

VJ = V0 ⊕ W h
0 ⊕ · · · ⊕ W h

J−1,

so that
{
φ0,k, k ∈ ∆0

}
∪

{
ψ

h
j,l, l ∈ Λj , 0 ≤ j ≤ J

}
is

a basis of VJ . The hierarchical wavelet basis can be
viewed as a biorthogonal wavelet basis, where the duals
exist in L2(R

2) in the distributional sense. We define
the dual scaling vectors by

φ̃
h

j,k =




δk − 2−j−1δk
∂
∂x

δk + 2−j−2δk
∂
∂x

−
√

3 2−j−2δk
∂
∂y

δk + 2−j−2δk
∂
∂x

+
√

3 2−j−2δk
∂
∂y


 , (7)
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with δk the Dirac distribution at vertex k, and the dual
wavelets by

ψ̃
h

j,l = φ̃
h

j+1,l −AT
Γ−1Dj+1(l−k1)A

−1
(0,0)φ̃

h

j+1,k1

−AT
Γ−1Dj+1(l−k2)A

−1
(0,0)φ̃

h

j+1,k2
, (8)

with k1, k2 ∈ ∆j such that Nj+1(k1)∩Nj+1(k2) = {l}.
Note that φ̃

h

j,k satisfies the refinement equation

φ̃
h

j,k = A−1
(0,0)φ̃

h

j+1,k, k ∈ ∆j . (9)

The sets
{
φj,k,ψh

j,l

}
and

{
φ̃

h

j,k, ψ̃
h

j,l

}
are biorthogo-

nal, i.e.





〈φ̃h

j,k′ ,
(
φj,k

)T 〉 = δk,k′I3, k, k′ ∈ ∆j ,

〈φ̃h

j,k′ ,
(
ψh

j,l

)T

〉 = 0, l ∈ Λj , k
′ ∈ ∆j ,

〈ψ̃h

j,l′ ,
(
φj,k

)T 〉 = 0, k ∈ ∆j , l
′ ∈ Λj

〈ψ̃h

j,l′ ,
(
ψh

j,l

)T

〉 = δl,l′I3, l, l′ ∈ Λj ,

with 〈·, ·〉 the inner product in L2(R
2). However, from

(7) we immediately find that the interpolation operator
Qh

j ,

Qh
j f =

∑

k∈∆j

(
〈φ̃h

j,k, f〉
)T

φj,k,

can only be applied to C1 continuous functions. There-
fore the hierarchical wavelet basis is restricted to the
decomposition of Sobolev spaces Hs with s > 2, since
for s ≤ 2 these spaces are not embedded in C1, see also
[7].

In order to enlarge the range of stability to Sobolev
spaces Hs, s ≤ 2, we shall use the lifting scheme [11].
Define Φj as the column vector containing all scaling

vectors φj,k for all k ∈ ∆j , and define Ψh
j likewise.

Equations (4), (5), (8) and (9) give us a set of biorthog-

onal filter operators
{
Aj ,Bj , Ãj , B̃j

}
such that

[
Φj Ψh

j

]T

=
[
AT

j BT
j

]T
Φj+1

Φj+1 =
[
ÃT

j B̃T
j

] [
Φj Ψh

j

]T

and [
Aj

Bj

] [
ÃT

j B̃T
j

]
= I.

The lifting scheme generates new wavelet functions Ψj

by projecting the hierarchical wavelet functions Ψh
j

k1 k2

k3

l23l31

l12

Figure 2: The update stencil

into the desired complement space Wj along Vj ,

Ψj = Ψh
j −CjΦj .

This projection is not necessarily orthogonal. For each
wavelet function there is a corresponding row in the
lifting matrix Cj . The possibly nonzero entries in this
row together will be called the update stencil for that
wavelet function. Hence, the lifting scheme provides us
with a new set of biorthogonal filter operators satisfy-
ing

[
Aj

Bj −CjAj

] [
ÃT

j + B̃T
j Cj B̃T

j

]
= I.

