
1 Herbrand Constraints in HAL

Bart Demoen

1

, Mar��a Gar
��a de la Banda

2

, Warwi
k Harvey

2

, Kim

Marriott

2

, David Overton

2

, and Peter J. Stu
key

3

1

Department of Computer S
ien
e, Catholi
 University Leuven, Belgium

2

S
hool of Computer S
ien
e & Software Engineering, Monash University,

Australia

3

Department of Computer S
ien
e & Software Engineering, University of

Melbourne, Australia

Abstra
t. Mer
ury is a logi
 programming language that is
onsiderably faster

than traditional Prolog implementations, but la
ks support for full uni�
ation. HAL

is a new
onstraint logi
 programming language spe
i�
ally designed to support the

onstru
tion of and experimentation with
onstraint solvers, and whi
h
ompiles to

Mer
ury. In this paper we des
ribe the HAL Herbrand
onstraint solver and show

how by using PARMA bindings, rather than the standard WAM representation,

we
an implement a solver that is
ompatible with Mer
ury's term representation.

This allows HAL to make use of Mer
ury's more eÆ
ient pro
edures for handling

ground terms, and thus a
hieve Mer
ury-like eÆ
ien
y while supporting full uni-

�
ation. An important feature of HAL is its support for user-extensible dynami

s
heduling sin
e this fa
ilitates the
reation of propagation-based
onstraint solv-

ers. We have therefore designed the HAL Herbrand
onstraint solver to support

dynami
 s
heduling. We provide experiments to illustrate the eÆ
ien
y of the res-

ulting system, and systemati
ally
ompare the e�e
t of di�erent de
larations su
h

as type, mode and determinism on the resulting
ode.

1.1 Introdu
tion

The logi
 programming language Mer
ury [11℄ is
onsiderably faster than tra-

ditional Prolog implementations for two main reasons. First, Mer
ury requires

the programmer to provide type, mode and determinism de
larations and in-

formation from these is used to generate eÆ
ient target
ode. Types allow a

ompa
t representation for terms, modes guide reordering of literals and mul-

tivariant spe
ialization, and determinism is used to remove the overhead of

unne
essary
hoi
e point
reation. The se
ond main reason for Mer
ury's ef-

�
ien
y is that variables
an only be ground (i.e., bound to a ground term) or

new (i.e., �rst time seen by the
ompiler and thus unbound and unaliased).

Sin
e neither aliased variables nor partially instantiated stru
tures are al-

lowed, Mer
ury does not need to support full uni�
ation; only assignment,

onstru
tion, de
onstru
tion and equality testing for ground terms are re-

quired. Furthermore, it does not need to perform trailing, a te
hnique that

allows an exe
ution to
ontinue
omputation from a previous program state

by logging information about prior states during forward
omputation and us-

ing it to restore the states again during ba
ktra
king. Trailing usually means

re
ording the state of unbound variables right before they be
ome aliased or

bound. Sin
e Mer
ury's new variables have no run-time representation they

do not need to be trailed.

This paper investigates whether it is possible to have Mer
ury-like eÆ-

ien
y, yet still support true logi
al variables. In order to do so we des
ribe

our experien
es with HAL, a new
onstraint logi
 programming language that

ompiles to Mer
ury so as to leverage from Mer
ury's sophisti
ated
ompila-

tion te
hniques. Like Mer
ury, HAL requires the programmer to provide type,

mode and determinism de
larations. Unlike Mer
ury, HAL was spe
i�
ally

designed to support the
onstru
tion of and experimentation with
onstraint

solvers [2℄.

In parti
ular, HAL in
ludes a built-in Herbrand
onstraint solver that

provides full uni�
ation (without the o

urs
he
k), thus supporting logi
al

variables. The Herbrand solver uses PARMA bindings [12℄ rather than the

standard variable representation used in the WAM [1,14℄. PARMA bindings

represent equivalen
e of variable by keeping all equivalent variables in a
y
le,

as opposed to WAM bindings whi
h implement a union-�nd style equival-

en
e
lass. The use of PARMA bindings allows the solver to use essentially

the same term representation for ground terms as does Mer
ury (see Se
-

tion 1.4.4). This is important be
ause it allows the HAL
ompiler to repla
e

alls to the Herbrand
onstraint solver by
alls to Mer
ury's more eÆ
ient

term manipulation routines whenever ground terms are being manipulated.

1

An important feature of HAL is its use of type
lasses to distinguish

between solver and non-solver types (i.e., types with an asso
iated solver and

types without) and for the hierar
hi
al organisation of
onstraint solvers.

Type
lasses allow a
lean separation between a
onstraint solver's interfa
e

and its implementation, thus supporting experimentation with di�erent solv-

ers. We detail how HAL's Herbrand
onstraint solver �ts into this hierar
hy.

Another important feature of HAL is its support for user-extensible dy-

nami
 s
heduling, that is intended to support
ommuni
ation between solvers

and
onstru
tion of eÆ
ient propagation-based solvers. We have therefore de-

signed the HAL Herbrand
onstraint solver to support dynami
 s
heduling.

Here we detail how this has been a
hieved with a PARMA-binding based

solver. Again type
lasses allow us to distinguish between solvers that sup-

port dynami
 s
heduling and those that do not.

The HAL programmer may spe
ify for a parti
ular
onstru
tor type t

whether t requires a Herbrand
onstraint solver (i.e. must support full uni-

�
ation) and, if so, whether this solver should support dynami
 s
heduling.

The HAL
ompiler will then automati
ally generate an appropriate instan
e

of the Herbrand solver for t. By requiring that
onstru
tor types that need

a solver must be spe
i�ed, HAL
an take advantage of this to simplify the

representation, analysis and
ompilation of
onstru
tors types that do not

need a solver.

