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Abstract. Mercury is a logic programming language that is considerably faster
than traditional Prolog implementations, but lacks support for full unification. HAL
is a new constraint logic programming language specifically designed to support the
construction of and experimentation with constraint solvers, and which compiles to
Mercury. In this paper we describe the HAL Herbrand constraint solver and show
how by using PARMA bindings, rather than the standard WAM representation,
we can implement a solver that is compatible with Mercury’s term representation.
This allows HAL to make use of Mercury’s more efficient procedures for handling
ground terms, and thus achieve Mercury-like efficiency while supporting full uni-
fication. An important feature of HAL is its support for user-extensible dynamic
scheduling since this facilitates the creation of propagation-based constraint solv-
ers. We have therefore designed the HAL Herbrand constraint solver to support
dynamic scheduling. We provide experiments to illustrate the efficiency of the res-
ulting system, and systematically compare the effect of different declarations such
as type, mode and determinism on the resulting code.

1.1 Introduction

The logic programming language Mercury [11] is considerably faster than tra-
ditional Prolog implementations for two main reasons. First, Mercury requires
the programmer to provide type, mode and determinism declarations and in-
formation from these is used to generate efficient target code. Types allow a
compact representation for terms, modes guide reordering of literals and mul-
tivariant specialization, and determinism is used to remove the overhead of
unnecessary choice point creation. The second main reason for Mercury’s ef-
ficiency is that variables can only be ground (i.e., bound to a ground term) or
new (i.e., first time seen by the compiler and thus unbound and unaliased).
Since neither aliased variables nor partially instantiated structures are al-
lowed, Mercury does not need to support full unification; only assignment,
construction, deconstruction and equality testing for ground terms are re-
quired. Furthermore, it does not need to perform trailing, a technique that
allows an execution to continue computation from a previous program state
by logging information about prior states during forward computation and us-
ing it to restore the states again during backtracking. Trailing usually means



recording the state of unbound variables right before they become aliased or
bound. Since Mercury’s new variables have no run-time representation they
do not need to be trailed.

This paper investigates whether it is possible to have Mercury-like effi-
ciency, yet still support true logical variables. In order to do so we describe
our experiences with HAL, a new constraint logic programming language that
compiles to Mercury so as to leverage from Mercury’s sophisticated compila-
tion techniques. Like Mercury, HAL requires the programmer to provide type,
mode and determinism declarations. Unlike Mercury, HAL was specifically
designed to support the construction of and experimentation with constraint
solvers [2].

In particular, HAL includes a built-in Herbrand constraint solver that
provides full unification (without the occurs check), thus supporting logical
variables. The Herbrand solver uses PARMA bindings [12] rather than the
standard variable representation used in the WAM [1,14]. PARMA bindings
represent equivalence of variable by keeping all equivalent variables in a cycle,
as opposed to WAM bindings which implement a union-find style equival-
ence class. The use of PARMA bindings allows the solver to use essentially
the same term representation for ground terms as does Mercury (see Sec-
tion 1.4.4). This is important because it allows the HAL compiler to replace
calls to the Herbrand constraint solver by calls to Mercury’s more efficient
term manipulation routines whenever ground terms are being manipulated.

An important feature of HAL is its use of type classes to distinguish
between solver and non-solver types (i.e., types with an associated solver and
types without) and for the hierarchical organisation of constraint solvers.
Type classes allow a clean separation between a constraint solver’s interface
and its implementation, thus supporting experimentation with different solv-
ers. We detail how HAL’s Herbrand constraint solver fits into this hierarchy.

Another important feature of HAL is its support for user-extensible dy-
namic scheduling, that is intended to support communication between solvers
and construction of efficient propagation-based solvers. We have therefore de-
signed the HAL Herbrand constraint solver to support dynamic scheduling.
Here we detail how this has been achieved with a PARMA-binding based
solver. Again type classes allow us to distinguish between solvers that sup-
port dynamic scheduling and those that do not.

The HAL programmer may specify for a particular constructor type t
whether t requires a Herbrand constraint solver (i.e. must support full uni-
fication) and, if so, whether this solver should support dynamic scheduling.
The HAL compiler will then automatically generate an appropriate instance
of the Herbrand solver for t. By requiring that constructor types that need
a solver must be specified, HAL can take advantage of this to simplify the
representation, analysis and compilation of constructors types that do not
need a solver.

! Actually, as long as the term is “sufficiently” instantiated.



The results of our empirical evaluation of HAL and its Herbrand solver are
very promising since they show that HAL is capable of using information from
type, mode and determinism declarations as well as information about which
types require true constraint solving and dynamic scheduling to significantly
reduce the overhead of Herbrand constraint solving. In particular they show
that, with appropriate declarations, HAL is almost as fast as Mercury (the
extra overhead is mainly due to support for trailing), yet allows true logical
variables. And while without declarations its efficiency is about half that of
SICStus Prolog, with declarations it is an order of magnitude faster.

The experiments are also designed to systematically evaluate the effect
of each kind of declaration (type, mode, determinism, need to support full-
unification and dynamic scheduling) on the efficiency of HAL programs so
as to determine where this speedup is coming from. This is possible since,
as HAL provides full unification and a “constrained” mode, all versions are
legitimate HAL programs. Our results suggest that mode declarations have
the most impact on execution speed, while determinism declarations provide
only moderate speedup. Also, although type declarations can also provide
speedup, the use of polymorphic types can actually lead to slowdown. The
overhead of unnecessary support for delay is noticeable but small.

The remainder of the chapter is organized as follows. In Section 1.2 we
first introduce the HAL language by means of a simple example, and then
examine the different declarations in some detail. Section 1.3 provides the
general design of HAL’s Herbrand solvers in terms of their interface and
associated predicates, while Section 1.4 details their actual implementation.
Next, we examine how dynamic scheduling is defined in HAL in Section 1.5
before detailing how we implement dynamic scheduling for Herbrand solvers
in Section 1.6. We give our empirical evaluation in Section 1.7, discuss related
work in Section 1.8, and conclude in Section 1.9.

1.2 The HAL Language

This section provides a brief overview of the HAL language, concentrating
on its support for Herbrand constraints; for more details see [2]. The basic
HAL syntax follows the standard Constraint Logic Programming (CLP) syn-
tax, with variables, rules and predicates defined as usual (see, e.g., [10] for
an introduction to CLP). The module system in HAL is similar to that of
Mercury. A module is defined in a file, it imports the modules it uses and
has export annotations on the declarations for the objects that it wishes to
be visible to those importing it. Selective importation is also possible.

The core language supports integer, float, character, and string data types
plus polymorphic constructor types (such as lists) based on these base types.
However, this support is limited to assignment, testing for equality, and con-
struction and deconstruction of ground terms. More sophisticated manipula-



tion is available by importing (or building) a constraint solver for each of the
types involved.

As a simple example, the following program is a HAL version of the Towers
of Hanoi benchmark which uses difference lists to build the list of moves.

:- module hanoi. (L1)
:- import int. (L2)
:— export typedef tower -> (a ; b ; c). (L3)
:- export typedef pair(T) -> (T - T). (L4)
:- export typedef move = pair(tower). (L5)
:- export typedef list(T) -> ([] ; [T|list(T)]) deriving herbrand. (L6)
:- export pred hanoi(int,list(move)). (L7)
- mode hanoi(in ,no) is semidet. (L8)
hanoi(N,M) :- hanoi2(N,a,b,c,M-[]1). (L9)
:— pred hanoi2(int,tower,tower,tower,pair(list (move))). (L10)
:- mode hanoi2(in ,in ,in ,in  ,00) is semidet. (L11)
hanoi2(N,A,B,C,M-Tail) :-
(N=1->
M = [A-C|Taill
; N>1,
N1 is N - 1,

hanoi2(N1,A,C,B,M-Taill),
Taill = [A-C|Tail2],
hanoi2(N1,B,A,C,Tail2-Tail)

The first line (L1) states that the file defines the module hanoi. Line (L2)
imports the standard library module int which provides (ground) arithmetic
and comparison predicates for the type int. Lines (L3), (L4), (L5) and (L6)
define constructor types used in and exported by this module. The type
tower gives the names of the towers, pair defines a polymorphic pairing
type, move defines a move as a pair of towers using a type equivalence, and
list defines polymorphic lists. The type declaration for lists contains the
directive deriving herbrand indicating to the HAL compiler to generate an
instance of the Herbrand constraint solver for list types.

Line (L7) declares that this module exports the predicate hanoi/2 which
has two arguments, an int and a list of moves. This is the type declaration
for hanoi/2.

Line (L8) is an example of a mode of usage declaration. The predicate
hanoi/2’s first argument has mode in meaning that it will already be ground
(i.e., bound to a ground term) when called, the second argument has mode
no meaning that it will be new (i.e., never seen before) on calling and old



(i.e., possibly “constrained”) on return.? The second part of the declaration
“is semidet” is a determinism statement. It indicates that hanoi/2 either
succeeds with exactly one answer or fails. In general, predicates may have
more than one mode of usage declaration.

The rest of the file contains the rules defining hanoi/2 and declarations
and rules for the auxiliary predicate hanoi2/5 (here the mode oo means the
argument is “constrained” on both call and return).

1.2.1 Declarations

As we can see from the above example, HAL allows programmers to annotate
predicate definitions with type, mode, determinism declarations (modelled on
those of Mercury). Like Mercury, it also provides purity declarations and type
classes. Here we examine these issues in more detail.

Type declarations: Type declarations detail the representation format of
a variable or argument. Types are defined using (polymorphic) regular tree
type statements such as those shown in (L3)—(L6). As another example, the
statement

:— typedef tree(K,I) -> (item(K,I) ; node(tree(K,I),K,tree(K,I)).

defines the type constructor tree/2 for binary keyed tree types with key type
K and item type I. The definition states that type constructor tree/2 has
two functors: item/2, which represents a leaf node and is used to store an
item with its key, and node/3, which represents an internal binary tree node
and is a used to store a key (for directing the search) and the two subtrees.
Equivalence types are also allowed. For example, the statement

:— typedef move = pair(tower).

defines the type constructor move/0 as an equivalent name for type con-
structor pair/1 with type constructor tower/0 as argument. Note that the
right-hand side is only allowed to contain type constructors not functors.

Ad-hoc overloading of predicates and functions is allowed, although the
definitions for different type signatures must appear in different modules.
For example, in the module hanoi the binary function “-” is overloaded and
may mean either integer subtraction or difference list pairing. Overloading is
important in CLP languages since it allows the programmer to overload the
standard arithmetic operators and relations (including equality) for different
types, allowing a natural syntax in different constraint domains.

2 We could have given the mode out which means that the list will be ground on
return, but HAL’s mode checker is not yet powerful enough to confirm this.



