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Abstract

For the manufacturing of composite materials with textile re-
inforcement, the permeability of the textile is a key characteristic.
Using the law of Darcy, permeability can be derived from a numeri-
cal simulation of the fluid flow, i.e. by solving the Navier-Stokes or
Brinkman equations. In this report we present the results of sim-
ulations with two different flow solvers: a finite difference Navier-
Stokes/Brinkman solver and a lattice Boltzmann solver. The results
are validated with theory and experimental data.
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Summary. For the manufacturing of composite materials with textile reinforce-
ment, the permeability of the textile is a key characteristic. Using the law of Darcy,
permeability can be derived from a numerical simulation of the fluid flow, i.e. by
solving the Navier-Stokes or Brinkman equations. In this paper we present the
results of simulations with two different flow solvers: a finite difference Navier-
Stokes/Brinkman solver and a lattice Boltzmann solver. The results are validated
with theory and experimental data.

1 Introduction

Liquid Composite Molding (LCM) is a manufacturing process which involves:
laying up a textile reinforcement in a mold cavity of a desired 3D shape;
injection of a liquid resin; polymerisation (for thermosets) or solidification
(for thermoplasts) of the resin [15]. For the manufacturing of composites with
textile reinforcement, the permeability of the textile is a key characteristic and
is of particular importance for the injection stage of LCM. The prediction of
textile permeability gained importance due to the often encountered problems
of non-uniform impregnation, void and dry spot formation.

The permeability is a geometric characteristic related to the structural
features of the textile at several length scales. Textiles are porous media and
the permeability tensor is defined by Darcy’s law

〈u〉 = − 1

νρ
K · 5 〈p〉 , (1)

with u = u(x, y, z) the fluid velocity, ν and ρ the fluid viscosity and density,
p = p(x, y, z) the pressure, 〈〉 volume averaging and K the permeability tensor
of the porous medium. Equation (1) is a homogenised equation, and the in-
formation of the internal geometry of the reinforcement is taken into account
in K. Finite element or finite difference Darcy solvers require K as input.
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Fig. 1. A unit cell setup.

Unfortunately, the measurement of textile permeability is time and resource
consuming [11], hence reliable numerical prediction of K is required.

For the computation of K, we can determine the flow in a unit cell, since
textile has a periodic pattern (Fig. 1). As textiles are also hierarchically struc-
tured materials, our model for fluid flow must take the possible porosity of the
material’s yarns into consideration. Hence in the following, we will differenti-
ate between inter-yarn flow (the yarns of the textile are solid) and intra-yarn
flow (the yarns are porous and the porosity is accounted for by the permeabil-
ity tensor Ktow). In both cases we aim at a computation of the fluid velocity
u and the pressure p in order to solve Darcy’s law (1) for K.

In case the model is limited to creeping, single-phase, isothermal, unidi-
rectional saturated flow of a Newtonian fluid, the inter-yarn flow is described
by the incompressible Navier-Stokes equations,

{

Du

Dt
= ∂u

∂t
+ (u · ∇)u = − 1

ρ
∇p + ν∆u

∇ · u = 0.
(2)

The first equation states the conservation of momentum (momentum equa-
tion), the second equation states the conservation of mass (continuity equa-
tion). Intra-yarn flow depends on the local permeability tensor of the tow
Ktow, and is described by the Brinkman equations [17] without neglecting the
convection,

{

∂u

∂t
+ (u · ∇)u + νK−1

tow · u = − 1

ρ
∇p + ν∆u

∇ · u = 0,
(3)

where u = u(x, y, z, t) and p = p(x, y, z, t) for both the Brinkman and the
Navier-Stokes equations. We assume ν and ρ to be constant when describing
an incompressible, Newtonian fluid and thus also in the Darcy equation (1)
for the computation of K.

A key task in permeability modelling is the characterisation of the rein-
forcement. For the creation of a single layer model of the reinforcement, we
use the WiseTex software [12, 13]. In practise however, often the permeability
of a multi-layered reinforcement is required. Building the geometry model of a
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multi-layered reinforcement is a complex additional step, for which the Lam-
Tex software has been developed [14]. The results of WiseTex and LamTex
provide the input for the flow simulation tool.

We develop a software package, FlowTex, for the computation of the per-
meability tensor of textiles. A first version of FlowTex, based on a lattice
Boltzmann model for fluid flow, has been tested and validated [4]. In this
article we discuss our new module for FlowTex, based on a finite difference
discretisation of the Navier-Stokes equations (2) and the Brinkman equations
(3). Furthermore, we briefly explain the lattice Boltzmann model. Results of
the permeability predictions with both models are compared and validated
with analytical results for a model problem and with experimental data. Note
that experimental validation is often missing in papers describing other soft-
ware for permeability prediction.