1

A
tually, as long as the term is \suÆ
iently" instantiated.

The results of our empiri
al evaluation of HAL and its Herbrand solver are

very promising sin
e they show that HAL is
apable of using information from

type, mode and determinism de
larations as well as information about whi
h

types require true
onstraint solving and dynami
 s
heduling to signi�
antly

redu
e the overhead of Herbrand
onstraint solving. In parti
ular they show

that, with appropriate de
larations, HAL is almost as fast as Mer
ury (the

extra overhead is mainly due to support for trailing), yet allows true logi
al

variables. And while without de
larations its eÆ
ien
y is about half that of

SICStus Prolog, with de
larations it is an order of magnitude faster.

The experiments are also designed to systemati
ally evaluate the e�e
t

of ea
h kind of de
laration (type, mode, determinism, need to support full-

uni�
ation and dynami
 s
heduling) on the eÆ
ien
y of HAL programs so

as to determine where this speedup is
oming from. This is possible sin
e,

as HAL provides full uni�
ation and a \
onstrained" mode, all versions are

legitimate HAL programs. Our results suggest that mode de
larations have

the most impa
t on exe
ution speed, while determinism de
larations provide

only moderate speedup. Also, although type de
larations
an also provide

speedup, the use of polymorphi
 types
an a
tually lead to slowdown. The

overhead of unne
essary support for delay is noti
eable but small.

The remainder of the
hapter is organized as follows. In Se
tion 1.2 we

�rst introdu
e the HAL language by means of a simple example, and then

examine the di�erent de
larations in some detail. Se
tion 1.3 provides the

general design of HAL's Herbrand solvers in terms of their interfa
e and

asso
iated predi
ates, while Se
tion 1.4 details their a
tual implementation.

Next, we examine how dynami
 s
heduling is de�ned in HAL in Se
tion 1.5

before detailing how we implement dynami
 s
heduling for Herbrand solvers

in Se
tion 1.6. We give our empiri
al evaluation in Se
tion 1.7, dis
uss related

work in Se
tion 1.8, and
on
lude in Se
tion 1.9.

1.2 The HAL Language

This se
tion provides a brief overview of the HAL language,
on
entrating

on its support for Herbrand
onstraints; for more details see [2℄. The basi

HAL syntax follows the standard Constraint Logi
 Programming (CLP) syn-

tax, with variables, rules and predi
ates de�ned as usual (see, e.g., [10℄ for

an introdu
tion to CLP). The module system in HAL is similar to that of

Mer
ury. A module is de�ned in a �le, it imports the modules it uses and

has export annotations on the de
larations for the obje
ts that it wishes to

be visible to those importing it. Sele
tive importation is also possible.

The
ore language supports integer,
oat,
hara
ter, and string data types

plus polymorphi

onstru
tor types (su
h as lists) based on these base types.

However, this support is limited to assignment, testing for equality, and
on-

stru
tion and de
onstru
tion of ground terms. More sophisti
ated manipula-

tion is available by importing (or building) a
onstraint solver for ea
h of the

types involved.

As a simple example, the following program is a HAL version of the Towers

of Hanoi ben
hmark whi
h uses di�eren
e lists to build the list of moves.

:- module hanoi. (L1)

:- import int. (L2)

:- export typedef tower -> (a ; b ;
). (L3)

:- export typedef pair(T) -> (T - T). (L4)

:- export typedef move = pair(tower). (L5)

:- export typedef list(T) -> ([℄ ; [T|list(T)℄) deriving herbrand. (L6)

:- export pred hanoi(int,list(move)). (L7)

:- mode hanoi(in ,no) is semidet. (L8)

hanoi(N,M) :- hanoi2(N,a,b,
,M-[℄). (L9)

:- pred hanoi2(int,tower,tower,tower,pair(list(move))). (L10)

:- mode hanoi2(in ,in ,in ,in ,oo) is semidet. (L11)

hanoi2(N,A,B,C,M-Tail) :-

(N = 1 ->

M = [A-C|Tail℄

; N > 1,

N1 is N - 1,

hanoi2(N1,A,C,B,M-Tail1),

Tail1 = [A-C|Tail2℄,

hanoi2(N1,B,A,C,Tail2-Tail)

).

The �rst line (L1) states that the �le de�nes the module hanoi. Line (L2)

imports the standard library module int whi
h provides (ground) arithmeti

and
omparison predi
ates for the type int. Lines (L3), (L4), (L5) and (L6)

de�ne
onstru
tor types used in and exported by this module. The type

tower gives the names of the towers, pair de�nes a polymorphi
 pairing

type, move de�nes a move as a pair of towers using a type equivalen
e, and

list de�nes polymorphi
 lists. The type de
laration for lists
ontains the

dire
tive deriving herbrand indi
ating to the HAL
ompiler to generate an

instan
e of the Herbrand
onstraint solver for list types.

Line (L7) de
lares that this module exports the predi
ate hanoi/2 whi
h

has two arguments, an int and a list of moves. This is the type de
laration

for hanoi/2.

Line (L8) is an example of a mode of usage de
laration. The predi
ate

hanoi/2's �rst argument has mode inmeaning that it will already be ground

(i.e., bound to a ground term) when
alled, the se
ond argument has mode

no meaning that it will be new (i.e., never seen before) on
alling and old

(i.e., possibly \
onstrained") on return.

2

The se
ond part of the de
laration

\is semidet" is a determinism statement. It indi
ates that hanoi/2 either

su

eeds with exa
tly one answer or fails. In general, predi
ates may have

more than one mode of usage de
laration.