Mode declarations: Mode declarations specify how execution of a predicate
modifies the “instantiation state” of its arguments. A mode is associated with
each argument of a predicate and has the form Inst; — Insty where Inst;
describes the input instantiation state of the argument and Inst, describes
the output instantiation state. Arguments of unknown structure (i.e., those
associated with a variable type) can only have one of the base instantiation
states: new, old or ground. We say that program variable X is new if it has
not been seen by its associated constraint solver (if one exists), old if it has,
and ground if X has a known fixed value.

The base modes are mappings from one base instantiation to another:
we use two letter codes (oo, no, og, gg, ng) based on the first letter of the
instantiation, e.g. ng is new—ground. The standard modes in and out are
synonyms for gg and ng, respectively.

For terms with known structure, such as a list of moves, more complex
instantiation states (lying between old and ground) may be used to describe
the state. An example is

:— instdef bound_difflist -> bound(old - old).

which defines an instantiation state in which the difference list pair is certainly
constructed, but the elements in the pair may still be unbound variables.
Note that the bound keyword may be dropped from the definition since this
is HAL’s default.

Fully understanding the above instantiation definition is more complex
than it may first appear, since this requires combining the instantiation with
the type. This is because the actual meaning of old for a program variable
X depends on whether its constructor type t is a solver-type or not. If t is
a solver type, it indicates that X might be possibly unbound. If it is not,
X must be bound. This applies recursively to all types associated to the
arguments of the term to which X is bound (if any). This allows the base
instantiation o1d to be used as a shorthand for the most general instantiation
state of an initialized (i.e., not new) program variable.

For example, in the instantiation bound difflist the base instantiation
old is wused for variables with type list(move) (or, equivalently,
list (pair(tower))). Thus, it is actually a shorthand for the instantiation

:— instdef old_list_of_move -> ifbound([] ; [old_movelold_list_of_move]).
:— instdef old_move —> bound(old_tower-old_tower).
:— instdef old_tower -> bound(a; b; c).

which indicates that a variable with instantiation old_list_of _move may be
unbound (since it is enclosed by the ifbound keyword), but, if bound, it is
either bound to an empty list or to a list with a bound move in the head,



and a tail with the same instantiation state. Note that old means bound for
the pair and tower constructor types since they are not solver types. 3

It is important to note that HAL does not allow nesting of the base
instantiation new within a structure, i.e., all arguments in the structure must
already be either ground or old. As we will see later, this ensures that all
subparts of a data structure properly exist on the heap.

Instantiation declarations can be parametric in their instantiation vari-
ables. For example, the instantiation definition

:— instdef bound_list(I) -> bound([] ; [ I | bound_list(I) ]).

defines lists whose skeleton is fixed, and whose elements have instantiation I.

As we have seen, instantiations in HAL can be quite powerful. However,
defining such instantiations can also be laborious, especially since they are
often type specific. Fortunately, being able to use old as a shorthand for the
most general instantiation state of any type as illustrated above, means the
user rarely needs to define such instantiations.

Finally, modes can be defined using statements of the form Inst; — Inst,
where, as indicated before, Inst; describes the input instantiation state and
Insts describes the output instantiation state. Equivalence modes are also
allowed. Examples are

:— modedef in(I) -> (I -> I).

:- modedef in = in(ground).

:— modedef out(I) -> (new —> I).

:- modedef out = out(ground).

:— modedef new2o0ld_list_of move = out(old_list_of_move).

Note that mode definitions can be parametric, i.e., contain instantiation vari-
ables such as I above. This is, however, not the case for predicate mode de-
clarations which cannot contain variables. For more details about mode and
instantiations in HAL the reader is referred to [4].

Determinism declarations: Determinism declarations detail how many
answers a predicate may have. HAL uses the Mercury hierarchy: nondet
means any number of solutions; multi at least one solution; semidet at most
one solution; det exactly one solution. The determinism erroneous indicates
a run-time error, while failure indicates the predicate always fails.

Type class declarations: HAL also provides type class and class instance
declarations based on those of Mercury [7]. Type classes support constrained

% The ifbound form of instantiation definition is not available to the programmer,
and is only generated internally by translation from old. This is because arbitrary
ifbound instantiations are not checkable without sophisticated sharing analysis.



polymorphism by allowing the programmer to write code that relies on para-
metric types having certain associated predicates and functions. In particular,
a class provides a name for a set of types (which are parameters to the type
class) for which certain predicates and/or functions (called the methods) are
defined, and which form its interface.

For example, one of the most important built-in type classes in HAL is

:- class eq(T) where [
pred T =T,
mode oo = oo is semidet ].

which defines types T that support equality testing, i.e., for which an imple-
mentation of the method =/2 for mode of usage oo = oo exists. Note however
that, like Mercury, all types in HAL have an associated “equality” for modes
in=out and out=in, which correspond to assignment, construction or decon-
struction, and which are implemented using specialised built-in procedures
rather than implementation of the more general =/2 method.

Instances of the eq/1 class can be specified, for example, by the declara-
tion

:- instance eq(pair(T)) <= eq(T) where [
pred(=/2) is pair_1_SolveEqual ].

which declares the type pair(T) to be an instance of the eq/1 type class, as
long as T is also an instance of the class, and as long as there exists a predicate
called pair_1_SolveEqual which appropriately implements the =/2 method
for type pair (T). Most types support testing for equality, the main exception
being for types with higher-order subtypes. Therefore, HAL automatically
generates instances of eq/1 (including the predicates implementing the =/2
method) for all constructor types (such as pair/1) which do not contain
higher-order subtypes and for which the programmer has not already declared
an instance, thus removing this burden from the programmer.

One major motivation for providing type classes in HAL is that they
provide a natural way of specifying a constraint solver’s interface and allow
us to naturally capture the notion of a type having an associated constraint
solver: It is a type for which there is a method for initialising variables and
a method for defining true equality. Thus, the built-in solver/1 type class
is defined by:

:— class solver(T) <= eq(T) where [
pred init(T),
mode init(mo) is det ].

The above declaration indicates that the solver/1 type class provides ini-
tialisation method init/1. The class definition also indicates that solver/1
is a subclass of eq/1 and, thus, any instance of solver/1 must also be an
instance of eq/1. Therefore, for type T to be in the solver/1 type class,
there must exist predicates implementing the methods init/1 and =/2 for



this type with mode and determinism as shown. The HAL compiler auto-
matically inserts calls to init/1 to initialize new variables and may generate
calls to =/2 because of normalization.

Purity declarations: Purity declarations [3] capture whether a predicate is
impure (affects or is affected by the computation state), or pure (otherwise).
By default predicates are pure. Any predicate that uses an impure predicate
must have its predicate declaration annotated as either impure (so that it is
also impure) or trust pure (so that even though it uses impure predicates
it is considered pure). Calls to pure predicates can be reordered by the HAL
compiler during mode analysis but predicate calls are never reordered past
an impure predicate call.

Combined declarations: For predicates with only one mode, HAL, as
Mercury, provides syntax for combining all declarations into a single line.
For example, lines (L7) and (L8) in the hanoi example can be expressed as

:— export pred hanoi(int::in, list(move)::no) is semidet.

We will often use this compact form in the sequel.

1.3 Herbrand Constraint Solvers

Term manipulation is at the core of any logic programming language. As
indicated previously, the HAL base language only provides limited operations
for dealing with terms, corresponding to those supported by Mercury. If the
programmer wishes to make use of more complex constraint solving for terms
of some type t, then they must explicitly declare that they wish to use a
Herbrand constraint solver for t.

This is achieved by adding the annotation deriving herbrand to the type
definition. The HAL compiler will then automatically generate a Herbrand
constraint solver for that constructor type. In order to do this, the compiler
makes use of the following predicates and type classes defined in the system
module:

:— export pred herbrand_init(T::no) is det.
:— class herbrand(T) <= solver(T) where [].

:— export impure pred var(T::00) <= herbrand(T) is semidet.
:— export impure pred nonvar(T::00) <= herbrand(T) is semidet.
:— export impure pred ===(T::00,T::00) <= herbrand(T) is semidet.

The first predicate implements the init/1 method for any Herbrand type
declared as instance of the solver/1 class. The herbrand/1 type class will



be used to identify the set of Herbrand types, i.e., the constructor types
which support full unification (since every instance of herbrand(T) must
also be an instance of solver(T)), and a number of non-logical operations
commonly used in Prolog style programming such as var/1, nonvar/1, and
===/2. The last three predicates implement such non-logical operations for
any Herbrand type. Predicates nonvar/1 and var/1 can be used to test if
a Herbrand variable is bound or not, respectively. Predicate ===/2 succeeds
only if both arguments are identical unbound Herbrand variables.* Note that
we could have included these predicates as methods in the herbrand/1 class
instead of simply adding the class constraint herbrand (T) to their predicate
type declaration. However, since the implementation of such methods will be
identical for all types in the class, that would only complicate matters.

As mentioned before, the HAL compiler automatically generates a Herbrand
constraint solver for any constructor type annotated with deriving herbrand.
In doing this the compiler generates appropriate instances for the herbrand/1,
solver/1 and eq/1 classes. For example, in the hanoi module, since the types
(move, tower and pair) are only manipulated when bound and, therefore, do
not require the full power of unification, these types were not annotated with
deriving herbrand. On the other hand, since the program uses difference
lists, a Herbrand constraint solver is needed for the list type. Hence, the list
type is defined as

:— typedef 1list(T) -> ([ ; [T | 1list(T)]) deriving herbrand.

The HAL compiler will then automatically generate the following declara-
tions:

:- instance eq(list(T)) <= eq(T) where [
pred(=/2) is list_1_SolveEqual ].

:— instance solver(list(T)) <= eq(T) where [
pred(init/1) is system:herbrand init ].

:— instance herbrand(list(T)) <= eq(T).

plus the definition of the predicate list_1_SolveEqual which implements
unification specialised for the list data type as the general =/2 method for
lists. Exactly how this is done will be discussed in detail in the following
section. Note that herbrand_init/1, implementing the init/1 method, is
already defined in the system module.

4 ===/2 is analogous to Prolog ==/2 but only succeeds if both arguments are un-
bound variables. Determining if two non-variable arguments are identical in HAL
would require recursively traversing and comparing the sub-terms in the argu-
ments. Hence, every subtype of the term would require the ability to test equival-
ence. Simply testing if two variables are identical only depends on the topmost

type constructor.



