Flexible Component Contracts for Local Resource Awareness”

Andrew Wils, Joris Gorinsek, Stefan Van Baelen, Yolande Berbers, Karel De Vlaminck
Department of Computer Science
K.U.Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium
{ andrew | jorisg | stefanv | yolande | kdv} @cs.kuleuven.ac.be

April 25, 2003

Abstract

Ubiquitous and pervasive computing paradigms
tend to shift towards open service-oriented plat-
forms, in which carelessly written services can un-
dermine the general stability of the whole system.
We propose a component-contract based approach
to solve these challenges. Resource contracts, com-
bined with an intelligent resource broker and moni-
toring system, will efficiently deal with the local re-
source aspects of dynamically reconfigurable com-
ponent systems.

1 Introduction

Modern software, and especially software that is
to be running on future, “ubiquitous computing”
systems, is often required to reconfigure, adapt
and update (in short, to evolve). Multimedia ser-
vices will run side by side with other, less resource-
hungry, yet equally important services. Unfortu-
nately, the limited resource capacities of embedded
systems involving CPU power, memory size etc. in
future hardware platforms will continue to exist,
forcing developers of embedded software to spare
resources. As we will further demonstrate in this
paper, resource awareness is a necessary property
of robust, yet flexible embedded system software.

In sections 2 and 3 we will outline the concept
of resource awareness and differentiate between the
distributed and local level. The paper continues
in 4 with the basic concepts we will use to reason
about resource awareness: components and con-
tracts. Using these concepts, we will formulate ba-
sic resource declarations in sections 5 and 6. Before
concluding the paper (section 9), basic system sup-
port and state of the art is discussed in sections 7
and 8, respectively.

*The described work is part of the EUREKA-ITEA
projects DESS and EMPRESS, and partly funded by the
Flemish government institution IWT (Institute for the Pro-
motion of Innovation by Science and Technology in Flan-
ders)

2 Resource Awareness

The upcoming ideas around ubiquitous or perva-
sive computing systems have started quite some re-
search activities, among them those involving sup-
porting “middleware systems”. A hardware device
will no longer be designed to handle a single task,
yet serve as a host for a myriad of services. Think of
today’s PDA’s that are clearly evolving into multi-
functional, multi-medial devices.

As the hardware becomes ubiquitous, users want
to transfer their services and tasks easily between
devices. This makes services have a very turbulent
and often short life-cycle, placing heavy demands
regarding flexibility on themselves and the support-
ing software.

Throughout the paper, we will call one particu-
lar setup of services on a hardware device a service
configuration. Each service typically has need for a
certain set of resources, where the deadline of the
delivery is often of great importance. Thus a re-
source allocation must be found to satisfy all the
needs of a particular service configuration. Typi-
cal requirements involve timing, memory and band-
width constraints, as well as storage capacity and
performance, power capacity and cost of resources
(e.g. bandwidth). In spite of the continuous in-
crease in performance of modern embedded hard-
ware!, many kinds of services tend to demand a
considerable (and equally increasing) amount of the
available resources on those devices.

As users move from place to place, they also
switch from device to device and environment to
environment. Thus, the service configurations on
these devices change, as well as the resources avail-
able to each service. This can lead to service con-
figurations that do not work as expected because of
resource shortage. Clearly, the violation of impor-
tant timing constraints, the complete saturation of
the network link, or a premature depletion of bat-
tery power is unacceptable to the user. To avoid

1Unfortunately, industry is struggling with the increased
complexity of the design process and the problem of increas-
ing power consumption.

this, the system software on a device needs to be
aware of the minimum requirements of all services,
and the easiest way to obtain this information is to
ask the services. Software needs to be aware - in
an abstract way - of the changing limitations of the
underlying system.

3 Global and local Resource
Awareness

The set of resource constraints formed by the ser-
vices that a particular user (or perhaps a group
of users) needs, represents an advanced distributed
resource scheduling problem.

On the distributed level, an intelligent load bal-
ancing algorithm can decide on a coarse-grained
distribution of all required services. The algorithm
will have to take into account service dependencies,
the preferred location, line of sight for displaying
results, free resources of each platform, etc. If it
is clear that some services will not be able to meet
their resource constraints, cyber foraging can offer a
solution. Cyber foraging assumes that non-mobile
processing power will become ubiquitous as well.
The idea is to make use of -untrusted- resources
available in the environment.

The reason why this distributed intelligence is
not enough is twofold. On the one hand, the dis-
tributed level works too coarse-grained. Also, its
flexibility is limited: it is often not opportunis-
tic to interrupt a service and move it elsewhere.
Because of this, when a distributed allocation has
been made, the local nodes will still have to deal
with small fluctuations in services and resources.