In order to understand the stability of this new basis
with respect to Sobolev spaces, we have to investigate
the regularity of the corresponding dual functions Φ̃j

satisfying

Φ̃j = ÃjΦ̃j+1 + CT
j B̃jΦ̃j+1. (10)

Therefore we build the lifting matrix Cj in such a
way that the dual functions (10) are well defined and
that they are more regular than the initial Dirac dis-
tributions (7). We fix the update stencil in advance
in order to have local support for the wavelet func-
tions, see Figure 2. Each wavelet vector ψj,l corre-
sponding to a new vertex l ∈ Λj is updated by the
scaling vectors φj,k1

,φj,k2
with k1, k2 ∈ ∆j such that

Nj+1(k1) ∩ Nj+1(k2) = {l}. Because there are three
scaling functions associated with each scaling vector,
the width of the update stencil for a wavelet function is
six. We want to orthogonalise the wavelets to their pre-
defined set of scaling functions, but we also want one
vanishing moment. This leads to an overdetermined
system because we do not have sufficient degrees of
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freedom. The lifting matrix Cj is constructed as the
least squares solution to this overdetermined system
but we demand that the vanishing moment condition
is fulfilled. Denote the vertices k1, k2, k3 ∈ ∆j and
l12, l23, l31 ∈ Λj as in Figure 2. We find that

ψj,l12
= ψ

h
j,l12

−




−10815353

37042932

489004135

1926232464

489004135

1926232464
−20302895

148171728

734318841

4494542416

179538083

3370906812
−20302895

148171728

179538083

3370906812

734318841

4494542416

52104049

481558116

−71233997

1926232464

−71233997

1926232464
681707773

1926232464

−164964803

4494542416

−247462325

1685453406
681707773

1926232464

−247462325

1685453406

−164964803

4494542416




[
φj,k1

φj,k2

]

ψj,l23
= ψ

h
j,l23

−




734318841

4494542416

−20302895

148171728

179538083

3370906812
489004135

1926232464

−10815353

37042932

489004135

1926232464
179538083

3370906812

−20302895

148171728

734318841

4494542416

−164964803

4494542416

681707773

1926232464

−247462325

1685453406
−71233997

1926232464

52104049

481558116

−71233997

1926232464
−247462325

1685453406

681707773

1926232464

−164964803

4494542416




[
φj,k2

φj,k3

]

ψj,l31
= ψ

h
j,l31

−




734318841

4494542416

179538083

3370906812

−20302895

148171728
179538083

3370906812

734318841

4494542416

−20302895

148171728
489004135

1926232464

489004135

1926232464

−10815353

37042932

−164964803

4494542416

−247462325

1685453406

681707773

1926232464
−247462325

1685453406

−164964803

4494542416

681707773

1926232464
−71233997

1926232464

−71233997

1926232464

52104049

481558116




[
φj,k3

φj,k1

]

See also [12] for a similar construction on arbitrary

polygonal domains. The dual scaling vectors φ̃j,k sat-
isfy a matrix refinement relation similar to (4), and
using (10) we find that

φ̃j,k = Ã(0,0)φ̃j+1,k (11)

+
∑

l∈Nj+1(k)

ÃΓ−1Dj+1(l−k)φ̃j+1,l

+
∑

l∈Nj(k)