The reader might be wondering why there is a need for the programmer
to distinguish types for which Herbrand solving is supported from those for
which it is not, since one could have simply defined all constructor types
as Herbrand types, provided full unification for them, and then relied on
the compiler to replace calls to the Herbrand solver by more efficient calls
to the term assignment, construction, etc, procedures provided by Mercury.
The main reason to separate the types is one of efficiency. The problem is
that the compiler is not always capable of detecting whether a more efficient
procedure can be used since to do so requires examining reordering of literals.
Another reason is that a slightly more compact representation can be used
for non-Herbrand terms since there is no need to have a tag for the case where
the term is a variable. Separating the types means that these overheads will
always be avoided in the case of the far more common non-Herbrand types.

The above decision improves efficiency at the cost of code duplication.
For example, since the type of lists with associated Herbrand solving support
is different from that of lists without support, HAL needs to provide two
library modules, one for each type. Furthermore, terms of one type cannot
be unified with those of the other type.

1.4 Implementing Herbrand Constraint Solving

In this section we describe how Herbrand constraint solvers are implemented
in HAL. We start by briefly introducing the WAM and Mercury approaches
to term representation and manipulation, as well as describing the PARMA
binding scheme of Taylor. Then we show how the PARMA binding scheme
is used to implement Herbrand constraint solvers in HAL.

1.4.1 Term Representation and Manipulation in the WAM

The Warren Abstract Machine (WAM) [14,1] forms the basis of most mod-
ern Prolog implementations. Terms are stored on a heap,® which is an array
of data cells. A cell is usually broken into two parts: a tag and a reference
pointer. The most important tag values are REF (a variable reference), ATM
(an atomic object, i.e., a non-variable term with arity 0), and STR (a struc-
ture, i.e., a non-variable term with one or more arguments). An unbound
variable (on the heap) is represented by a cell with a REF tag and a pointer
to itself. An atom is represented by a cell with tag ATM and a pointer into
the atom table. The structure f(¢y,...,t,) is represented by a STR tagged
pointer to a contiguous sequence of n+1 cells. The first cell contains the func-
tor £ and the arity n, and the next n cells hold the representations of ¢y, ...,
t,. For example, a possible heap representation of the term f(h(X),Y,a,Z)
is shown in Figure 1.1.

% For simplicity, we ignore stack variables.
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Fig. 1.1. WAM heap representation of f(h(X),Y,a, Z).

The native representation of base types such as integers and floats (usu-
ally) uses the entire cell. WAM implementations either treat them as atoms,
wrap them in a special functor, or assign tag values for the types and use the
remaining bits to store the data.

Unification of two objects on the heap proceeds as follows. First, both
objects are dereferenced. That is, their reference chain is followed until either
a non-REF tag or a self reference is found. If at least one of the dereferenced
objects is a self reference (i.e. an unbound variable) that object is modified
to point to the other object. Otherwise, the tags of the dereferenced objects
are checked for equality. In the case of an ATM tag, they are checked to see
they have the same atom table entry. In the case of a STR tag, the functor
and arity are checked for equality, and, if they are equal, the corresponding
arguments are unified.
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(a) WAM representation (b) After processing Y = h(X)
Fig.1.2. WAM term and variable binding schemes

For example, consider the heap state of Figure 1.1. If we first unify Y with
the heap variable Z and then with another heap variable V, we obtain the
heap shown in Figure 1.2(a). If we then unify Y with hA(X) we obtain the heap
shown in Figure 1.2(b). Notice how reference chains can exist throughout the
heap.

The address of any pointer variable modified by unification is (condition-
ally) placed in the trail. Since the modified variable is always a self reference,
its previous state can be restored from this information alone.

1.4.2 Term Representation and Manipulation in PARMA

In the PARMA system [12], Taylor introduced a new technique for handling
variables that avoided the need for dereferencing (potentially long) chains



when checking whether an object is bound or not. A non-aliased non-bound
(i.e. free) variable on the heap is still represented as a self-reference as in
the WAM. The difference occurs when two free variables are unified. Rather
than pointing one at the other, as in the WAM, a cycle of bindings is created.
In general n variables which are aliased are represented by n cells forming
a cycle. When one of the variables is equated to a non-variable all variables
in the cycle are changed to direct (tagged) pointers to this structure and
changes are trailed.

M @ ) @

M [ 14 [str!,[rer. '[atm', [Rer] - (™ [ f/4 [sTRI, ‘Sﬂw |STR|
; atom table entry "a"
© O w1 Jreel |y
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(a) PARMA representation (b) After processing Y = h(X)

atom table entry "a"

Fig.1.3. PARMA term and variable binding schemes

For example, the PARMA heap structures corresponding to Figures 1.2(a)
and (b) are shown in Figures 1.3(a) and (b), respectively.

The PARMA scheme for variable representation has the advantage that
dereferencing of bound terms on the heap is never required. However, it has
three potential disadvantages:

(a) Checking if two unbound variables are equivalent is more involved, and is
required for variable-variable binding. Essentially, each variable’s cycle of
aliased variables may need to be traversed. Furthermore, trailing of each
variable requires two words (the variable’s position and its old value).

(b) When instantiating a variable cycle (conditional) trailing must occur for
each cell in the cycle (rather than one as for the WAM). Also, as before,
the trail requires two words.

(c) When creating a structure that will hold a copy of an already existing
unbound variable, the cycle of variables grows, and trailing potentially
occurs.

However, the impact of each of these factors is dependent on the length
of the cycles that are manipulated. Since, as we shall see, cycles rarely grow
beyond length one (a self pointer), the overhead involved is limited, although
not completely eliminated (particularly in the case of trailing overhead).

It is important to note that only heap variables can be placed in a vari-
able’s alias cycle. An unbound initialized variable on the stack or in a register
points into a cycle on the heap. If this cycle is then bound, the stack or register
variable becomes a pointer to a bound object. This means that when access-
ing data through a stack variable or register, the PARMA scheme sometimes
requires a single step dereference.



1.4.3 Term Representation and Manipulation in Mercury

Types in HAL with no solver attached are identical to Mercury types. In this
section we explain Mercury’s approach to type representation and manipula-
tion.

Recall that variables in Mercury can only be either new (which means they
do not have a representation) or ground. Thus, there is no need for the REF
tagged references used in the WAM. This combined with the fact that types
are always known at compile time, allows Mercury to use a compact type-
specific representation for terms in which tags are used instead to distinguish
among the different type functors defined for the type. Hence, an object of a
base type, like an integer, is free to use its entire cell to store its value. For
more details see [11]. As an example, consider the Mercury type for lists:®

:— typedef 1list(T) -> ([0 ; [T | 1list(T)] ).

Given a term of type 1list(T) there are only two possibilities for its (top-
level) value, it is either nil “[1” or cons “[|]1”. Mercury reserves one tag
value (NIL) for nil, and one (CONS) for cons. Since the nil reference does
not need any further information the pointer part is 0. A cons structure is
simply two contiguous cells: the first is a representation of the first element
(e.g. a tagged pointer or a 32 bit int) and the second is a reference to the rest
of the list.

Assuming 32 bit words and aligned addressing, the low two bits of a
pointer are zero. In Mercury these bits are used for storing the tag values,
hence four different tags are available. For types with more than four functors,
the representation is modified. Since for a constant functor (such as NIL) the
remaining part of the cell is unused, the remaining 30 bits can be used to store
different constant functors. For types with more non-constant functors than
remaining tags, the Mercury representation uses an extra cell to store the
identity of the extra functors, much like the WAM representation (although
the arity of the functor does not need to be stored since the type information
gives this). In what follows, we will ignore this for simplicity.

Mercury performs program normalization, so that only two forms of equa-
tions are directly supported: X =Y and X = f(A4,,..., A,) for each functor
f where Ay,..., A, are distinct variables.

As mentioned before, equations of the form X = Y are only valid in
three modes: in = out, out = in, and in = in. For the first two modes,
the ground variable is copied into the new. For the third mode a procedure
to check that the two terms are identical is called. Mercury automatically
generates a specialized procedure (which we shall refer to as unify_gg) that
does this for each type.

The equation X = f(Ay,...,A,) is only valid in two modes: out = in
(i.e., X is new and Ay, ..., A, are all ground) and in = out (i.e., X is

5 For uniformity we use HAL syntax rather than that of Mercury.



ground and each Ay, ..., A, is new). In the first case a contiguous block of n
cells is allocated, the values of Aq, ..., A, are copied into these cells, and X
is set to a pointer to this block with an appropriate tag. In the second case,
after testing that X is bound to the appropriate type functor, the values in
the contiguous block of n cells that it points to are copied into Ay, ..., A,.
The case where some of Ay, ..., A, are new and some ground (e.g. A4) is
handled by replacing each such variable in the equation by a new variable
(e.g. A}) and a following equation (e.g. A} = A4).

As an example, consider how Mercury will (attempt to) compile the equa-
tion, T = f(h(1),Y,a,Y) where Y and T are new. First, it is normalized to
give the equations X = 1,U = h(X),S =a,Z =Y, T = f(U,Y,S,Z). The
first three equations can be compiled to “construct” variables X, U and S,
respectively. The two remaining equations cannot be compiled since they do
not satisfy one of the above modes. If later in the goal Y is given a ground
value by literal [, then these two equations can be reordered after [ and com-
piled to construct Z and T'.

1.4.4 Term Representation and Manipulation in HAL

Since HAL is compiled into Mercury, it makes considerable sense for HAL to
use as far as possible Mercury’s basic term manipulation functions even for
types that sometimes require full unification. The idea is that, when possible,
term equations should be compiled into Mercury’s basic term manipulations
(assignment, construction, deconstruction, and equality testing) rather than
calling the more expensive unification solving method. However for this to be
possible, terms in HAL must use a term representation which is compatible
with that of Mercury.

HAL employs the PARMA approach to variable binding with the Mer-
cury term representation scheme. The main reason for using the PARMA
approach, rather than that of the WAM, is that when a term structure be-
comes ground in the PARMA scheme it has no reference chains within it.
Hence, once it is ground it becomes a legitimate Mercury term. Furthermore,
even when a term is only partially bound, the HAL compiler can (mis)use the
efficient Mercury operations to manipulate the bound part of the term, since
they will still give the desired behaviour. In order to do this, HAL reserves
the tag 0 in all Herbrand solver types for use as the REF tag. This means
that instead of the four tags generally available for representing a type in
Mercury there are only three available for a solver type.

For example, given the type declarations:

:- typedef erk -> (f(erk, erk, atm, erk) ; h(erk); g) deriving herbrand.
:— typedef atm -> (a ; b ; c ; d ; e).

the HAL representation of the term T = f(h(X),Y,a,Z) is shown in Fig-
ure 1.4.
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Fig. 1.4. HAL heap representation of f(h(X),Y,a, Z).