The rest of the �le
ontains the rules de�ning hanoi/2 and de
larations

and rules for the auxiliary predi
ate hanoi2/5 (here the mode oo means the

argument is \
onstrained" on both
all and return).

1.2.1 De
larations

As we
an see from the above example, HAL allows programmers to annotate

predi
ate de�nitions with type, mode, determinism de
larations (modelled on

those of Mer
ury). Like Mer
ury, it also provides purity de
larations and type

lasses. Here we examine these issues in more detail.

Type de
larations: Type de
larations detail the representation format of

a variable or argument. Types are de�ned using (polymorphi
) regular tree

type statements su
h as those shown in (L3){(L6). As another example, the

statement

:- typedef tree(K,I) -> (item(K,I) ; node(tree(K,I),K,tree(K,I)).

de�nes the type
onstru
tor tree/2 for binary keyed tree types with key type

K and item type I . The de�nition states that type
onstru
tor tree/2 has

two fun
tors: item/2, whi
h represents a leaf node and is used to store an

item with its key, and node/3, whi
h represents an internal binary tree node

and is a used to store a key (for dire
ting the sear
h) and the two subtrees.

Equivalen
e types are also allowed. For example, the statement

:- typedef move = pair(tower).

de�nes the type
onstru
tor move/0 as an equivalent name for type
on-

stru
tor pair/1 with type
onstru
tor tower/0 as argument. Note that the

right-hand side is only allowed to
ontain type
onstru
tors not fun
tors.

Ad-ho
 overloading of predi
ates and fun
tions is allowed, although the

de�nitions for di�erent type signatures must appear in di�erent modules.

For example, in the module hanoi the binary fun
tion \-" is overloaded and

may mean either integer subtra
tion or di�eren
e list pairing. Overloading is

important in CLP languages sin
e it allows the programmer to overload the

standard arithmeti
 operators and relations (in
luding equality) for di�erent

types, allowing a natural syntax in di�erent
onstraint domains.

2

We
ould have given the mode out whi
h means that the list will be ground on

return, but HAL's mode
he
ker is not yet powerful enough to
on�rm this.

Mode de
larations: Mode de
larations spe
ify how exe
ution of a predi
ate

modi�es the \instantiation state" of its arguments. A mode is asso
iated with

ea
h argument of a predi
ate and has the form Inst

1

! Inst

2

where Inst

1

des
ribes the input instantiation state of the argument and Inst

2

des
ribes

the output instantiation state. Arguments of unknown stru
ture (i.e., those

asso
iated with a variable type)
an only have one of the base instantiation

states: new, old or ground. We say that program variable X is new if it has

not been seen by its asso
iated
onstraint solver (if one exists), old if it has,

and ground if X has a known �xed value.

The base modes are mappings from one base instantiation to another:

we use two letter
odes (oo, no, og, gg, ng) based on the �rst letter of the

instantiation, e.g. ng is new!ground. The standard modes in and out are

synonyms for gg and ng, respe
tively.

For terms with known stru
ture, su
h as a list of moves, more
omplex

instantiation states (lying between old and ground) may be used to des
ribe

the state. An example is

:- instdef bound difflist -> bound(old - old).

whi
h de�nes an instantiation state in whi
h the di�eren
e list pair is
ertainly

onstru
ted, but the elements in the pair may still be unbound variables.

Note that the bound keyword may be dropped from the de�nition sin
e this

is HAL's default.

Fully understanding the above instantiation de�nition is more
omplex

than it may �rst appear, sin
e this requires
ombining the instantiation with

the type. This is be
ause the a
tual meaning of old for a program variable

X depends on whether its
onstru
tor type t is a solver-type or not. If t is

a solver type, it indi
ates that X might be possibly unbound. If it is not,

X must be bound. This applies re
ursively to all types asso
iated to the

arguments of the term to whi
h X is bound (if any). This allows the base

instantiation old to be used as a shorthand for the most general instantiation

state of an initialized (i.e., not new) program variable.

For example, in the instantiation bound difflist the base instantiation

old is used for variables with type list(move) (or, equivalently,

list(pair(tower))). Thus, it is a
tually a shorthand for the instantiation

:- instdef old list of move -> ifbound([℄ ; [old move|old list of move℄).

:- instdef old move -> bound(old tower-old tower).

:- instdef old tower -> bound(a; b;
).

whi
h indi
ates that a variable with instantiation old list of move may be

unbound (sin
e it is en
losed by the ifbound keyword), but, if bound, it is

either bound to an empty list or to a list with a bound move in the head,

and a tail with the same instantiation state. Note that old means bound for

the pair and tower
onstru
tor types sin
e they are not solver types.

3

It is important to note that HAL does not allow nesting of the base

instantiation new within a stru
ture, i.e., all arguments in the stru
ture must

already be either ground or old. As we will see later, this ensures that all

subparts of a data stru
ture properly exist on the heap.

Instantiation de
larations
an be parametri
 in their instantiation vari-

ables. For example, the instantiation de�nition

:- instdef bound list(I) -> bound([℄ ; [I | bound list(I) ℄).

de�nes lists whose skeleton is �xed, and whose elements have instantiation I.

As we have seen, instantiations in HAL
an be quite powerful. However,

de�ning su
h instantiations
an also be laborious, espe
ially sin
e they are

often type spe
i�
. Fortunately, being able to use old as a shorthand for the

most general instantiation state of any type as illustrated above, means the

user rarely needs to de�ne su
h instantiations.

Finally, modes
an be de�ned using statements of the form Inst

1

! Inst

2

where, as indi
ated before, Inst

1

des
ribes the input instantiation state and

Inst

2

des
ribes the output instantiation state. Equivalen
e modes are also

allowed. Examples are

:- modedef in(I) -> (I -> I).