2 Numerical approach

2.1 Finite difference discretisation

Solution of the Navier-Stokes equations

For flow simulations in the irregular geometry of a textile, we have chosen to
solve equations (2) numerically on a regular staggered grid with a finite differ-
ence discretisation. An example of a textile geometry and its discretisation on
a regular grid is shown in Figure 2. In the staggered grid approach, the pres-
sure is discretised at the center of the cells, while the velocities are discretised
on the edges. This discretisation leads to a strong coupling between pressure
and velocities, and therefore avoids the occurrence of unphysical oscillations in
the pressure. One could also use an irregular (unstructured) grid and a finite
element or finite volume discretisation. However, generating the appropriate
3D meshes for complex textile geometries is difficult and time consuming for
these methods.

Geometry issues and boundary conditions

If we neglect the intra-yarn flow, the yarns are treated as impermeable. Grid
points can be in the fluid domain (’fluid points’) or in the solid yarn domain
(’solid points’). At the boundaries between the fluid and the solid, no-slip
boundary conditions are set. We have chosen a linear approximation of the
solution at the boundaries:

Vi,j,k = −Vi+1,j,k,

where (i, j, k) denotes a solid point, and (i + 1, j, k) denotes a fluid point. We
use a second order discretisation of the Navier-Stokes equations, but since the
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Brinkman point

Navier-Stokes point

Fabric Repeat

Fig. 2. Top: A 2D-textile model (left) and its first order approximation on the grid
(right); bottom: 3D voxel geometry.

geometry is approximated to first order, we cannot expect second order ac-
curacy near boundaries. Including a second order description of the geometry
would not only lead to the geometry modelling problems that we avoid by
using the finite difference method, but a second order approximation of the
boundary imposes additional numerical stability problems. Using a first order
approximation of the yarns means that fine meshes are required to obtain an
accurate result.

Solution of the Brinkman equations

If we take the intra-yarn flow into account, the Brinkman equations (3) must
be solved in the yarn points. Therefore the local permeability tensor Ktow is
first calculated by the formulae of Berdichevski [5] and Phelan [16]:

Kl =
d2

32Vf

(

ln
1

V 2
f

− (3 − Vf ) (1 − Vf )

)

(4)

Kt =
4d2

9π
√

2

(
√

π

4Vf

− 1

)
5
2

(5)

The diameter d and the local fibre volume fraction Vf in the vicinity of the
point, are provided by the WiseTex software. Kl is the permeability along the
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fibre, Kt stands for the permeability across the fibre. WiseTex also provides
the direction of the fibres. The orientation of the fibres determines how Kl

and Kt form the entries of the tensor Ktow.
The Brinkman equations (3) are similar to the Navier-Stokes equations

(2), and the same discretisation methods are used. In (3) the additional
term νK−1

towu can be seen as a penalisation of (2). Equation (3) converges
to equation (2) for large Ktow. We solve the Brinkman equations on the
whole domain with Ktow = ∞ at fluid points while for yarns Ktow is typically
10−4

≤ Ktow ≤ 10−7 . This penalisation approach introduces a locally varying
resistance force which leads to discontinuous velocities across the boundary
between fluid and yarn points. To avoid numerical instabilities induced by
this discontinuity, we apply a high order total variation diminishing (TVD)
scheme for the convective terms discretisation.

Implementation

A finite difference Navier-Stokes solver, NaSt3DGP, was developed by the
research group of Prof. Michael Griebel at the Institute for Numerical Sim-
ulation at the University of Bonn [9],[1]. The flow solver employs a Chorin
projection for the solution of the Navier-Stokes equations (2). In time-discrete
notation the projection method is given by:

Step 1: Solve the momentum equations for an intermediate velocity field u∗:

u∗ − un

∆t
+ [u · ∇u]

n
= ν∆un (6)

Step 2: Project the vector field u∗ on a divergence-free vector field un+1:

{

u∗ = un+1 + ∆t∇p

∇ · un+1 = 0
(7)