ÃΓ−1Dj+1(l−k)φ̃j+1,l,

where Ã(−2,−2) and Ã(0,−2) are given by



−37

1344

37

1344

−417301265

2568309952
37

1344

−37

1344

−417301265

2568309952

0 0
20302895

98781152




,




1494625759

53934508992

−212816425

7704929856

1488078047

17978169664
−366180055

1926232464

366180055

3852464928

−366180055

1926232464
1488078047

17978169664

−212816425

7704929856

1494625759

53934508992




,

Ã(−1,−1) and Ã(0,−1) are given by



734318841

4494542416

179538083

3370906812

489004135

1926232464
179538083

3370906812

734318841

4494542416

489004135

1926232464
−20302895

148171728

−20302895

148171728

−10815353

37042932




,




−164964803

4494542416

−71233997

1926232464

−247462325

1685453406
681707773

1926232464

52104049

481558116

681707773

1926232464
−247462325

1685453406

−71233997

1926232464

−164964803

4494542416




,

Ã(−2,0), Ã(−1,0), Ã(0,0), Ã(1,0) and Ã(2,0) are given by




366180055

3852464928

−366180055

1926232464

−366180055

1926232464
−212816425

7704929856

1494625759

53934508992

1488078047

17978169664
−212816425

7704929856

1488078047

17978169664

1494625759

53934508992




,




52104049

481558116

681707773

1926232464

681707773

1926232464
−71233997

1926232464

−164964803

4494542416

−247462325

1685453406
−71233997

1926232464

−247462325

1685453406

−164964803

4494542416




,




417002791

842726703

−40250807

13483627248

−40250807

13483627248
−40250807

13483627248

417002791

842726703

−40250807

13483627248
−40250807

13483627248

−40250807

13483627248

417002791

842726703




,




−10815353

37042932

−20302895

148171728

−20302895

148171728
489004135

1926232464

734318841

4494542416

179538083

3370906812
489004135

1926232464

179538083

3370906812

734318841

4494542416




,




20302895

98781152
0 0

−417301265

2568309952

−37

1344

37

1344
−417301265

2568309952

37

1344

−37

1344




,

Ã(0,1) and Ã(1,1) are given by




734318841

4494542416

489004135

1926232464

179538083

3370906812
−20302895

148171728

−10815353

37042932

−20302895

148171728
179538083

3370906812

489004135

1926232464

734318841

4494542416




,




−164964803

4494542416

−247462325

1685453406

−71233997

1926232464
−247462325

1685453406

−164964803

4494542416

−71233997

1926232464
681707773

1926232464

681707773

1926232464

52104049

481558116




,

and Ã(0,2) and Ã(2,2) are given by




−37

1344

−417301265

2568309952

37

1344

0
20302895

98781152
0

37

1344

−417301265

2568309952

−37

1344




,




1494625759

53934508992

1488078047

17978169664

−212816425

7704929856
1488078047

17978169664

1494625759

53934508992

−212816425

7704929856
−366180055

1926232464

−366180055

1926232464

366180055

3852464928




.

Equation (11) allows to look for a solution of the form

φ̃j,k(u) = 4jφ̃(Dj(u − k)), k ∈ ∆j , u ∈ R
2.

Hence, the vector φ̃ is the solution of the refinement
equation

φ̃(u) = 4
∑

k∈Z2

Ãkφ̃(Du − Γk), u ∈ R
2, (12)

and the regularity of the duals φ̃j,k equals the regular-
ity of the distributional solution to (12).
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3 Existence, uniqueness and

regularity of φ̃

Taking the Fourier transform of both sides of (12), we
obtain

̂̃
φ(ω) = P̃(D−T ω)

̂̃
φ(D−T ω), ω ∈ R

2,

and
P̃(ω) :=

∑

k∈Z2

Ãke−i(Γk·ω), ω ∈ R
2,

is the symbol associated with (12). It is easily checked

that P̃(0) satisfies Condition E, i.e., 1 is a simple eigen-

value of P̃(0) and all other eigenvalues of P̃(0) lie in-
side the open unit disk. Let r̃ be the normalized right
eigenvector of P̃(0) associated with eigenvalue 1. It is
well-known that if Condition E holds then there exists
a unique compactly supported distributional solution

vector φ̃ satisfying (12) with
̂̃
φ(0) = r̃, see [9]. In

particular, we have

̂̃
φ(ω) = lim

L→∞

L∏

j=1

P̃
((

D−T
)j

ω
)
r̃.

The regularity or smoothness of φ̃ is measured by
the critical exponent

s(φ̃) := sup
{
s : φ̃i ∈ Hs(R2) for all i = 1, 2, 3

}
,

where Hs(R2) denotes the Sobolev space {f ∈ L2(R
2) :∫

R2 |f̂(ξ)|2(1 + |ξ|s)2dξ < ∞}. Theorem 5.3 in [4] gives
an estimate for the critical Sobolev exponent of a vector
of compactly supported functions in L2(R

2) satisfying
a refinement equation. We use this theorem to prove
the following proposition.

Proposition 3.1. Let φ̃ be the unique 3 × 1 solution
vector of compactly supported distributions satisfying
(12). Then φ̃ is in the Sobolev space Hs(R2) for any

s < −0.431898.