:- modedef in = in(ground).

:- modedef out(I) -> (new -> I).

:- modedef out = out(ground).

:- modedef new2old list of move = out(old list of move).

Note that mode de�nitions
an be parametri
, i.e.,
ontain instantiation vari-

ables su
h as I above. This is, however, not the
ase for predi
ate mode de-

larations whi
h
annot
ontain variables. For more details about mode and

instantiations in HAL the reader is referred to [4℄.

Determinism de
larations: Determinism de
larations detail how many

answers a predi
ate may have. HAL uses the Mer
ury hierar
hy: nondet

means any number of solutions; multi at least one solution; semidet at most

one solution; det exa
tly one solution. The determinism erroneous indi
ates

a run-time error, while failure indi
ates the predi
ate always fails.

Type
lass de
larations: HAL also provides type
lass and
lass instan
e

de
larations based on those of Mer
ury [7℄. Type
lasses support
onstrained

3

The ifbound form of instantiation de�nition is not available to the programmer,

and is only generated internally by translation from old. This is be
ause arbitrary

ifbound instantiations are not
he
kable without sophisti
ated sharing analysis.

polymorphism by allowing the programmer to write
ode that relies on para-

metri
 types having
ertain asso
iated predi
ates and fun
tions. In parti
ular,

a
lass provides a name for a set of types (whi
h are parameters to the type

lass) for whi
h
ertain predi
ates and/or fun
tions (
alled the methods) are

de�ned, and whi
h form its interfa
e.

For example, one of the most important built-in type
lasses in HAL is

:-
lass eq(T) where [

pred T = T,

mode oo = oo is semidet ℄.

whi
h de�nes types T that support equality testing, i.e., for whi
h an imple-

mentation of the method =/2 for mode of usage oo = oo exists. Note however

that, like Mer
ury, all types in HAL have an asso
iated \equality" for modes

in=out and out=in, whi
h
orrespond to assignment,
onstru
tion or de
on-

stru
tion, and whi
h are implemented using spe
ialised built-in pro
edures

rather than implementation of the more general =/2 method.

Instan
es of the eq/1
lass
an be spe
i�ed, for example, by the de
lara-

tion

:- instan
e eq(pair(T)) <= eq(T) where [

pred(=/2) is pair 1 SolveEqual ℄.

whi
h de
lares the type pair(T) to be an instan
e of the eq/1 type
lass, as

long as T is also an instan
e of the
lass, and as long as there exists a predi
ate

alled pair 1 SolveEqual whi
h appropriately implements the =/2 method

for type pair(T). Most types support testing for equality, the main ex
eption

being for types with higher-order subtypes. Therefore, HAL automati
ally

generates instan
es of eq/1 (in
luding the predi
ates implementing the =/2

method) for all
onstru
tor types (su
h as pair/1) whi
h do not
ontain

higher-order subtypes and for whi
h the programmer has not already de
lared

an instan
e, thus removing this burden from the programmer.

One major motivation for providing type
lasses in HAL is that they

provide a natural way of spe
ifying a
onstraint solver's interfa
e and allow

us to naturally
apture the notion of a type having an asso
iated
onstraint

solver: It is a type for whi
h there is a method for initialising variables and

a method for de�ning true equality. Thus, the built-in solver/1 type
lass

is de�ned by:

:-
lass solver(T) <= eq(T) where [

pred init(T),

mode init(no) is det ℄.

The above de
laration indi
ates that the solver/1 type
lass provides ini-

tialisation method init/1. The
lass de�nition also indi
ates that solver/1

is a sub
lass of eq/1 and, thus, any instan
e of solver/1 must also be an

instan
e of eq/1. Therefore, for type T to be in the solver/1 type
lass,

there must exist predi
ates implementing the methods init/1 and =/2 for

this type with mode and determinism as shown. The HAL
ompiler auto-

mati
ally inserts
alls to init/1 to initialize new variables and may generate

alls to =/2 be
ause of normalization.

Purity de
larations: Purity de
larations [3℄
apture whether a predi
ate is

impure (a�e
ts or is a�e
ted by the
omputation state), or pure (otherwise).

By default predi
ates are pure. Any predi
ate that uses an impure predi
ate

must have its predi
ate de
laration annotated as either impure (so that it is

also impure) or trust pure (so that even though it uses impure predi
ates

it is
onsidered pure). Calls to pure predi
ates
an be reordered by the HAL

ompiler during mode analysis but predi
ate
alls are never reordered past

an impure predi
ate
all.

Combined de
larations: For predi
ates with only one mode, HAL, as

Mer
ury, provides syntax for
ombining all de
larations into a single line.

For example, lines (L7) and (L8) in the hanoi example
an be expressed as

:- export pred hanoi(int::in, list(move)::no) is semidet.

We will often use this
ompa
t form in the sequel.

1.3 Herbrand Constraint Solvers

Term manipulation is at the
ore of any logi
 programming language. As

indi
ated previously, the HAL base language only provides limited operations

for dealing with terms,
orresponding to those supported by Mer
ury. If the

programmer wishes to make use of more
omplex
onstraint solving for terms

of some type t, then they must expli
itly de
lare that they wish to use a

Herbrand
onstraint solver for t.

This is a
hieved by adding the annotation deriving herbrand to the type

de�nition. The HAL
ompiler will then automati
ally generate a Herbrand

onstraint solver for that
onstru
tor type. In order to do this, the
ompiler

makes use of the following predi
ates and type
lasses de�ned in the system

module:

:- export pred herbrand init(T::no) is det.

:-
lass herbrand(T) <= solver(T) where [℄.

:- export impure pred var(T::oo) <= herbrand(T) is semidet.