Applying the divergence operator to the first part of (7) results in a Poisson
equation for the pressure which has to be solved in every time-step ∆t. For
the solution of the Poisson equation NaSt3DGP offers several iterative solvers
like SOR, Red-Black Gauss-Seidel or BiCGStab. For the approximation of
(6-7), the code provides several second order TVD upwind schemes for space
discretisation and an explicit Euler as well as a second order Adams-Bashfort
scheme for time discretisation. Furthermore, the code works completely in
parallel on MPI [2] platforms.
Explicit treatment of the time-advancement of the momentum equations (6)
yields a Courant-Friedrich-Levy (CFL) stability constraint for the convec-
tive terms, as well as a stability constraint for the diffusive terms depending
strongly on the magnitude of the viscosity

∆t ≤ 1

2ν∆x2
, (8)
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where ∆x denotes the smallest grid resolution. This is a strong restriction on
the time-step size, as in permeability computations we deal with Reynolds
number Re = 1

ν
≈ 1. In this low Reynolds number regime the CFL condition

for the convective terms usually allows for a much larger time-step than (8).
Therefore, it is desirable to treat the diffusive terms implicitly.

Semi-implicit solution of the Navier-Stokes equations

We opted for a second-order semi-implicit discretisation of the Navier-Stokes
equations (2) given by

{

u
n+1

−u
n

∆t
+ [u · ∇u]

n+ 1
2 + ∇pn+ 1

2 = ν
2
∆(un+1 + un)

∇ · un+1 = 0.
(9)

In this representation

[u · ∇u]
n+ 1

2 =
3

2
un+1 · ∇un+1 − 1

2
un · ∇un

denotes an Adams-Bashforth approximation of the convective derivative at
time n + 1

2
and is computed explicitly, while the diffusive terms are discre-

tised with the Crank-Nicolson scheme and are treated implicitly. With this
scheme we avoid the restriction of the time step (8) as well as the solution of
a nonlinear system of equations. Again, we use a fractional step method to
solve (9). In order for u∗ to be a good approximation to the divergence-free
velocity field un+1, the pressure gradient is included in the momentum equa-
tions resulting in the following pressure-correction scheme as proposed by Bell
et al. [3]:

Step 1: Solve the momentum equations for the intermediate velocity field
u∗:

(I − ν∆t

2
∆)u∗ = un − ∆t · {[u · ∇u]

n+ 1
2 + ∇pn− 1

2 − ν∆t

2
∆un} (10)

Step 2: Recover un+1 from the projection of u∗ by solving

{

u∗ = un+1 + ∆t∇φn+1

∇ · un+1 = 0
(11)

Step 3: The new pressure is now found by computing

pn+ 1
2 = pn− 1

2 + φn+1 − ν∆t

2
∆φn+1 (12)

The last term in this equation was introduced by Brown et al. [7] in order
to be consistent with a second-order accurate discretisation of the Navier-
Stokes equations. The pressure at time-level n + 1 can be recovered by an
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extrapolation of the pressures obtained directly from the solution procedure
at time-level n + 1

2
and n − 1

2

pn+1 =
3

2
pn+ 1

2 − 1

2
pn− 1

2 . (13)

Altogether, this kind of implicit treatment of the Navier-Stokes equations
yields three modified Helmholtz equations (10) for the velocities in addition
to the Poisson equation for the pressure. For the solution of these equations
we employ an SSOR Preconditioned Conjugate Gradient Method. The step
size is now only limited by the CFL condition and by accuracy considerations.
Compared to the explicit solver, the extra computational costs per iteration
for the semi-implicit solver do not outrun the gain due to the larger time
steps: computations of the permeability can be obtained much faster with
this method as will be shown in the next section.

Further Improvements

In order to perform permeability calculations, we have made several further
extensions to the NaSt3DGP code. For the unit cell setup, we implemented
periodic boundary conditions in three directions for the velocity, and peri-
odic boundary conditions up to a constant gradient for the pressure (Fig. 1).
Discretisation of the Brinkman equations leads to a straightforward implicit
implementation of the additional term νK−1

towu in the momentum equations
(6).
Using the computed average velocity over the whole domain at steady state,
the permeability K is derived from Darcy’s law (1). As a stopping criterion
we use convergence of the permeability K up to a predefined threshold ε. Fur-
thermore, for the input of the geometry, an interface between WiseTex and
the Navier-Stokes and Brinkman code has been developed.

2.2 Lattice Boltzmann Method

The lattice Boltzmann model (LBM) is a mesoscopic approach to fluid dy-
namics and is based on the solution of a Boltzmann equation on a regular
grid. The LBM applies for a large scale of macroscopic equations. It has been
shown that the LBM can be used to simultaneously solve Eqs. (2) and Eqs. (3)
[18]. For our purpose, we have chosen to implement the permeability model
based on the LBM D3Q19. Here, ”Q19” describes the connectivity pattern of
the 3D lattice: every cell is connected with its neighbour and its next-nearest
neighbours.