Dereferencing: As in the PARMA system, only heap variables can be
placed in a variable’s alias cycle. Thus, a stack variable or a register must be
a pointer somewhere into the cycle. As a result, when accessing data through
a stack variable or register, HAL sometimes requires a single step dereference.
Consider the following goal, where all variables are initially new:

init(Z), X = Z, X = [a], X = [AIB].

Figure 1.5 illustrates the changes to the heap and the registers holding X
and Z during the execution of the first 3 atoms in the goal. Note that (due
to the way Mercury handles registers) X and Z remain as pointers to the
instantiated list rather than being updated to its value (what it points at on
the heap). Before the execution of the atom X = [A|B] we must perform a
one step dereference so that we can handle the equation simply as a Mercury
deconstruct.
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Fig. 1.5. Register and heap representation for each stage of init(Z), X=Z, X=[a].

HAL produces Mercury code that maintains the assumption that:

e an old Herbrand object may need to be dereferenced.
e a bound Herbrand object is already dereferenced.

To do so, explicit dereferencing instructions are added to the output Mercury
code, that create a new dereferenced version of a variable. Such dereferen-
cing instructions are only required to be added to the user’s code when the



compiler detects that the instantiation state of a variable changes from old
to some bound instantiation. For example, the goal above is translated to
Mercury code of the form

init(Z), X = Z, X = [a], XDerefd = deref(X), X Derefd = [A|B].

The deref pseudo-C code simply returns the value pointed to by its argument
if this is not a variable”

deref (X) {
if (derefd_var(X) && !derefd_var(*X)) return *X;
return X; }

The code derefd_var to check whether a pointer is a variable pointer is
simply

derefd_var(X) { return (tag(X) == REF); }

The code var to check whether an arbitrary old term is a variable must
do the one step dereference. It is defined as follows:

var(X) { return (derefd var(X) && derefd var(*X)); }
The code for nonvar simply uses var.

nonvar (X) { return !var(X); }

Unification: HAL, as Mercury, normalizes programs so that only two forms
of equations arise: X =Y and X = f(44,...,Ap) (where each 4, is a distinct
variable). The compiler translates these equations into calls to appropriate
Mercury and C code to implement the PARMA variable scheme as follows.

Consider an equation of the form X = Y. For modes in = out, out =
in, and in = in we simply call the Mercury’s more efficient procedures.® If
one of the variables is new and the other one is old, we can simply assign
the old variable to the new. This is identical to what Mercury does for this
case (with the understanding that old is interpreted as ground) and we can
therefore again use Mercury’s procedure. When both X and Y are new an
initialization init (Y) is added beforehand. The initialization allocates a new
cell on the heap, makes it a self-pointer and returns a reference to this cell
in Y. This makes Y old and the previous case applies. The (psuedo-C) code
for init is simply

init(X) { X = top_of_heap++; *X = X; }

T Importantly the code does not return the next address in a variable chain, but the
original address. This will be required later for correctness of dynamic scheduling.

8 For in = in, this is correct only if X and Y contain no non-Herbrand solver
types. For the purposes of this paper we will ignore this.



The only remaining case, where both X and Y are old, requires true uni-
fication. We replace the equation with a call to the Herbrand unification pro-
cedure unify_oo, which is automatically generated by the HAL compiler for
the solver type t of X and Y.? A simplified version of the code for unify_oo
is shown in Figure 1.6. In the actual code the calls to nonvar and deref are
folded into one call.

:-— pred unify_oo(T,T) <= herbrand(T).
:— mode unify_oo(00,00) is semidet.
unify oo (X,Y) :-
(nonvar (X) ->
(nonvar (Y) ->
unify_val_val(deref (X) ,deref (Y))
; unify_var_val(Y,deref (X)))
; (nonvar (Y) ->
unify var_val(X,deref (Y))
; unify_var_var(X,Y))).

Fig. 1.6. HAL code for equating two old objects of type T'.

The procedure unify_val_val is similar to Mercury’s procedure unify_gg
except it calls unify_oo on arguments of unified terms rather than unify_gg.
It assumes that its arguments are dereferenced. For example, unify val val
and unify_gg for list types are shown in Figure 1.7. In practice the final
calls to unify oo and unify_gg would be specialized since we know they
apply to list arguments (and thus we know the name of the predicate which
implements the method).

The procedure unify var_val in Figure 1.8 unifies a variable and a non-
variable. This means modifying all the variables in the cycle to directly refer
to the non-variable, and trailing the changes. The procedure assumes the
second argument, is dereferenced.

The procedure unify var_var shown in Figure 1.9 unifies two variables.
This means checking that the variables are not already the same, and then
joining the cycles together, trailing the change. Note that, unlike the case for
the WAM, the code for unifying two variables is symmetric, treating each
variable the same way. Also note that the algorithm traverses the two cycles
in parallel stopping when the shortest cycle has been completed.

Processing an equation of the form X = f(4,,...,4,) is more complic-
ated since we may have to create objects on the heap. First, let us consider
the simple case when X is bound, then the case when X is new, and finally
the most complex case: when X is old.

® unify_oo is very similar to the code generated by the HAL compiler for the =/2
method to ensure the type t is an instance of the eq class.



:- pred unify gg(list(T),1ist(T)) <= eq(T).
:- mode unify gg(in,in) is semidet.
unify_gg([1,[1).
unify_gg([X|Xs], [Y|¥s]) :-

unify_gg(X,Y),

unify_gg(Xs,¥s).

:— instdef nonvar_list -> bound([]; [oldlold]).
:— pred unify val_val(list(T),list(T)) <= eq(T).
:- mode unify_val val(in(nonvar_list),in(nonvar_list)) is semidet.
unify_val_val([1,[]).
unify val_val([X|Xs], [Y|¥s]) :-
unify_oo(X,Y),
unify oo (Xs,¥s).

Fig.1.7. HAL code for equating two nonvariable objects of type list(T).

unify var_val(X,Y) {

QueryX = X;
repeat
{ Next = *QueryX;
trail (QueryX); /* trail chain pointer */
*QueryX = Y; /* replace by value */

QueryX = Next; }
until (QueryX == X) }

Fig. 1.8. Pseudo-C code for HAL unification of a variable and value

unify_var_var(X,Y) {
QueryX = *X;
QueryY = *Y;
while (QueryX != Y && QueryY != X) /* while equality not found */
if (QueryX != X && QueryY != Y) { /* if loops unfinished */

QueryX = *QueryX; /* advance */
QueryY = *QueryY;

} else {
trail(X); trail(Y); /* else trail X and Y */
Tmp = *X; *X = *Y; *Y = Tmp; /* merge chains */
break; } } /* and finish */

Fig. 1.9. Pseudo-C code for HAL unification of two variables

The easiest case for handling an equation of the form X = f(A4;,...,4,)
occurs when X is known to be bound and A4, ..., A, are new. This is simply
left to Mercury. If one (or more) of Ay, ..., A, are not new, they are replaced
by new variables and equations as in the Mercury case.



The second case, when X is new, will require the construction of a new
structure on the heap. For this to happen, and since arguments within a
structure are not allowed to be new in HAL, each variable A; with instan-
tiation new must first be initialised. If the type of the variable is known at
compile time to be a Herbrand type or other solver type, initialisation is not
a problem. If, however, the type is known to be neither Herbrand nor any
other solver-type, a compile-time error can be issued. Finally, if the type of
the variable is not known at compile-time (i.e., it is a variable type), we must
call a general initialisation procedure that decides what to call at run-time
and can result in a run-time error if the type ends up not being a solver
type. This would be simple if one could at run-time check whether a variable
has a type which is an instance of certain type class (such as herbrand/1
or solver/1). However, this is not yet possible in Mercury. Thus, in order
to support this and other type-related queries, HAL defines the following
internal type class:

:— class hal_type_info(T) where [
pred maybe_init(T::no) is det,
pred is_type_herbrand(T::oo0) is semidet,
pred is_type_solver(T::oo0) is semidet].

where maybe_init/1 initialises the variable in the heap if this is needed be-
fore performing a construction, is_type_herbrand succeeds if the type is
Herbrand, and is_type_solver succeeds if the type is a non-Herbrand solver-
type. HAL will also automatically create an instance of hal_type_info/1 for
every user-defined type t as follows. If t is neither Herbrand nor a solver
type, the instance is:

:— instance hal_type_info(t) where [
pred(maybe_init) is error,
pred(is_type_herbrand) is fail,
pred(is_type_solver) is faill.

where error will issue a run-time error, and fail will always fails. If t is not
a Herbrand but a solver type, the instance is:

:- instance hal_type_info(t) where [
pred (maybe_init) is init,
pred(is_type_herbrand) is fail,
pred(is_type_solver) is truel].

where init is the predicate appearing in the solver (t) as the implementa-
tion of method init/1, true always succeeds and fail always fails. Finally,
if t is a Herbrand type, the instance is:

:- instance hal_type_info(t) where [
pred (maybe_init) is dummy_init,
pred(is_type_herbrand) is true,
pred(is_type_solver) is faill.



where dummy_init does nothing (as we will see, Herbrand variables do not
require initialisation before a construction), and true and fail are as before.

Using the above predicates, the construction of term X = f(A44,...,4,)
can be done as follows. Let us assume that all variables have variable type,
variables A,,,...,4,, are old while A4,, ,..., Ay, are new. Then, the trans-
lation to Mercury is essentially:

maybe_init(A,,), ..., maybe_init(4,,),

X =1=f(A1, ..., 4,

(is_type_herbrand(A,,) -> A,, = init_heap(X,n; —1) ; true),
(is_type_herbrand(4,,) -> A,, = init_heap(X,n; —1) ; true),
(is_type_herbrand(A,,) -> fix_copy(X,01 —1) ; true),

(is_type_-herbrand(4,,, ) -> fix_copy(X,0m —1) ; true)

where the method maybe_init is first used to initialise all non-Herbrand new
variables. Once this is done, the construction can be scheduled as a Mercury
construct. Then, is_type_herbrand is used to perform a run-time check to
see if the actual type of the arguments is a herbrand type and, if so, call
specialised code to appropriately initialise the argument. This is done by the
init_heap(X,i) function, which creates a self reference in the i** slot of the
heap region pointed to by X and returns it. Note that indices for slots on the
heap start from O and, therefore, we must use init_heap(X,n; — 1) rather
than init_heap(X,n;). The function is defined as:

init_heap(X,i) { return X[il = &(X[il); }

Note that init_heap is effectively a specialized version of init/1 for the
PARMA representation of variables inside data structures.