We propose a local resource aware system that
takes into account the individual QoS levels each
service can function in. This involves the principle
of graceful degradation[5]. Often, the resource us-
age of a service is not entirely fixed. Many resource
intensive services could function even better, were
they to be given more resources. The inverse of this
statement also holds, e.g. a video streaming ap-
plication can reduce its framerate, a maintenance
utility can run temporarily in the background, or
it could postpone its execution. Depending on the
possibilities and relative importance of all services,
the system can decide on a resource profile for each
service and allocate resources accordingly. The aim
is to optimize the resource allocation to provide a
maximum user satisfaction.

Let us look at a simple, yet sufficiently realistic
example, depicted in figure 1. Imagine a user car-
rying a portable MP3-player that is equipped with
a small 3 inch color display. Its primary use is to
download, store, stream and decode music. Sup-
pose the user enters a train station building, while
listening to a song he is streaming from his home
(Timestamp 1). The information server asks the
player (and, of course, its user) if it is allowed to

install a service to show the user around and to or-
der tickets. This service puts some constraints on
the CPU to ensure the smooth rendering of pages,
maps etc. Meanwhile, the device gains access to
the wireless LAN network of the station. The in-
crease in bandwidth causes the music service to
switch to a different, less CPU-hungry decoding
algorithm. The middleware also decides that the
-now minimized- graphic analyzer could cut back
on its CPU requirements. This frees enough re-
sources to let our user get around the building and
order his tickets comfortably using his own trusted
device (Timestamp 2). Should the device not be
powerful enough, it could direct the user to a more
suitable station terminal.

Timestamp 2
el
visualiser -

codec

G esith

Station-app (2)

Timestamp 1

visualiser

secure com.

Bandwidth

275

250 o
w225 4
o0 []Bandwidth
=175+ App2
s 4 7 Bandwidth
2125 4 App1
o100
754
50+
254

1 z
Timestamp

CPU

100 4

a0+

804

- []€PU App2
60 L] cPU App1
504 R | —visualiser
a0 S [T]CPU App1
304 S5 3 4 —codec

204

% Utlitsation

104

1 z
Timestamp

Figure 1: A simple example of changing resource
allocations. Two service configurations are shown,
along with their respective bandwidth and CPU us-
age.

4 Components and Contracts

One can try and prove at design-time that for
a given service configuration and resource alloca-
tion all services behave within expected parame-
ters. When the nature of the device is such that
one cannot predict those configurations, or when
finding a proof is too time-consuming or difficult,
a supporting runtime system becomes necessary.
This system complements the underlying OS or
middleware and will enforce all services to some-
how “declare” their resource usage and constraints
at runtime. This information will be used to guar-
antee reconfiguration actions that result in a prop-
erly working configuration. The extra information
that each service needs to declare could partly be
inferred (e.g. through code analysis or benchmark-
ing), and partly added by a developer?. Depending
on this information, the runtime system can stop
or move other -less important- services to perform
the reconfiguration, or it can refuse or delay the
reconfiguration itself. The remainder of this sec-
tion outlines 2 important concepts of the runtime
system: components and contracts.

4.1 Components

Decomposing a complex ubiquitous computing sys-
tem into well defined services is a hard task. Cou-
pling between services needs to be very loose, to
provide easy reconfiguration of services. Current
object-oriented software techniques can help here,
yet the strong coupling between objects hinders the
efficient modeling of services: considering one ob-
ject on its own is next to impossible. Component
based development solves these limitations. We
believe modern component based middleware plat-
forms provide a sound basis to extend and imple-
ment the techniques that are necessary to realize
ubiquitous computing.

Although the use of components as software build-
ing blocks is not new (e.g. the CORBA component
model, or Microsoft’s COM), there is no generally
agreed on definition of a component. Depending
on their use, one can assign different characteris-
tics to components. The DESS component model
[2] provides a definition and vocabulary of what
a component can and must be within the context
of the development of real-time embedded software
systems. It defines a common terminology that al-
lows people from different application domains to
understand each other about component develop-
ment. The model has also guidelines on how com-
ponents and interfaces should be specified, includ-
ing resource aware behavior. For this paper, it is
enough to assume that components are loosely cou-
pled, independent pieces of software that export

2This does not necessarily need to be the component de-
veloper: the people behind the Quality Objects framework
suggest a special QoS developer|[3].

their functionality through a set of interfaces.

The mapping of a service onto a component is not
exact. A single component could offer multiple ser-
vices, but it could also require other components
to implement them. Still, the component provides
us with the right granularity to implement resource
awareness. That is why we will often interchange
the words “service” and “component” when talk-
ing about resource awareness. The ideas involving
resource awareness discussed in this paper are not
exclusive to components, but components provide
a more natural abstraction mechanism to apply re-
source awareness on than objects.