:- export impure pred nonvar(T::oo) <= herbrand(T) is semidet.

:- export impure pred ===(T::oo,T::oo) <= herbrand(T) is semidet.

The �rst predi
ate implements the init/1 method for any Herbrand type

de
lared as instan
e of the solver/1
lass. The herbrand/1 type
lass will

be used to identify the set of Herbrand types, i.e., the
onstru
tor types

whi
h support full uni�
ation (sin
e every instan
e of herbrand(T) must

also be an instan
e of solver(T)), and a number of non-logi
al operations

ommonly used in Prolog style programming su
h as var/1, nonvar/1, and

===/2. The last three predi
ates implement su
h non-logi
al operations for

any Herbrand type. Predi
ates nonvar/1 and var/1
an be used to test if

a Herbrand variable is bound or not, respe
tively. Predi
ate ===/2 su

eeds

only if both arguments are identi
al unbound Herbrand variables.

4

Note that

we
ould have in
luded these predi
ates as methods in the herbrand/1
lass

instead of simply adding the
lass
onstraint herbrand(T) to their predi
ate

type de
laration. However, sin
e the implementation of su
h methods will be

identi
al for all types in the
lass, that would only
ompli
ate matters.

As mentioned before, the HAL
ompiler automati
ally generates a Herbrand

onstraint solver for any
onstru
tor type annotated with deriving herbrand.

In doing this the
ompiler generates appropriate instan
es for the herbrand/1,

solver/1 and eq/1
lasses. For example, in the hanoimodule, sin
e the types

(move, tower and pair) are only manipulated when bound and, therefore, do

not require the full power of uni�
ation, these types were not annotated with

deriving herbrand. On the other hand, sin
e the program uses di�eren
e

lists, a Herbrand
onstraint solver is needed for the list type. Hen
e, the list

type is de�ned as

:- typedef list(T) -> ([℄ ; [T | list(T)℄) deriving herbrand.

The HAL
ompiler will then automati
ally generate the following de
lara-

tions:

:- instan
e eq(list(T)) <= eq(T) where [

pred(=/2) is list 1 SolveEqual ℄.

:- instan
e solver(list(T)) <= eq(T) where [

pred(init/1) is system:herbrand init ℄.

:- instan
e herbrand(list(T)) <= eq(T).

plus the de�nition of the predi
ate list 1 SolveEqual whi
h implements

uni�
ation spe
ialised for the list data type as the general =/2 method for

lists. Exa
tly how this is done will be dis
ussed in detail in the following

se
tion. Note that herbrand init/1, implementing the init/1 method, is

already de�ned in the system module.

4

===/2 is analogous to Prolog ==/2 but only su

eeds if both arguments are un-

bound variables. Determining if two non-variable arguments are identi
al in HAL

would require re
ursively traversing and
omparing the sub-terms in the argu-

ments. Hen
e, every subtype of the term would require the ability to test equival-

en
e. Simply testing if two variables are identi
al only depends on the topmost

type
onstru
tor.

The reader might be wondering why there is a need for the programmer

to distinguish types for whi
h Herbrand solving is supported from those for

whi
h it is not, sin
e one
ould have simply de�ned all
onstru
tor types

as Herbrand types, provided full uni�
ation for them, and then relied on

the
ompiler to repla
e
alls to the Herbrand solver by more eÆ
ient
alls

to the term assignment,
onstru
tion, et
, pro
edures provided by Mer
ury.

The main reason to separate the types is one of eÆ
ien
y. The problem is

that the
ompiler is not always
apable of dete
ting whether a more eÆ
ient

pro
edure
an be used sin
e to do so requires examining reordering of literals.

Another reason is that a slightly more
ompa
t representation
an be used

for non-Herbrand terms sin
e there is no need to have a tag for the
ase where

the term is a variable. Separating the types means that these overheads will

always be avoided in the
ase of the far more
ommon non-Herbrand types.

The above de
ision improves eÆ
ien
y at the
ost of
ode dupli
ation.

For example, sin
e the type of lists with asso
iated Herbrand solving support

is di�erent from that of lists without support, HAL needs to provide two

library modules, one for ea
h type. Furthermore, terms of one type
annot

be uni�ed with those of the other type.

1.4 Implementing Herbrand Constraint Solving

In this se
tion we des
ribe how Herbrand
onstraint solvers are implemented

in HAL. We start by brie
y introdu
ing the WAM and Mer
ury approa
hes

to term representation and manipulation, as well as des
ribing the PARMA

binding s
heme of Taylor. Then we show how the PARMA binding s
heme

is used to implement Herbrand
onstraint solvers in HAL.

1.4.1 Term Representation and Manipulation in the WAM

The Warren Abstra
t Ma
hine (WAM) [14,1℄ forms the basis of most mod-

ern Prolog implementations. Terms are stored on a heap,

5

whi
h is an array

of data
ells. A
ell is usually broken into two parts: a tag and a referen
e

pointer. The most important tag values are REF (a variable referen
e), ATM

(an atomi
 obje
t, i.e., a non-variable term with arity 0), and STR (a stru
-

ture, i.e., a non-variable term with one or more arguments). An unbound

variable (on the heap) is represented by a
ell with a REF tag and a pointer

to itself. An atom is represented by a
ell with tag ATM and a pointer into

the atom table. The stru
ture f(t

1

; : : : ; t

n

) is represented by a STR tagged

pointer to a
ontiguous sequen
e of n+1
ells. The �rst
ell
ontains the fun
-

tor f and the arity n, and the next n
ells hold the representations of t

1

, . . . ,

t

n

. For example, a possible heap representation of the term f(h(X); Y; a; Z)

is shown in Figure 1.1.