Finally, each old herbrand argument A,, was copied by Mercury into the
new heap structure. For cases where this simple copy may not have achieved
the desired result we need to call fix_copy (X, o0 —1).If 4, was an unbound
variable, the copy performed by Mercury results in a reference to the cycle in
the ol cell rather than the ol cell being placed in the cycle. Thus, fix_copy
needs to add the ol cell into the cycle. If 4,, is bound but not dereferenced
(this can happen for stack and register variables), fix_copy must replace the
contents of the ofch cell by what it refers to. The procedure is defined as:

fix_copy(X,i) {
AXi = &(X[i]); Xi = X[il;
if (derefd_var (Xi))
if (derefd_var(*Xi)) { trail(Xi); #AXi = *Xi; *Xi = AXi }
else *AXi = *Xi; }

If, as it is usually the case, the types are known at compile time the
generated code can be (and is) simplified enormously. Knowing the type
allows the run-time type checks to be eliminated and the code simplified
appropriately.



For example, consider the construction of T = f(U,V, S, Z) where T and
Z are new, U is known to be bound (to h(X)), S is known to be bound (to
a), and V is old (and part of a cycle). In this case we know the type of all
arguments completely. The generated code is

maybe_init(Z), %% Noop as Z is Herbrand
T = £(U,V,S,2), %% Mercury comnstruct

Z = init_heap(T,3),%) initialize Z
fix_copy(T,1) Wh fix V

After executing the Mercury construction T' = f(U,V, S, Z) the heap is as
shown in Figure 1.10(a). Applying init_heap(T,3) and fix_copy (T, 1) gives
the heap shown in Figure 1.10(b).

M @

| f 'l h i |reri,| a | H Fo

ICR

Rer! | |REF!,
C) V)

(a) After Mercury construct (b) Corrected version

Fig. 1.10. Adapting Mercury’s term construction for Herbrand terms

To illustrate polymorphic code, consider the literal X = [A]Y] where both
X and Y have type 1ist(T), A has type T, X is new and both A and Y are
0ld. The construction code is shown below:

X = [A]Y] %% Mercury construct

(is_type_herbrand(A) -> %% if A is a term solver type
fix_copy(X,0) ; true), %h fix A

fix_copy(X,1) %h fix Y

The third and final case handles the equation X = f(A4,...,A4,) when
X is old. The generated code checks if X is bound in which case it treats
the equation as if it were the deconstruction X = f(By,..., B,) followed by
equations A; = B;. Otherwise, X is a variable and the code constructs the
term f(A1,...,4,) on the heap'® and then equates X to this term using
unify_var_val.

Consider again the literal X = [A|Y] where both X and Y have type
1list(T) and A has type T, this time with A new and both X and Y old.
The generated code has the form

10 Depending on whether arguments are solver types or not this may not be possible,
causing a run-time error.



(nonvar (X) -> %% deconstruct
Xd = deref(X),

Xd = [An|Yn], %% Mercury deconstruct
A = An, %% copy operation (A is new)
unify_oo(Y,¥n) %% arbitrary unification
; %% construct
maybe_init (A), %% possible initialization of A
X = [alY], %% Mercury construct
(is_type_herbrand(A) -> %% if A is a term solver type
A = init_heap(X,0) ; true), %h fix A
fix_copy(X,1)) Whofix Y

Again a run-time error can occur if X is a variable, since the call to maybe_init
will raise an exception if A does not have a solver type.

1.4.5 Implementation of herbrand/1 Methods

Supporting the methods in the herbrand type class is straightforward once
the representation of terms is decided. We have already defined var/1 and
nonvar/1 in Section 1.4.4. The ===/2 predicate only needs to check whether
two variables are in the same reference chain. This can be implemented as
follows (cf. the code for unifying two variables in Figure 1.9).

===(X,¥) {
if (!var(X) || !'var(Y)) return FALSE; /* not both vars */
QueryX = *X; QueryY = *Y;
while (QueryX != Y && QueryY != X) /* while equality not found */
if (QueryX != X && QueryY != Y) { /* if neither loop finished */

QueryX = *QueryX; /* advance */
QueryY = *QueryY;

} else
return FALSE; /* not identical */

return TRUE; }

1.5 Dynamic Scheduling

Most modern logic programming languages allow predicates or goals to delay
until a particular condition (such as becoming bound or being unified with an-
other variable) is satisfied. Essentially they are implemented by hooks in the
unification algorithm using attributed variables [6]. SISCtus Prolog provides
the ability to suspend a goal until a term is instantiated, ground or two terms
are either identical or definitely not identical, and conjunctions and disjunc-
tions of these. ECL!PS® provides the ability to suspend a goal until a term
is bound to a variable or instantiated, and provides a user extensible hook
(constrained) which is used to indicate any change made to a variable by a



constraint solver. In HAL, dynamic scheduling hooks (we call them delay con-
ditions) are implemented by individual constraint solvers, and are completely
extensible.

In the remainder of this section we describe the general dynamic schedul-
ing mechanisms of HAL, and how Herbrand solvers fit into this scheme. In
the next section we discuss how this is implemented.

1.5.1 Dynamic Scheduling in HAL

The HAL language provides a form of more “persistent” dynamic scheduling
designed specifically to support constraint solving. A delay construct is of the
form

condi ==> goali | --- | cond, ==> goaly,

where the goal goal; will be executed every time the delay condition cond; is
satisfied. This is useful, for example, if the delay condition is satisfied every
time the lower bound of a solver variable has changed. Delayed goals may
also contain calls to the special predicate ki11/0. When this is executed, all
delayed goals in the immediate surrounding delay construct are killed; that
is, will never be executed again.

The delay construct of HAL is designed to be extensible, so that program-
mers can build constraint solvers that support delay. In order to do so, one
must create an instance of the delay type class defined as follows:

:- class delay(D,I) <= delay_id(I) where [

pred delay(D, I, pred),

mode delay(oo, in, in(pred is semidet)) is semidet J].
:— class delay_id(I) where [

impure pred get_id(I::out) is det,

impure pred kill(I::in) is det ].

where type I represents the unique identifier (id) of each delay construct,
type D represents the supported delay conditions (such as bound(X) in the
case of the Herbrand solver), delay/3 takes a delay condition, an id and a
goal,!! and stores the information in order to execute the goal whenever the
delay condition holds, get_id/1 returns an unused id, and kill/1 causes all
goals delayed for the input id to no longer wake up.

The HAL compiler translates each delay construct into the base delay
methods provided by the classes as follows. Consider the generic delay con-
struct shown above. This construct is translated into:

get_id(Id), delay(cond:,Id,goal}), ..., delay(cond,,Id,goal,)

' To simplify analysis, each goal; must be semidet and may not change the in-
stantiation state of variables. As a result, the possibility of delayed code waking
up can be ignored during mode and determinism checking since such code can
never change the current instantiation or determinacy.



where each call to kil1/0 in goal; is replaced by a call to ki11(Id) in goal}.
The separation of the delay type class into two parts allows different solver
types to share delay ids. Thus, we can build delay constructs which involve
conditions belonging to more than one solver as long as they use a common
delay id.

As mentioned above, a constraint solver supporting dynamic scheduling
must declare an instance of the delay/2 type class. In order to do so it needs
to

define a type D expressing the kinds of allowable delay conditions;
define a type I for representing identities (ids) for delay constructs;
define the predicate get_id/1 which returns a new unused delay id;
define the predicate ki11/1 which causes all delaying code with the input
delay id to no longer wake up (and hence effectively be removed from the
solver); and

define the predicate delay/3 which takes a delay condition, delay id and
a goal, and stores the information in order to execute the goal when the
delay condition holds.

If the programmer uses the annotation deriving delay instead of us-
ing deriving herbrand when defining a constructor type t, the compiler
will automatically generate a Herbrand constraint solver for t that supports
delay. As we will see later, the reason to distinguish between Herbrand solvers
that support delay and those which do not is a matter of efficiency: the im-
plementation of delay for Herbrand solvers introduces an overhead that HAL
programmers might wish to avoid when support for dynamic scheduling is
not needed.

In order to generate a Herbrand solver that supports delay, the HAL
compiler makes use of the following types, classes, instances and predicates
defined in the system module:

:— export_abstract typedef herbrand delay._id = int.
:— export typedef delay_cond(T) -> (bound(T) ; touched(T)).

:— export class herbrand_delay(T) <= herbrand(T) where [].

:— export instance delay_id(herbrand _delay_id).

:— export instance delay(delay_cond(T),herbrand delay_id) <=
herbrand_delay(T) .

:— export impure pred get_id(herbrand_delay_id).
- mode get_id(out) is det.

:— export impure pred kill(herbrand delay_id).
- mode kill(in) is det.

:— export pred delay(delay_cond(T),herbrand_delay_id, pred) <=
herbrand_delay(T) .



- mode delay(oo, in, in(pred is semidet)) is semidet.

The module defines the type herbrand delay id as an integer and ab-
stractly exports it (i.e. the type is visible from outside but its particular
definition is not). It also exports the type delay_cond(T) which defines the
delay conditions supported for a herbrand variable of type T: bound (X) will
succeed whenever variable X becomes bound, while touched (X) will succeed
whenever variable X becomes bound or aliased to another variable which also
has associated delayed goals. While the bound (X) condition will succeed at
most once, the touched (X) condition may succeed more than once. Note that
touched (X) does not wake when X is bound to a variable without any asso-
ciated delayed goals since such a unification does not change the “meaning”
of the constraint store.'?

The purpose of the herbrand_delay/1 class is simply to record which
Herbrand types support delay. The rest of the module exports the instances
of classes delay_id/1 and delay/2 which will be used by all Herbrand con-
straint solvers that support delay, and the predicates which implement the
associated methods. All Herbrand solvers which support delay will use the
common delay conditions bound (X) and touched (X), the common delay id
type herbrand delay_id, and its system-defined instance of delay_id. Note,
however, that herbrand delay_id can also be used by user-defined solvers.

Based on the above types and classes, the only difference at compile-time
between a type defined as deriving herbrand and one defined as deriving
delay is that, for the latter, the HAL compiler automatically generates an
instance of the herbrand delay/1 class, in addition to those of herbrand/1,
solver/1, and eq/1 classes which are generated for both types.

As an example of the use of delay, the following code shows (part of)
a simple Boolean constraint solver which is implemented using Herbrand
constraint solving,.

:— export typedef boolv -> ( f ; t ) deriving delay.
:— export pred and(boolv::o0,boolv::00,boolv::00) is semidet.
and(X,Y,Z) :-

( bound(X) ==> kill, X =f > Z=Ff ; Y = Z)

| bound(Y) ==> kill, (Y =f > Z=f ; X = Z)

| bound(Z) ==> kill, (Z =t -> X =t, Y =t ; notboth(X,Y))).
:— export trust pure pred notboth(boolv::o0,boolv::00) is semidet.
notboth(X,Y) :-

( bound(X) ==> kill, X =t -> Y = f ; true)

| bound(Y) ==> kill, (Y =t -> X = f ; true)

| touched(X) ==> (X === Y -> kill, X = f ; true)

| touched(Y) ==> (X === Y -> kill, X = f ; true)).