4.2 Contracts

In a nutshell, in order to function in a middleware
component system and interact with others, a com-
ponent needs to capture the following:

e functional behavior
e non functional behavior

e dynamic aspects of the above during the com-
ponent’s lifetime

DESS components capture their behavior based
on the contract approach which originated from [1].
In DESS, interfaces are documented at 4 levels:

Syntactic level: Description of the message sig-
natures (name and parameters).

Semantic level: Description of pre- and postcon-
ditions.

Synchronization level: Description of the se-
quence of messages, loops and alternative
paths.

QoS level: Includes resource declarations

A contract is then formed if an agreement is reached
about these specifications.

5 Resource declarations

The primary use of resource declarations is to en-
able a component to perform its functions with an
adequate quality of service. The QoS level needs
to declare the nature, quantity and point in time
particular resources are needed. Resources need to
be described as abstract as possible (see also sec-
tion 7 about system support). We propose the use
of resource pools, each pool representing the avail-
ability of one particular resource. We solve the task
of declaring resource usage up-front by differentiat-
ing between the “where” and “when” of usage.
First, let us analyze and trace a function call to
find out where resources are used. Figure 2 shows
how resource use depends on a chain of resource

A requires:
- call B.foo(bar)
=> 200ms

B offers: C offers:

C.baz(quuz)
requires:
- CPU time: 20ms

B.foo(bar)

T requires:

I - CPU time: 10ms
- 2 x C.baz(quuz)

/ => 40ms
-1 x B.fred(barney) /
~ => 150ms -~

B.fred{barney)
{ requires:
- CPU time : 150ms \

-

L

Figure 2: Cascading resource requirements

CPU
Resource Pool

declarations. As we can see, adding up the decla-
rations from right to left gives us the 200ms of CPU
time to execute the call A requires. Similarly, one
can apply these declarations to declare the number
of bytes to be sent over a network or use of some
other service or device.

The second characteristic of resource usage is how
often and with which deadline or period the re-
source will be used. One can split resource costs
in:

Deployment, initialization and default
operating costs. Resources are needed to
load the component, negotiate interfaces, and
start and initialize it, even when it is not used.

Costs for intended (typical) use. Usually, a
component is deployed for a reason: if there
are not enough resources available for this,
the deployment has no purpose.

Costs per additional use. These unanticipated
requests can seriously destabilize a carefully
tuned component configuration.

Important here is that we need to know, predict or
limit up-front how the service is going to be used,
if we are to offer guarantees of this service to its
users.

6 Resource contracts

As is clear from the above section, a component re-
quiring guarantees for its behavior needs to estab-
lish direct or indirect agreements with the resource
pools and all components it uses. We will divide
these agreements into 2 types of contracts.

The first type is a resource declaration con-
tract. A resource declaration contract complements
the syntactical interfaces of the component with

the resource use of each function, plus its inter-
component calls. Inter-component calls describe for
each message of the provided interface which outgo-
ing messages it sends, when and how many. Note
that this specification does not violate the black-
box principle of a component since it only shows
which component boundary crossing messages orig-
inate from a certain message and therefore not giv-
ing away the internal working of the component.
Resource declarations can be proposed to the com-
ponent system; they will enable us to calculate the
resource usage of each call. The information in fig-
ure 2 captures the information in these contracts in
an informal way.

The second type is called component use con-
tract. This will describe how the component and
its syntactical interfaces will be used throughout
its life-cycle. Component use contracts also con-
tain additional constraints to the resource decla-
ration contracts, such as deadlines for timing and
bandwidth. When properly negotiated, component
use contracts form an agreement between the com-
ponent itself and the components it uses. They set
the QoS levels of the component and provide the re-
quired information to determine the schedulability
of the proposed component configuration.

Figure 3 shows a simple example of a resource
declaration and a component use contract in a com-
ponent responsible for setting up an audio stream.

Q05 SPEC
RESOURCE DECLARATIONS:
MESSAGES lioffered messages, resource demands and inter-component conre ctions
MESSAGE(Init)
TIMING USE = 50 ms;
MESSAGE(Create Stream)
TIMIMG USE = 250 ms;
OQUTGOING = MESSAGE{[ata Socke t.Ope nConnection) : MUL TIPLICIT1 X
MESSAGE (FethStream Packet)
TIMING USE = 20 ms;
OUTGOIMNG = MESSAGE({Crta Socke t. Getlata) : MULTIPL ICITYS:
PERIODICITY iferiodici fy of above messaces, ifany
START = ME SSAGE(Create Stream);
STOP = MESSAGE (Close Steam);
HOOK = MESSAGE(FetchStream Packed;
PERIOD = 40 ms;