5

For simpli
ity, we ignore sta
k variables.

f/4 STR REF ATM REF

(Z)(Y)

REFh/1 (X)
atom table entry "a"

STR

Fig. 1.1. WAM heap representation of f(h(X); Y; a; Z).

The native representation of base types su
h as integers and
oats (usu-

ally) uses the entire
ell. WAM implementations either treat them as atoms,

wrap them in a spe
ial fun
tor, or assign tag values for the types and use the

remaining bits to store the data.

Uni�
ation of two obje
ts on the heap pro
eeds as follows. First, both

obje
ts are dereferen
ed. That is, their referen
e
hain is followed until either

a non-REF tag or a self referen
e is found. If at least one of the dereferen
ed

obje
ts is a self referen
e (i.e. an unbound variable) that obje
t is modi�ed

to point to the other obje
t. Otherwise, the tags of the dereferen
ed obje
ts

are
he
ked for equality. In the
ase of an ATM tag, they are
he
ked to see

they have the same atom table entry. In the
ase of a STR tag, the fun
tor

and arity are
he
ked for equality, and, if they are equal, the
orresponding

arguments are uni�ed.

REFATMREFSTRf/4(T)

(U)

(Z)

h/1
(V)

atom table entry "a"(X)

REF
REF

(Y)

REFATMREFSTRf/4(T)

(U)

(Z)

(V)

atom table entry "a"(X)

STR
h/1 REF

(Y)

(a) WAM representation (b) After pro
essing Y = h(X)

Fig. 1.2. WAM term and variable binding s
hemes

For example,
onsider the heap state of Figure 1.1. If we �rst unify Y with

the heap variable Z and then with another heap variable V , we obtain the

heap shown in Figure 1.2(a). If we then unify Y with h(X) we obtain the heap

shown in Figure 1.2(b). Noti
e how referen
e
hains
an exist throughout the

heap.

The address of any pointer variable modi�ed by uni�
ation is (
ondition-

ally) pla
ed in the trail. Sin
e the modi�ed variable is always a self referen
e,

its previous state
an be restored from this information alone.

1.4.2 Term Representation and Manipulation in PARMA

In the PARMA system [12℄, Taylor introdu
ed a new te
hnique for handling

variables that avoided the need for dereferen
ing (potentially long)
hains

when
he
king whether an obje
t is bound or not. A non-aliased non-bound

(i.e. free) variable on the heap is still represented as a self-referen
e as in

the WAM. The di�eren
e o

urs when two free variables are uni�ed. Rather

than pointing one at the other, as in the WAM, a
y
le of bindings is
reated.

In general n variables whi
h are aliased are represented by n
ells forming

a
y
le. When one of the variables is equated to a non-variable all variables

in the
y
le are
hanged to dire
t (tagged) pointers to this stru
ture and

hanges are trailed.

REFATMREFSTRf/4(T)

(U)

(Z)

(X)
(V)

atom table entry "a"

REF
h/1 REF

(Y)
STRATMSTRSTRf/4(T)

(U)

(Z)

(X)
(V)

atom table entry "a"

STR
h/1 REF

(Y)

(a) PARMA representation (b) After pro
essing Y = h(X)

Fig. 1.3. PARMA term and variable binding s
hemes

For example, the PARMA heap stru
tures
orresponding to Figures 1.2(a)

and (b) are shown in Figures 1.3(a) and (b), respe
tively.

The PARMA s
heme for variable representation has the advantage that

dereferen
ing of bound terms on the heap is never required. However, it has

three potential disadvantages:

(a) Che
king if two unbound variables are equivalent is more involved, and is

required for variable-variable binding. Essentially, ea
h variable's
y
le of

aliased variables may need to be traversed. Furthermore, trailing of ea
h

variable requires two words (the variable's position and its old value).

(b) When instantiating a variable
y
le (
onditional) trailing must o

ur for

ea
h
ell in the
y
le (rather than one as for the WAM). Also, as before,

the trail requires two words.

(
) When
reating a stru
ture that will hold a
opy of an already existing

unbound variable, the
y
le of variables grows, and trailing potentially

o

urs.

However, the impa
t of ea
h of these fa
tors is dependent on the length

of the
y
les that are manipulated. Sin
e, as we shall see,
y
les rarely grow

beyond length one (a self pointer), the overhead involved is limited, although

not
ompletely eliminated (parti
ularly in the
ase of trailing overhead).

It is important to note that only heap variables
an be pla
ed in a vari-

able's alias
y
le. An unbound initialized variable on the sta
k or in a register

points into a
y
le on the heap. If this
y
le is then bound, the sta
k or register

variable be
omes a pointer to a bound obje
t. This means that when a

ess-

ing data through a sta
k variable or register, the PARMA s
heme sometimes

requires a single step dereferen
e.

1.4.3 Term Representation and Manipulation in Mer
ury

Types in HAL with no solver atta
hed are identi
al to Mer
ury types. In this

se
tion we explain Mer
ury's approa
h to type representation and manipula-

tion.

Re
all that variables in Mer
ury
an only be either new (whi
h means they

do not have a representation) or ground. Thus, there is no need for the REF

tagged referen
es used in the WAM. This
ombined with the fa
t that types

are always known at
ompile time, allows Mer
ury to use a
ompa
t type-

spe
i�
 representation for terms in whi
h tags are used instead to distinguish

among the di�erent type fun
tors de�ned for the type. Hen
e, an obje
t of a

base type, like an integer, is free to use its entire
ell to store its value. For

more details see [11℄. As an example,
onsider the Mer
ury type for lists:

6

:- typedef list(T) -> ([℄ ; [T | list(T)℄).