12 This is analogous to the case of unifying an attributed variable to a non-attributed
variable.



The constructor type boolv is used to represent Booleans. Since the type
is defined as deriving delay, the compiler will automatically generate in-
stances of the classes herbrand_delay/1, herbrand/1, solver/1 and eq/1.
Thus old variables of this type are allowed and represent unknown Boolean
values.

The Boolean constraint solver defines two constraints: and (X,Y,Z) which
implements the formula X AY ¢ Z, and notboth(X,Y), which implements
the formula =X vV =Y. Both constraints are defined using dynamic scheduled
code. The code for and(X,Y,Z) delays until one of its arguments is bound
(which for this type is equivalent to ground), and then executes once (it is
immediately killed on wake up). If either X or Y is bound the constraint is
solved. If Z is bound to f the constraint notboth(X,Y) is created. Note that
we could also have made use of touched delay conditions in the definition of
and.

The code for notboth(X,Y) delays until either X or Y is bound in which
case the constraint is enforced, or if X or Y is touched (bound or unified
with a different variable which also has delayed code). In the second case
if X and Y are identical (===), the delay construct is killed and both are
set to false (the only way to satisfy the constraint), otherwise the construct
remains. This illustrates how delayed code can be executed multiple times.
Note that notboth/2 uses the impure predicate “===" however, since the
actions of notboth as seen from the outside are pure, we use a trust pure
declaration for the constraint.

To illustrate how dynamic scheduling works, consider the execution of
goal:

and(A,B,C), and(A,C,D), and(A,E,F), D =f, C =G, A =E, B =t.

where all variables are assumed to have just been initialised. Initially all three
and constraints delay. When the constraint D = f is executed, and(A,C,D)
wakes up, kills its delay construct and calls notboth(A,C) which delays.
When C = G is executed, no delayed goal wakes up since there is nothing
delaying on G. When A = E is executed, notboth(A,C) wakes (since A is
touched) but since A === C fails the wake up does nothing. Executing B =
t wakes and(A,B,C), kills its delay construct and adds the constraint A =
C. This wakes notboth(A,C) since it causes a touched event on A (and C),
finds that they are identical, kills its delay construct and sets both A (and
C through the equality) to £. This wakes and(A,E,F) which kills its delay
construct and sets F' to £. The solution gives A=C=D=FE=F=G =1
and B =t.

Currently HAL only supports simple delay conditions, rather than con-
junctions or disjunctions of delay conditions. For example, it would be con-
venient to replace the last two lines of constraint notboth(X,Y) by the single
line

(touched (X) ;touched(Y)) ==> (X === Y -> kill, X = f ; true)



These more complex delay conditions are not directly supported by HAL yet,
but can be implemented by straightforward program transformation.

1.6 Implementing Dynamic Scheduling

In this section we begin by discussing the usual approach to implementing
dynamic scheduling for Herbrand constraints in the WAM, then we consider
how it is implemented in HAL.

1.6.1 Implementing Dynamic Scheduling in the WAM

Most Prolog systems, including SICStus Prolog and ECLPS® support dy-
namic scheduling based on Herbrand constraint solving using attributed vari-
ables [6]. For simplicity we shall illustrate the delay mechanism assuming a
single (delay) attribute, and only explain waking up when a variable is bound
to a non-variable using the builtin freeze which corresponds to the delay con-
dition bound. See also the section on Attributed Variables in [5] for a more
detailed explanation.

Essentially a new kind of variable is introduced, which we will represent
using the tag ATT. An attributed variable is stored in two contiguous data
cells. The first cell acts like a variable, while the second cell is where we store
the attributes of the variable, which for our purposes is a list of goals to be
executed when the variable is bound to a non-variable.

The goal freeze(X,G) creates a new attributed variable Y with attribute
[G], and then unifies it with X.

Unification is extended to attributed variables as follows. When an attrib-
uted variable X is unified with a non-variable term, then all the delayed goals
in the delay attribute of X are executed. If an attributed variable X is unified
with another attributed variable Y, then the two lists of delayed goals are
concatenated, and this replaces the delayed goal for Y (say), and X is pointed
at Y.

Consider the goal

G = write(X), freeze(X,G), H = write(g(Y)), freeze(Y,H), X = Y, X = £(2).

then after the first four literals executes the heap holds the two attributed
variables X and Y with their delayed goals. The heap state is shown on the
left of Figure 1.11. On the unification of X and Y the two lists are appended
and the attribute of Y, and X is pointed at Y, resulting in the heap state in
the middle of Figure 1.11. When X is bound to £ (Z) it is first dereferenced to
obtain Y, the goal list [G,H] is remembered for execution, and Y pointed to
f(Z). The heap state is now as in the right of Figure 1.11. The delayed goals
are then executed, causing £(Z)g(£(Z)) to be printed (although the other
order g(£(Z))£(Z) is equally probable in practice).
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Fig.1.11. WAM heap representation for dynamically scheduled goals and after
executing each literal X = Y, X = £(Z).

Prolog systems typically include a global register for holding all the delayed
goals scheduled. The goals in this register are executed only at certain points
in the code, typically just before a predicate call is made.

1.6.2 Implementing Dynamic Scheduling in HAL

As we saw in Section 1.5.1, each delay construct is converted by the compiler
to a more low-level set of delay primitives: get_id/1, kill/1 and delay/3.
In the following subsections we will explain how the procedures get_id/1,
kill/1 and delay/3 are implemented for Herbrand solvers.

1.6.3 Storing Dynamically Scheduled Goals

Herbrand delay conditions bound (X) and touched(X) are associated with
variable X by placing an entry in the alias cycle associated with X. Since
each entry in the alias cycle must be a variable, they all have a variable tag
(REF). Thus, we can use any other tag (which is already used by the type)
to represent a delay node (DEL). We use tag 1.

A delay node is stored as four consecutive heap cells as shown in Fig-
ure 1.12. These four components are: a dummy variable node which points
to the next component, the DEL tagged delay node pointing to the next
variable in the alias chain, a pointer to the doubly linked list of goals to be
woken on a bound event, and a pointer to the doubly linked list of goals
to be woken on a touched event. The system maintains at most one delay
node in any alias cycle. The apparently unnecessary extra (dummy) variable
node allows us to ensure that we never encounter the DEL tagged node in a
context where it might be confused with the usual functor that uses tag 1. In
particular, fix_copy performs a one step dereference on things which appear
to be variables; we need to make sure it doesn’t encounter a delay node at
that point or it will mistake it for a bound term. Note that this also means
that we should take care when dereferencing a variable, since if we store the
resultant address we may have a direct pointer to the dummy node, which if
dereferenced will incorrectly appear to be a bound term.
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Fig.1.12. A delay node within an alias cycle.

Adding a dynamically scheduled goal to the alias cycle is straightforward.
We search the alias cycle for a delay node; if there isn’t one we create a new
empty one and place it in the cycle. We then add the goal to the appropriate
doubly linked list of goals (depending on the delay condition). Note that if
the variable is already bound, then the goal is simply executed immediately.

1.6.4 Modifying Unification for Delay

For herbrand delay types we need to modify the code for manipulating
variables in order to recognize when a delay condition has been satisfied.
When unifying an alias cycle with a structure we know that both bound (X)
and touched(X) for any variable X in the chain is satisfied. Thus, we need
to adjust the unify var_val/2 algorithm to detect whether a delay node
appears in the chain and, if so, execute both lists of delayed goals. The code
is shown in Figure 1.13 (cf. the original code in Figure 1.8). If we detect that
the next item in the chain has a DEL tag then we are currently looking at
the dummy variable in the chain, and the next element is the delay node.
We record this and skip past the delay node. Otherwise we proceed as usual.
If after traversing the chain we have detected a delay node, we execute both
lists of delayed goals.

Unifying two alias cycles is more complex, as shown in Figure 1.14. If only
one variable chain contains a delay node we proceed as in Figure 1.9. If both
contain a delay node then we need to merge their delay nodes, and also wake
up goals with a touched delay condition. Note that we have to be careful not
to insert an extra node in between the two cycle elements in a delay node.

If the variables are the same we immediately return, otherwise we look
through the X cycle until we either find Y (in which case we return), or find
a delay node, or complete the cycle. We then look through the Y cycle until
we either find X, in which case we return, or find a delay node or complete
the cycle. If we found no delay nodes we proceed as before. If we find one
delay node, we insert the other chain just after the delay node. If we find
two delay nodes we merge the lists of delayed goals into the delay node for



unify var_val(X,Y) {
QueryX = X;
DelayNode = null;
repeat {
Next = *QueryX;
if (tag(*Next) != REF) { /* Found delay node */
DelayNode = Next; /* save in DelayNode */
QueryX = (strip_tag(*Next)); /* continue */
} else {
trail (QueryX) ;
*QueryX = Y;
QueryX = Next;
I
until (QueryX == X)
if (DelayedNode) {
execute_delayed_goals (*(DelayNode+1)); /* execute bound goals */
execute_delayed_goals (¥ (DelayNode+2)); /* execute touched goals */

b}

Fig. 1.13. Pseudo-C code for HAL unification of a variable and value supporting
delay

X (using merge_delay_goals) and then insert the the X cycle just after the
dummy node in the cycle of Y, stripping out the rest of the delay node.'?

We now illustrate the execution of the same goal, as previously considered
for the usual Prolog approach

G = write(X), freeze(X,G), H = write(g(Y)), freeze(Y,H), X = Y, X = £(2).
freeze(X,G) :- (bound(X) ==> call(G)).

then after the first four literals executes the heap holds the two attributed
variables X and Y and their delay nodes holding the delayed goals. The heap
state is shown on the top of Figure 1.15. On the unification of X and Y the
two lists are appended and the cycles are merged, eliminating the delay node
of Y, resulting in the heap state in the middle of Figure 1.15. When X is
bound to f(Z) the goal list [G,H] is remembered for execution, and every
(non-delay) element in the cycle for X is pointed to £(Z). The heap state is
now as in the bottom of Figure 1.15. The delayed goals are then executed,
causing f(Z)g(£(Z)) to be printed.