A disadvantage of the LBM is the prescribed constant lattice step in all
directions, which may result in unnecessary large lattice sizes. Note that this
is not the case with the finite difference discretisation. The lattice of the LBM
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Fig. 3. Unit cell of the impermeable parallel square array with 60% volume fraction.

also contains three kinds of cells: fluid cells, solid cells and Brinkman cells. For
the implementation of the non-slip boundary condition, the bounce-back rule
is used. For the prediction of the flow in Brinkman cells, the local permeability
is calculated as described in section 2.1 and then included in the LBM.

The described LBM has been implemented as a module for the FlowTex
software at the K.U.Leuven. For more details on this module, we refer to [4].

3 Results and Validation

Validation tests with the lattice Boltzmann module and the finite difference
module show good results. We present the results of the simulation of a flow
through a parallel array of cylinders, and of two realistic reinforcements for
which we have experimental verification. Forward Euler time-integration, and
the VONOS [20] scheme for spatial discretisation was used in the finite dif-
ference method and its performance and accuracy will be compared to semi-
implicit (Crank-Nicolson) time-integration. In both cases the BiCGStab [19]
method with Jacobi preconditioning was used to solve the pressure Poisson
equation.

3.1 Parallel Square Array

Impermeable Array

For the flow through a parallel array of impermeable tows (Fig. 3), theoretical,
numerical and experimental data are available [21],[8]. Results can be found
for different fibre volume fractions (Vf), i.e. different radii (Rf) of the cylin-
ders. Figure 4 shows the theoretical permeability, together with the calculated
permeability, both for flow along the cylinders and for transversal flow. The
graph also shows a comparison between the permeabilities obtained with the
finite difference Navier-Stokes solver and the lattice Boltzmann method. For
the example of two volume fractions, Table 1 shows the calculated permeabil-
ities for different grid spacings: the permeability converges, as ∆x decreases.
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Vf ∆x #gridpoints #iterations Kalong

20 0.1 1000 1200 0.05876
0.05 8000 3900 0.04881
0.03 35937 10100 0.04626

0.025 64000 19100 0.04537

62 0.1 729 350 0.004906
0.05 5832 850 0.003374
0.03 27000 2100 0.003337

0.025 46656 2950 0.003178

Table 1. Finite difference Navier-Stokes solver: results for the parallel square array
setup: number of required iterations for the Poisson solver and computed perme-
ability for different fibre volume fractions and mesh sizes.

Parallel square array
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Flow Along fibers
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Flow Trans fibers

Trans, calc LB
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Fig. 4. Permeability for the parallel square array setup with different fibre vol-
ume fractions. Full lines: theoretical permeability; circles: lattice Boltzmann results;
squares: finite difference Navier-Stokes results.

On a finer mesh more iterations for the Poisson solver are required (Table
1) because of two reasons. First, a finer mesh requires a smaller time-step,
and therefore, more time-steps have to be taken. In the semi-implicit case the
time-step may not be chosen much larger than the local mesh size, in order
to obtain accurate results and in the explicit case it has to satisfy the even
stronger restriction (8). Second, the preconditioned BiCGStab scheme for the
Poisson equation converges more slowly to a solution on a finer mesh [6], so
in each time-step more iterations are required.

Semi-implicit calculations

Semi-implicit and explicit time-stepping are compared for an impermeable
array of cylinders with a fixed volume fraction of 60% (Table 2). Permeability
calculations are carried out on a (403) grid. Stopping criterion is convergence



10 B. Verleye, M. Klitz, R. Croce, D. Roose, S.V. Lomov, and I. Verpoest

Explicit Semi-Implicit

#iter. Poisson 187713 14309

#iter. Helmholtz 0 893

∆t 3.12 · 10−5 9.37 · 10−4

Kx(mm
2) 3.784 · 10−3 3.774 · 10−3

Comp. Time 50m23s 03m37s

Table 2. Computational results of the semi-implicit Adams-Bashforth-Crank-
Nicolson vs. the explicit Forward Euler method.

Fig. 5. Permeability of a Parallel Square Array with different local permeabilities.

of the permeability. Both calculations are performed on an Intel(R) Xeon(TM)
CPU, 3.20GHz.