Given a term of type list(T) there are only two possibilities for its (top-

level) value, it is either nil \[℄" or
ons \[|℄". Mer
ury reserves one tag

value (NIL) for nil, and one (CONS) for
ons. Sin
e the nil referen
e does

not need any further information the pointer part is 0. A
ons stru
ture is

simply two
ontiguous
ells: the �rst is a representation of the �rst element

(e.g. a tagged pointer or a 32 bit int) and the se
ond is a referen
e to the rest

of the list.

Assuming 32 bit words and aligned addressing, the low two bits of a

pointer are zero. In Mer
ury these bits are used for storing the tag values,

hen
e four di�erent tags are available. For types with more than four fun
tors,

the representation is modi�ed. Sin
e for a
onstant fun
tor (su
h as NIL) the

remaining part of the
ell is unused, the remaining 30 bits
an be used to store

di�erent
onstant fun
tors. For types with more non-
onstant fun
tors than

remaining tags, the Mer
ury representation uses an extra
ell to store the

identity of the extra fun
tors, mu
h like the WAM representation (although

the arity of the fun
tor does not need to be stored sin
e the type information

gives this). In what follows, we will ignore this for simpli
ity.

Mer
ury performs program normalization, so that only two forms of equa-

tions are dire
tly supported: X = Y and X = f(A

1

; : : : ; A

n

) for ea
h fun
tor

f where A

1

; : : : ; A

n

are distin
t variables.

As mentioned before, equations of the form X = Y are only valid in

three modes: in = out, out = in, and in = in. For the �rst two modes,

the ground variable is
opied into the new. For the third mode a pro
edure

to
he
k that the two terms are identi
al is
alled. Mer
ury automati
ally

generates a spe
ialized pro
edure (whi
h we shall refer to as unify gg) that

does this for ea
h type.

The equation X = f(A

1

; : : : ; A

n

) is only valid in two modes: out = in

(i.e., X is new and A

1

, . . . , A

n

are all ground) and in = out (i.e., X is

6

For uniformity we use HAL syntax rather than that of Mer
ury.

ground and ea
h A

1

, . . . , A

n

is new). In the �rst
ase a
ontiguous blo
k of n

ells is allo
ated, the values of A

1

, . . . , A

n

are
opied into these
ells, and X

is set to a pointer to this blo
k with an appropriate tag. In the se
ond
ase,

after testing that X is bound to the appropriate type fun
tor, the values in

the
ontiguous blo
k of n
ells that it points to are
opied into A

1

, . . . , A

n

.

The
ase where some of A

1

, . . . , A

n

are new and some ground (e.g. A

4

) is

handled by repla
ing ea
h su
h variable in the equation by a new variable

(e.g. A

0

4

) and a following equation (e.g. A

0

4

= A

4

).

As an example,
onsider how Mer
ury will (attempt to)
ompile the equa-

tion, T = f(h(1); Y; a; Y) where Y and T are new. First, it is normalized to

give the equations X = 1; U = h(X); S = a; Z = Y; T = f(U; Y; S; Z). The

�rst three equations
an be
ompiled to \
onstru
t" variables X , U and S,

respe
tively. The two remaining equations
annot be
ompiled sin
e they do

not satisfy one of the above modes. If later in the goal Y is given a ground

value by literal l, then these two equations
an be reordered after l and
om-

piled to
onstru
t Z and T .

1.4.4 Term Representation and Manipulation in HAL

Sin
e HAL is
ompiled into Mer
ury, it makes
onsiderable sense for HAL to

use as far as possible Mer
ury's basi
 term manipulation fun
tions even for

types that sometimes require full uni�
ation. The idea is that, when possible,

term equations should be
ompiled into Mer
ury's basi
 term manipulations

(assignment,
onstru
tion, de
onstru
tion, and equality testing) rather than

alling the more expensive uni�
ation solving method. However for this to be

possible, terms in HAL must use a term representation whi
h is
ompatible

with that of Mer
ury.

HAL employs the PARMA approa
h to variable binding with the Mer-

ury term representation s
heme. The main reason for using the PARMA

approa
h, rather than that of the WAM, is that when a term stru
ture be-

omes ground in the PARMA s
heme it has no referen
e
hains within it.

Hen
e, on
e it is ground it be
omes a legitimate Mer
ury term. Furthermore,

even when a term is only partially bound, the HAL
ompiler
an (mis)use the

eÆ
ient Mer
ury operations to manipulate the bound part of the term, sin
e

they will still give the desired behaviour. In order to do this, HAL reserves

the tag 0 in all Herbrand solver types for use as the REF tag. This means

that instead of the four tags generally available for representing a type in

Mer
ury there are only three available for a solver type.

For example, given the type de
larations:

:- typedef erk -> (f(erk, erk, atm, erk) ; h(erk); g) deriving herbrand.

:- typedef atm -> (a ; b ;
 ; d ; e).

the HAL representation of the term T = f(h(X); Y; a; Z) is shown in Fig-

ure 1.4.

f REF REF

(Z)(Y)

REF
(X)

ah

Fig. 1.4. HAL heap representation of f(h(X); Y; a; Z).

Dereferen
ing: As in the PARMA system, only heap variables
an be

pla
ed in a variable's alias
y
le. Thus, a sta
k variable or a register must be

a pointer somewhere into the
y
le. As a result, when a

essing data through

a sta
k variable or register, HAL sometimes requires a single step dereferen
e.

Consider the following goal, where all variables are initially new:

init(Z), X = Z, X = [a℄, X = [A|B℄.