COMPONENT USE:
INIT iimessages e zecuted at deployrment
MESSAGE({ Constructory
TYPICAL iimessage executed when i lflling its function
MESSAGE(Create Steam)
TIMING SE T= MESSAGE(Feth5tream Facket) : TIMING = 30 ms;

Figure 3: Resource declaration and component use
contract

7 System Support

Resource contracts in itself do not provide sufficient
means to ensure resource awareness. The reser-
vation of resource pools must be coordinated, e.g.
by an entity called resource broker. As explained,
these reservations are dynamic: existing resource
allocations will change when service configurations

change. Second, untrusted components must be
monitored to keep them from violating their re-
source contracts.

Enforcing resource awareness poses quite some
different problems. Resource needs in itself -
especially processing power needs- are hard to de-
scribe quantitatively. For instance, the required ex-
ecution time of different kinds of code can vary
greatly depending on the underlying middleware
implementation, operating system, hardware, and
the data that needs to be processed. One can mea-
sure this through benchmarking and off-line analy-
sis and express estimated numbers compared to a
fixed reference platform. Likewise, the memory us-
age of a component may vary depending on the un-
derlying system. Similar methods (involving profil-
ing) exist to monitor memory usage of a compo-
nent.

8 State of the art

As can be read in [7], the CORBA component
model is specially suited for dynamic reconfigu-
ration and is being optimized for embedded and
realtime applications. It introduces not only the
component concept, but also the component home
(responsible for the life-cycle of components). RT-
CORBA combined with CCM does not support re-
source aware components. However, the Quality
objects framework[3] uses contracts to manage QoS
in distributed systems using CORBA. Delegates
make the application resource-aware, with the help
of reusable system condition objects for resource
monitoring. Depending on the current resource sit-
uation, the delegates can alter the behavior of tasks
needing to be executed. Using special delegates and
system condition objects that work together, one
could implement local resource awareness in QuO.
A plus here is that QuO explicitly supports multi-
ple levels of QoS.

The last few years, the Java platform is working
its way into embedded devices. The recent RT Java
standard may pave the way for a resource aware
Java platform. The RAJE and JAMUS projects
both strive for this. RAJE provides facilities to
monitor and control resources on a Java platform.
RAJE reifies various resources by wrapping them.
JAMUS is an experimental platform built around
RAJE that tries to solve many of the issues
discussed in this paper. Its main goal is to provide
a secure runtime environment for resource-aware
components. Using resource utilization profiles, a
component can specify its resource needs. Unfor-
tunately, for now, these specifications are static.
The SEESCOA project [6] has worked on timing
and periodicity contracts. Like DESS, they rely on
components that are specified on 4 levels.

9 Conclusion

We have shown how resource usage can be declared
and agreed upon in component systems using 2
types of contracts. Resource declarations can be
made for a component that take into account the
inter-component dependencies. For resource aware
ubiquitous systems, a supporting runtime system is
needed, the two most important subsystems being
the resource broker and the monitor.

Currently, we are implementing a prototype re-
source broker using OSGi[4]. Due to space is-
sues, we have left out a more detailed architec-
tural overview of this runtime system, as well
as optimizations and simplifications that can be
used when one does not require as much flexibil-
ity and/or security.

References

[1] A. Beugnard, J.M. Jezequel, N. Plouzeau, and
D. Watkins. Making components contract
aware. Computer IEEE, 32(7):38-45, 1999.

[2] The DESS Consortium. Definition of
components and notation of components.
http://www.dess-itea.org/deliverables /ITEA-
DESS-D144-V02P.pdf.

[3] JP Loyall, RE Schantz, JA Zinky, and
DE Bakken. Specifying and measuring qual-
ity of service in distributed object systems. In
Proceedings of the First International Sympo-
stum on Object-Oriented Real-Time Distributed
Computing (ISORC), 1998.

[4] OSGi: Open Services Gateway Initiative.
http://www.osgi.org.

[5] M. Satyanarayanan. Pervasive computing: Vi-
sion and challenges. IEEE Personal Communi-
cations, August 2001.

[6] D. Urting, S. Van Baelen, T. Holvoet, and
Y. Berbers. Embedded software development:
Components and contracts. In Proceedings of
the IASTED International Conference Parallel
and Distributed Computing and Systems, vol-
ume 1027-2658 (ISSN), pages 685-690. ACTA
Press, 2001.

[7] N. Wang, D. Schmidt, and D. Levine. Opti-
mizing the corba component model for high-
performance and real-time applications, 2000.

	mos2003.pdf
	Introduction
	The Talks
	Conclusions