Proof. Let b be given by

b(l) = 4
∑

k∈Z2

Ãk ⊗ Ãk+l,

l ∈ Z
2, where ⊗ denotes the (right) Kronecker prod-

uct. Then b is supported in [−4, 4]2. Define K as the

set Z
2∩

(∑∞
j=1 D−j(suppb)

)
. Then K equals [−4, 4]2.

Let B be the 729×729 matrix (b (Dk − l))k,l∈K . The-

orem 5.3 in [4] asserts that s(φ̃) ≥ − log4 ρ, where
ρ = max{|ν| : ν ∈ spec(B)}. The largest eigenvalue
of B is given by 1.819820559284, hence we obtain that
s(φ̃) ≥ −0.431898.

It is well-known that the scaling vector φ satisfying
(3) is in the Sobolev space Hs(R2) for any s < 5/2.
One can, for instance, use a similar proof as in Propo-
sition 3.1 and use Theorem 5.3 in [4], or one can make
use of techniques with Jackson and Bernstein inequal-
ities, see [7].

We are interested in determining the exact range of
Sobolev exponents s for which the wavelet basis forms
a Riesz basis for Hs(R2). From important work by
Dahmen [2] and Lorentz and Oswald [6] it turns out
that the range of such s is determined by the Sobolev
regularity s(φ) of the scaling vector φ and the Sobolev

regularity s(φ̃) of the dual scaling vector φ̃. Dahmen
showed that the wavelet system is a Riesz basis for
Hs(R2) for all s with −s(φ̃) < s < s(φ) and that this

interval is sharp, provided that φ and φ̃ have com-
pact support and that they are in L2(R

2). Lorentz
and Oswald extended these results to non-compact
φ̃ /∈ L2(R

2). The following theorem is our main re-
sult and is a direct consequence of Proposition 3.1 and
the work in [2] and [6].

Theorem 3.2. One has for any f ∈ Hs(R2),
0.431898 < s < 5/2, the norm equivalence

∥∥∥〈φ̃j0,k, f〉
∥∥∥

2

l
3×1

2
(∆j0

)
+

∞∑

j=j0

22j(s−1)
∥∥∥〈ψ̃j,l, f〉

∥∥∥
2

l
3×1

2
(Λj )

∼ ‖f‖2
Hs(R2) . (13)

We close this section with some graphs of the scal-
ing function, the dual scaling function and the wavelet
function, see Figures 3 to 5. The graph of the dual scal-
ing function was generated using software by Q. Jiang
and P. Oswald, see [5].

4 Applications

Several approaches to solving elliptic problems numer-
ically are based on hierarchical Riesz bases in Sobolev
spaces. Theorem 3.2 suggests that the above con-
structed multiwavelet basis is suitable for solving sec-
ond and fourth order elliptic equations since the norm
equivalence (13) includes the values s = 1 and s = 2.
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Figure 3: Scaling function
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Figure 4: Dual scaling function
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Figure 5: Wavelet function

Lena Barbara Fingerprint
Nr. of coeff. 63145 69893 69510
Percentage 8.00% 8.85% 8.80%

Table 1: Number of coefficients kept in the compressed
images

However, with such applications in mind we need to
adapt the multiwavelet basis to polygonal domains in
R

2 instead of the whole plane. We will deal with this
problem in a forthcoming paper.

To demonstrate the approximation power of the
wavelet basis we show their performance on the com-
pression of images. We can interpret a grayscale image
as a surface, where the value of each pixel represents
its height. We shall use 8-bit grayscale images, which
means the pixel values range from 0 (black) to 255
(white), and the image array consists of 513×513 pixel
values. First we interpolate the image by solving the
interpolation problem (1) for each pixel. Derivative in-
formation of the image surface can be estimated by ap-
plying the Sobel operator to the image. Then we apply
the wavelet transform and we compress the image by
replacing all wavelet coefficients which have an abso-
lute value smaller than a threshold value by zero. The
compression results are depicted in Figures 6 to 8. Be-
fore the compression step we have 789507 coefficients.
The number of coefficients after the compression step
can be found in Table 1.
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