As we can see the heap usage by the HAL representation is more com-
plicated than the corresponding WAM representation. Note also that the
addition of delay for a solver type potentially slows down all unifications
for that type since we may need to search both alias cycles to determine if

13 Actually by keeping track of the previous pointers we can avoid using the dummy
node for Y, unless the delay nodes are the first things we encounter in both chains.



unify var_var(X,Y) {
if (X == Y) return;
QueryX = X;
DelayNodeX =
repeat {
NextX = *QueryX;
if (NextX == Y) return;
if (tag(*NextX) != REF) {
DelayNodeX = NextX;
break; }
QueryX = NextX; }
until (QueryX == X);
if (DelayNodeX == null) {
NextY = *VY;
if (tag(*NextY) != REF) {
DelayNodeY = NextY;
trail(X); trail(DelayNodeY) ;
Tmp = strip_tag(*#DelayNodeY) ;
*DelayNodeY = add_tag(DEL,*X) ;

null;

*X = Tmp;
} else {
trail (X); trail(Y);
Tmp = *X; *X = *Y; *Y = Tmp; }
return; }
QueryY = Y;
DelayNodeY = null;
repeat {
NextY = *QueryY;
if (NextY == X) return;

if (tag(*NextY) != REF) {
DelayNodeY = NextY;
break; }
QueryY = NextY; }
until (QueryY == Y);
if (DelayNodeY == null) {
trail(Y); trail(DelayNodeX);
Tmp = strip_tag(*#DelayNodeX) ;

/*

/*

/*

/*
/*
/*
/*
/*

/*

/*

/*
/*

/*
/*

*DelayNodeX = add_tag(DEL,*Y);
*Y = Tmp;

} else if (DelayNodeY == DelayNodeX) /*
return;

else {

shortcut return */

search for delay node in X */

shortcut return */
found delay node */

no delay in X, just unify */
search for insert place */
found delay node */

add X to cycle for Y */
after Ys delay node */

otherwise Y not dummy node */

search for delay node in Y */

shortcut return */
found delay node */

add Y to cycle for X */
after Xs delay node */

same variable */

merge_delay_goals(DelayNodeX, DelayNodeY); /* merge into X delay */

trail (QueryY); trail(DelayNodeX) ;
*QueryY = strip_tag(*DelayNodeX) ;

*DelayNodeX = *DelayNodeY;

execute_delayed_goals (¥ (DelayNodeX+2)); /* execute touched goals */

I

Fig. 1.14. Pseudo-C code for HAL unification of two variables supporting delay
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Fig. 1.15. HAL heap representation for dynamically scheduled goals and after ex-
ecuting each literal X = Y, X = £(2).

we have delay nodes in them. That is why HAL requires the user to expli-
citly indicate whether a Herbrand type requires support for delay, so that
it can generate calls to the more efficient versions of unify var_val and
unify_var_var where possible.

1.6.5 Killing Dynamically Scheduled Code

Because the dynamically scheduled code is potentially executed multiple
times, the delay constructs need to be explicitly killed when they are no longer
needed. As we have seen before, for Herbrand constructs the herband delay_id
type is an integer and the get_id predicate is thus implemented using a global
integer counter. The ability to kill dynamically scheduled code is managed by
associating with each herband delay_id the list of delayed goal nodes that
make up the construct. The kill/1 predicate simply traverses this list re-
moving each delayed goal node from the doubly linked list in which it occurs.



1.7 Evaluation

Our empirical evaluation has three aims. The first is to compare the perform-
ance of HAL and its Herbrand solver with a state-of-the-art Prolog imple-
mentation, SICStus Prolog. The second is to investigate the impact of each
kind of declaration on efficiency. The third is to compare HAL with Mer-
cury so as to determine the overhead introduced by the run-time support for
Herbrand solving.

To achieve the first aim we take a number of Prolog benchmarks!* and
compare them with the equivalent HAL programs. In order to build these
equivalent programs we must first transform built-ins not present in HAL
(such as cut) into their HAL equivalents (such as if-then-else). Also, although
Prolog does not have type, mode and determinism declarations, the current
HAL compiler requires them. We solve this problem by defining a “universal”
constructor type for the HAL program which contains all functors occurring
in the program and declaring this type to be a Herbrand solver type support-
ing dynamic scheduling by using deriving delay.

Note that all integers, floats, chars and strings in the original Prolog pro-
gram must be wrapped in the HAL program, and each wrapping functor must
appear in the “universal” constructor type. Finally, all predicate arguments
are declared to have this type and mode oo, and all predicates are declared
to have determinism nondet. Most of these tasks are done automatically by
a pre-processor.

For example, for the original hanoi Prolog program (the code in Sec-
tion 1.2 minus the declarations), the preprocessor will add the declarations

:— typedef htype -> (int(int) ; float(float) ; a ; b ; c ; []
; [htypelhtypel ; mv(htype,htype) ; htype-htype )
deriving delay.

:- pred hanoi(htype,htype).

:— mode hanoi(oo,00) is nondet.

:— pred hanoi2(htype,htype,htype,htype,htype).

:— mode hanoi2(00,00,00,00,00) is nondet.

The preprocessor will also replace the three occurrences of 1 in the program
text by int (1) and create predicates for the wrapped versions of >, is and
function -.

To achieve our second aim of investigating the impact of each kind of
declaration on efficiency, we take these Prolog-equivalent HAL programs and
progressively transform them as follows.

e The first step is to add precise type information, i.e., to add the required
type definitions and acccurate predicate type declarations. All types must
still be declared as Herbrand solver types supporting delay since the
associated terms may sometimes be treated as logical variables. This also

" See http://www.csse.monash.edu.au/ “mbanda/hal.



implies that we must continue to wrap integers and other primitive types
since they may be placed in data structures or equated before they are
fixed.

e The second step is to remove the support for dynamic scheduling for
those Herbrand solver types upon which nothing is delayed. We simply re-
place the directive deriving delay by the directive deriving herbrand
wherever possible.

e The third step adds accurate mode declarations. Types which are never
associated with the old instantiation need not be declared as Herbrand
solver types (i.e. their deriving herbrand directive is removed) and,
in the case of the primitive types, such types can have their wrapping
removed.

e In the fourth and last step precise determinism declarations are added.

We then evaluate the efficiency of the programs obtained at each step.

Our third and final aim is to compare the efficiency of HAL and Mercury
to determine the overhead introduced by the run-time support for HAL, i.e.,
the overhead introduced by trailing, the reserved REF tag used for solver-
types, extra type classes, predicate renamings, etc. In order to do so we
took the program resulting from compiling the HAL program obtained in the
fourth step above, and modified it by using the Mercury libraries (instead
of HAL ones), eliminating any unification-related code (which was actually
dead-code anyway), and eliminating any predicate renaming introduced due
to the use of type classes, etc. The resulting program was then compiled
using two different compilation grades of Mercury: one that does not provide
trailing and one that does. Both grades also avoid reserving the extra REF
tag for solver-types, but are otherwise equivalent to the Mercury grade used
for compiling the HAL programs. Note that since Mercury does not provide
full unification, we could only do this for benchmarks with no remaining
herbrand types.

All timings are in seconds on a dual Pentium II-400MHz with 632M of
RAM running Linux 2.2.9. We have turned garbage collection off in all three
systems: SICStus Prolog 3.8.6 (compact code), Mercury (release-of-the-day
2003-08-09 version), and HAL.

We have used a subset of the standard Prolog benchmarks: aiakl, boyer,
deriv, fib, mmatrix, serialize, tak, warplan, hanoi and gsort. The last
two are shown in two forms, one using “normal” lists and append/3, the other
using difference lists. The reason for choosing these benchmarks is that they
did not require extensive changes to the original Prolog benchmarks'® and
hence the comparison is fairer. To this we added two HAL benchmarks using

15 aiakl, deriv, gsort, serialize and tak only required replacement of cuts by

if-then-else while warplan also needed to transform the \+ built-in into an if-then-
else and include a well-typed version of univ for warplan. The only exception is
boyer, for which the starting point was a restricted Mercury version, rather than
the Prolog one.



delay, both based around Boolean constraint solving. The first bqueens is

the classic n-queens problem, the second nono is a nonogram solver.

16

|Benchmark||Preds Lits|OSICS|SICS|None| T| TS|TSM|TSMD|Merc+tr|Merc|

aiakl 7 21[ 0.09] 0.08] 0.39] 0.94] 0.97] 0.02] 0.03]  0.03] 0.01
boyer 14 124] 1.79] 0.51] 2.36] 2.00[ 2.23[ 0.11] 0.05]  0.08] 0.02
bqueens 23 99 —|73.38| 4.86| 5.04| 5.04| 4.77| 4.73 — —
deriv 1 33| 1.54] 2.41] 5.02] 4.88] 4.08] 0.83] 0.68]  0.69] 0.15
fib 1 6] 1.20[ 1.21] 0.36] 0.33] 0.27] 0.02] 0.02]  0.01] 0.01
hanoiapp 2 7] 257] 2.61] 6.30[14.36]13.77] 0.64] 0.32[  0.27] 0.19
hanoidiff 2 6] 1.81] 1.75] 0.54] 0.73[ 0.74] 0.66] 0.63 —| —
mmatrix 3 7] 1.26] 1.26] 1.22] 2.96] 2.35[ 0.10[ 0.05]  0.04] 0.01
nono 30 181]  —[16.35[11.21|17.56[17.56] 2.12[ 2.08 —| —
qsortapp 3 10] 2.94] 1.60] 5.14[10.13[10.10] 0.51] 0.22]  0.21] 0.1
qsortdiff 3 10[ 2.91] 1.64] 5.22] 9.92[10.06] 0.53] 0.24 — —
serialize 5 19[ 1.41] 1.36] 2.30[ 2.56] 2.83] 0.63] 0.46 —| =
tak 1 9] 0.49] 0.60] 0.90] 0.76] 0.68] 0.08] 0.06]  0.05] 0.01
warplan 25 88| 0.51] 0.60] 2.12] 1.14] 1.06] 0.40[ 0.32 — =
[Average || | | 1.16] 0.77] 0.77] 1.04] 8.61] 1.38]  1.11] 2.72]

Table 1.1. Execution times in seconds

Table 1.1 provides the execution time for the benchmarks. The second

and third columns of Table 1.1 detail the benchmark sizes (number of predic-
ates and literals before normalization, excluding dead code and the query).
Subsequent columns give the execution time for:

the original program run with SICStus Prolog (OSICS),

the modified Prolog program run with SICStus Prolog (SICS),

the Prolog-equivalent HAL program (obtained with the preprocessor)
which containts no precise declarations (None),

with precise type declarations (T),

with precise type declarations and scheduling information (i.e. replacing
deriving delay by deriving herbrand wherever possible) (TS),

with precise type declarations, scheduling information, and mode declar-
ations (TSM),

with precise type declarations, scheduling information, and mode and
determinism declarations (TSMD),

this last version run with Mercury (if possible) compiled with trailing
support (Merc+tr),

the same Mercury version without trailing support (Merc).