The time-step size for the semi-implicit calculations is 30 times larger
than for the explicit case. This does not result in a speed up in computational
time of the same factor because of the extra costs of solving three Helmholtz
equations per time-step. Still, in this case, the implicit solver is about 14 times
faster than the explicit solver. Both methods result in accurate permeability
values.

Permeable array

Figure 5 shows the results of permeability predictions with the Brinkman
solver. For a fixed volume fraction (60%), the permeability is calculated for
different cylinder permeabilities Ktow. For large Ktow, the permeability of the
unit cell increases to the permeability of an empty cell. As Ktow decreases, the
cylinders become more and more solid and the unit cell permeability converges
to the permeability of an impermeable array.
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Fig. 6. Top: The Monofilament experimental setup and WiseTex model. Bottom:
A 2D-cut of the simulated velocity field.

Fig. 7. Results of the Natte permeability calculations.

3.2 Monofilament fabric

The Monofilament fabric Natte 2115 is a more realistic structure which is
close to actual textile reinforcements, and for which permeability is exper-
imentally validated. The full description of the Monofilament Fabric Natte
2115 test-fabric can be found in [11],[10]. The yarns are impermeable, so the
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Fig. 8. WiseTex model of the carbon woven fabric.

Fig. 9. Results of the carbon woven fabric permeability calculations.

Navier-Stokes equations are solved. Figure 6 shows the experimental setup,
the WiseTex model and the flow velocity field in a 2D-cut. In the yarns and
at the boundaries, the velocity is zero. The zero velocity surface shows a good
approximation of the textile geometry. The flow was simulated for two lay-
ers of textile, which are maximally nested. Permeability calculations will give
different results for one layer setups and for setups with minimal, average or
maximal nesting.
Calculations are carried out with semi-implicit as well as explicit time-
integration. Figure 7 shows that the predicted permeability depends strongly
on the grid spacing. The first order discretisation of the geometry leads to a
slightly different actual geometry. Hence on a coarse grid, we actually solve
a different problem, which leads to a higher permeability. Furthermore, with
semi-implicit time-stepping the calculated permeability is smaller than in the
explicit case, but for a finer mesh this difference tends to zero.

3.3 Carbon woven fabric

A second structure is a Carbon woven fabric (Fig. 8). This woven fabric has
a weave twill 2/2, warp/weft yarns 6K HR carbon flat rovings, ends/picks 3.5
yrns/cm and a (calculated) areal density of 282g/m2. The fabric model on
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which calculations are performed, is provided by the LamTex software and
contains three layers. On the fabric, pressure can be applied, which leads to
different volume fractions of the textile. Figure 9 shows the results of the
permeability calculations for different applied pressures and an experimen-
tal result. These results are obtained with a very fine discretisation in the
z-direction, and could thus not be obtained with the LBM-module which re-
quires a constant lattice step in all directions as mentioned in paragraph 2.2.

4 Conclusions

We presented a software package for the computation of the permeability of
textile reinforcements.

First a textile model is designed with the WiseTex or LamTex software. An
accurate model is required as slight differences in the model lead to different
permeabilities. Using the model resulting from WiseTex or LamTex, flow sim-
ulations are performed to predict the permeability. We have chosen to solve
the Navier-Stokes and Brinkman equations with the finite difference method
and we compare the results with those obtained with a lattice Boltzmann
method.

Both methods were validated on a parallel array of cylinders. For imper-
meable arrays, the calculated permeability can be compared with theoreti-
cal results. Both the finite difference Navier-Stokes and the lattice Boltzman
solver give accurate results for such setup. For permeable arrays theoretical
results are not available, but the predictions of the Brinkman solver, including
the intra-yarn flow, show good convergence to the results of the Navier-Stokes
solver in case the permeability of the array tends to zero. To evaluate per-
meability calculations for real textiles, we presented validation results for a
monofilament fabric Natte and a carbon woven fabric, for which experimental
data are available.

In order to speed up permeability computations we implemented a semi-
implicit pressure-correction method for the finite difference Navier-Stokes
solver. With this numerical method a substantial reduction of computation
time has been observed in all calculations.

5 Further research

Further validation of the software is necessary. Textile design engineers not
only need correct permeability results, they also need them fast during the
design process. Although the software is already useful for designing purposes,
we will include more numerical improvements to speed up the calculations.
The presented results are accurate. However, permeability is slightly overesti-
mated. This may be due to the models used, which ignore physical phenomena
(e.g. moving textile boundaries) as well as to the first order discretisation of
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the boundaries. The improvement and extension of these models towards e.g.
higher order boundary conditions is part of our ongoing research.
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