6 See e.g. http://www.puzzlemuseum. com/griddler/griddler.htm



The last row of the table contains the geometric mean speed ratio between
the preceeding column and the current column. For example, programs in the
TSM column are, on average, 8.61 times as fast as the corresponding program
in the TS column.

The benchmarks nono and bqueens use dynamic scheduling code which
is required to be semidet. Hence, we required some modification of the ori-
ginal code to ensure that the determinism was checkable by the compiler for
versions before TSMD.

In general, the original and modified SICStus programs have similar speed.
deriv slows down because of loss of indexing caused by the introduction of
if-then-elses, while the two versions of quick sort improve because a badly
placed cut in the original program is replaced by a more efficient if-then-else.

The Prolog-equivalent HAL versions are mostly slower than the modified
SICStus versions. Slow-down occurs in aiakl, boyer and warplan because
no indexing is currently available for possibly unbound input arguments.
Surprising speed-up occurs for fib and hanoidiff; we suspect because of
Mercury’s handling of recursion. For the benchmarks with delay, since the
scheduling strategies are impossible to make the same, the comparison is
rather meaningless.

Generally, adding precise type information leads to a slow down (on av-
erage 0.77 times as fast). For the version with no information, we used a
monomorphic “universal” type which included all the functors in the pro-
gram. For the version with type information, we use the polymorphic types
where appropriate. The slow down is due to the use of polymorphic unification
predicates. The compiler could remove this cost by providing type specialized
versions of these predicates (indeed if we use only non-polymorphic types the
relative performance is 1.33 in favour of types). The programs fib and tak
do not use polymorphic types and therefore do not incur this cost. We see
improvements for both of these benchmarks. For warplan we gain a large
improvement because it allows a type specialized version of univ to be used.

Adding precise scheduling information provides a modest improvement for
most of the benchmarks (average 1.04 times). It provides no improvement for
bqueens and nono, both of which make extensive use of dynamic scheduling.

Adding mode declarations provides the most speed-up (on average 8.61
times). This is because it allows calls to the Herbrand solver to be replaced by
calls to Mercury’s specialized term manipulation operations and also allows
indexing. Interestingly bqueens obtains no speedup since the bulk of the time
is in the search, using the dynamic scheduling, and this is unchanged. For
nono the dynamic scheduled code is itself complex, and so benefits from mode
information.

Determinism declarations also lead to significant speed-up (on average
1.38 times). Again the benchmarks with dynamic scheduling are the least
affected, since the search dominates.



The times given in final three columns of Table 1.1 are too small to make a
meaningful comparison. For that reason, Table 1.2 shows the execution times
for 100 repeats of each benchmark. We omit bqueens, hanoidiff, nono,
gsortdiff, serialize and warplan since their final HAL versions still need
herbrand types.

|Benchmark||TSMD|Merc+tr| Merc|

aiakl 4.85 4.3| 3.55
boyer 9.37 10.53| 9.97
deriv 79.73 76.02|35.52
fib 2.61 2.61| 1.17
hanoiapp 40.07 40.15|34.78
mmatrix 5.27 4.99| 4.99
gsortapp 32.79 33.25|24.23
tak 6.06 6.35| 4.2
[Average || | 1.01] 1.40]

Table 1.2. Execution times in seconds for 100 repeats

|Benchmark| None]  TS|TSM|TSMD |Merc]

aiakl|| 3637| 2641 0 0 0
boyer|| 4904| 4904 0 0 0
bqueens|| 3562| 3581|3446 3446 —
deriv|[40530{40530 0 0 0
fib|| 1897| 1897 0 0 0
hanoiapp||72704|72704 0 0 0
hanoidiff|| 7168| 7168| 6144| 6144 —
mmatrix| 7970| 7970 0 0 0
nono|| 953| 953| 307 307 —
gsortapp||51449(51449 0 0 0
gsortdiff|[51126(51126| 352 352
serialize||17244|17244| 1552 1552 —
tak|| 5173| 5173 0 0 0
warplan 34 34 2 2] —

Table 1.3. Memory usage in Kbytes for the Trail

The HAL version running with precise declarations is very similar to the
Mercury version with trailing support. When we compile the Mercury version
without trailing support we see an improvement of 1.4 times on average.



|Benchmark|| None| TS| TSM|TSMD|Merc|

aiakl|| 2712| 38498| 1231 1231| 1231
boyer|| 5948| 5950| 3561| 3561| 3561
bqueens|| 81074|641074|101074|101074 —
deriv|| 27712| 27712| 24949| 24949|24949

fib|| 2371| 2371 0 0 0
hanoiapp|| 41472(438783| 37888| 36864|36864
hanoidiff|| 6656| 20480| 57344| 57344 —
mmatrix| 19610 47659 79 79 79
nono|[641082|641074(641082|641082 —
gsortapp|| 25842|269666| 25607| 25490|25490
gsortdiff|| 25446|261314| 28317| 28317 —
serialize|| 8928| 90622 8331| 8331 —
tak|| 5173| 5173 0 0
warplan 23 22 18 18 —

(=]

Table 1.4. Memory usage in Kbytes for the Heap

[Benchmark|]  None] TS| TSM|[ TSMD]
aiakl <1 (2) 0 (1) 0 (1) 0 (1)
boyer| <1(2)] <1(2)) 0()] 0(1)

bqueens (154) (154) 100 (154)|100 (154)
deriv]|< (129) (129) om0

] om oM om0
hanoiapp 0 (1) 0 (1) 0 (1) 0 (1)
hanoidiff]| 25 (2)] 25 (2)| 100 (2)| 100 (2)
mmatrix|| <1 (2) 0 (1) 0 (1) 0 (1)
gsortapp| 0 ()] 0] 0(1) 0()
gsortdiff|| <1 (2)] <1 (2)| 100 (2)| 100 (2)
serialize|| 1 (18)] 1 (18)] 100 (18)] 100 (18)
tak 0 (1) 0 (1) 0 (1) 0 (1)
warplan|| <1 (4) 1(4) 99 (4) 99 (4)

Table 1.5. Percentage of chains with more than one element, and maximum chain

We have also investigated the effect of the declarations on memory usage.
Table 1.3 shows the trail usage for each benchmark, whereas Table 1.4 shows
heap usage. The size of the trail is mostly affected by the presence or ab-
sence of precise mode declarations. Adding precise mode declarations greatly
reduces trail size — only those benchmarks with Herbrand solver types may
need to use the trail.

In many cases, adding precise type definitions causes a significant increase
in heap usage. This is due to the use of polymorphic data types. The unific-
ation predicates for such types construct data structures for run time type



information on the heap, and the affected benchmarks make many calls to
these predicates.

Adding precise modes causes a significant reduction in heap size for most
benchmarks. This is mainly because most of the calls to the unification pre-
dicates can be removed. It is also no longer necessary to box primitive types,
such as ints and floats. For example, without such boxing fib and tak use
no heap space at all.

Finally, we have investigated the size of the alias cycles constructed using
PARMA bindings. The results are shown in Table 1.5. Virtually all cycles
have length one immediately before being bound to a non-variable term.
Only four benchmarks, bqueens, deriv, warplan and serialize, have a
maximum cycle length of more than two (154, 129, 4 and 18 respectively).
The cycles disappear for deriv with mode information. The percentage of
non unit cycles dramatically increases for qsortdiff and serialize with
the addition of mode information. The number of non unit cycles does not
increase; rather, the number of unit cycles is reduced to zero because the
addition of mode information allows us to remove the deriving herbrand
declarations for some types, meaning that we do not use PARMA chains
when binding variables of those types.

1.8 Related Work

As far as we know, HAL is the first logic programming implementation to
use the PARMA variable representation and binding scheme since it was in-
troduced in [12]. We note that [8] discusses in detail the differences between
the PARMA and WAM schemes. However, there seems to be no compelling
reason to prefer one over the other; in fact, artificial examples can be con-
structed for which each scheme easily outperforms the other. There has been
some earlier work on the impact of type, mode and determinism information
on the performance of Prolog, but the results are quite uneven. In [9], in-
formation about type, mode and determinism is used to (manually) generate
better code. Its results show up to a factor of two speedup for mode inform-
ation, and the same result for type information. [13] describes Aquarius, a
Prolog system in which compile-time analysis information (including type,
mode and determinism information) is used for optimizing the execution. In
its results, analysis information had a relatively low impact on speed: on av-
erage about 50% for small programs without built-ins (for tak 300%) and
about 12% for larger programs with built-ins (for boyer only 3%). Finally,
in the context of the PARMA system, [12] also reports on speedup obtained
from information provided by compile time analysis. Its results are highly
benchmark dependent, with only 10% speed up for boyer but a factor of 8
for nrev.

It is difficult to directly compare our results (from Section 1.7) with those
found for Aquarius and PARMA. One problem is the differences between



the underlying abstract machines and the optimizations performed by each
compiler. For instance, Mercury performs particular optimizations like spe-
cializing the tags per type, the use of a separate stacks for deterministic and
nondeterministic predicates and a middle-recursion optimization, which are
not found in PARMA or Aquarius. On the other hand, Mercury lacks real last
call optimization. However, in accord with our findings, for all systems mode
information gives greater speedups than type information. Another problem
is that their information is obtained from compile time analysis, rather than
from programmer declarations. We suspect that compile time analysis is not
powerful enough to find accurate information about the larger benchmarks,
while in our experiments the programmer provides this information. This
would explain why our performance improvements are more uniform (and
larger) across all benchmarks, regardless of size.

1.9 Conclusions

Our empirical evaluation of HAL is very pleasing. It demonstrates that it
is possible to combine Mercury-like efficiency for ground data structure ma-
nipulation with Prolog-style logical variables by using PARMA bindings to
ensure that the representation for terms used by HAL’s Herbrand solver is
consistent with that used by Mercury for ground terms. This means that
the compiler is free to use the more efficient Mercury term manipulation
operations whenever this is possible.

There are however a number of ways to improve HAL’s Herbrand con-
straint solving which we shall investigate. These include better tracking of
where one-step dereferencing may be (or rather, is not) required, and more
specialized cases for equality and indexing for old terms.

Prolog-like programs written in HAL run somewhat slower than in SIC-
Stus, in part because there is no term indexing for possibly unbound instan-
tiations. However, once declarations are provided the programs run an order
of magnitude faster. (Much of this arises from the sophisticated compilation
techniques used by the underlying Mercury compiler.) Our results show that
the biggest performance improvement arises from mode declarations while
type and determinism declarations give moderate speed improvement. All
declarations reduce the space requirements.

It should be remembered that declarations are not only useful for improv-
ing efficiency. They also allow compile time checking to improve program
robustness, help program debugging and facilitate integration with foreign
language procedures.
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