Figure 1.5 illustrates the
hanges to the heap and the registers holding X

and Z during the exe
ution of the �rst 3 atoms in the goal. Note that (due

to the way Mer
ury handles registers) X and Z remain as pointers to the

instantiated list rather than being updated to its value (what it points at on

the heap). Before the exe
ution of the atom X = [A|B℄ we must perform a

one step dereferen
e so that we
an handle the equation simply as a Mer
ury

de
onstru
t.

registers

heap
REF REF

a

CONS

(Z)

(X)

REF REF

REF

REF

REF

NIL

Fig. 1.5. Register and heap representation for ea
h stage of init(Z), X=Z, X=[a℄.

HAL produ
es Mer
ury
ode that maintains the assumption that:

� an old Herbrand obje
t may need to be dereferen
ed.

� a bound Herbrand obje
t is already dereferen
ed.

To do so, expli
it dereferen
ing instru
tions are added to the output Mer
ury

ode, that
reate a new dereferen
ed version of a variable. Su
h dereferen-

ing instru
tions are only required to be added to the user's
ode when the

ompiler dete
ts that the instantiation state of a variable
hanges from old

to some bound instantiation. For example, the goal above is translated to

Mer
ury
ode of the form

init(Z), X = Z, X = [a℄, X Derefd = deref(X), X Derefd = [A|B℄.

The deref pseudo-C
ode simply returns the value pointed to by its argument

if this is not a variable

7

deref(X) f

if (derefd var(X) && !derefd var(*X)) return *X;

return X; g

The
ode derefd var to
he
k whether a pointer is a variable pointer is

simply

derefd var(X) f return (tag(X) == REF); g

The
ode var to
he
k whether an arbitrary old term is a variable must

do the one step dereferen
e. It is de�ned as follows:

var(X) f return (derefd var(X) && derefd var(*X)); g

The
ode for nonvar simply uses var.

nonvar(X) f return !var(X); g

Uni�
ation: HAL, as Mer
ury, normalizes programs so that only two forms

of equations arise:X = Y and X = f(A

1

; : : : ; A

p

) (where ea
h A

i

is a distin
t

variable). The
ompiler translates these equations into
alls to appropriate

Mer
ury and C
ode to implement the PARMA variable s
heme as follows.

Consider an equation of the form X = Y . For modes in = out, out =

in, and in = in we simply
all the Mer
ury's more eÆ
ient pro
edures.

8

If

one of the variables is new and the other one is old, we
an simply assign

the old variable to the new. This is identi
al to what Mer
ury does for this

ase (with the understanding that old is interpreted as ground) and we
an

therefore again use Mer
ury's pro
edure. When both X and Y are new an

initialization init(Y) is added beforehand. The initialization allo
ates a new

ell on the heap, makes it a self-pointer and returns a referen
e to this
ell

in Y . This makes Y old and the previous
ase applies. The (psuedo-C)
ode

for init is simply

init(X) f X = top of heap++; *X = X; g

7

Importantly the
ode does not return the next address in a variable
hain, but the

original address. This will be required later for
orre
tness of dynami
 s
heduling.

8

For in = in, this is
orre
t only if X and Y
ontain no non-Herbrand solver

types. For the purposes of this paper we will ignore this.

The only remaining
ase, where both X and Y are old, requires true uni-

�
ation. We repla
e the equation with a
all to the Herbrand uni�
ation pro-

edure unify oo, whi
h is automati
ally generated by the HAL
ompiler for

the solver type t of X and Y .

9

A simpli�ed version of the
ode for unify oo

is shown in Figure 1.6. In the a
tual
ode the
alls to nonvar and deref are

folded into one
all.

:- pred unify oo(T,T) <= herbrand(T).

:- mode unify oo(oo,oo) is semidet.

unify oo(X,Y) :-

(nonvar(X) ->

(nonvar(Y) ->

unify val val(deref(X),deref(Y))

; unify var val(Y,deref(X)))

; (nonvar(Y) ->

unify var val(X,deref(Y))

; unify var var(X,Y))).

Fig. 1.6. HAL
ode for equating two old obje
ts of type T .

The pro
edure unify val val is similar to Mer
ury's pro
edure unify gg

ex
ept it
alls unify oo on arguments of uni�ed terms rather than unify gg.

It assumes that its arguments are dereferen
ed. For example, unify val val

and unify gg for list types are shown in Figure 1.7. In pra
ti
e the �nal

alls to unify oo and unify gg would be spe
ialized sin
e we know they

apply to list arguments (and thus we know the name of the predi
ate whi
h

implements the method).

The pro
edure unify var val in Figure 1.8 uni�es a variable and a non-

variable. This means modifying all the variables in the
y
le to dire
tly refer

to the non-variable, and trailing the
hanges. The pro
edure assumes the

se
ond argument is dereferen
ed.

The pro
edure unify var var shown in Figure 1.9 uni�es two variables.

This means
he
king that the variables are not already the same, and then

joining the
y
les together, trailing the
hange. Note that, unlike the
ase for

the WAM, the
ode for unifying two variables is symmetri
, treating ea
h

variable the same way. Also note that the algorithm traverses the two
y
les

in parallel stopping when the shortest
y
le has been
ompleted.

Pro
essing an equation of the form X = f(A

1

; : : : ; A

p

) is more
ompli
-

ated sin
e we may have to
reate obje
ts on the heap. First, let us
onsider

the simple
ase when X is bound, then the
ase when X is new, and �nally

the most
omplex
ase: when X is old.

9

unify oo is very similar to the
ode generated by the HAL
ompiler for the =/2

method to ensure the type t is an instan
e of the eq
lass.

:- pred unify gg(list(T),list(T)) <= eq(T).

:- mode unify gg(in,in) is semidet.

unify gg([℄,[℄).

unify gg([X|Xs℄, [Y|Ys℄) :-

unify gg(X,Y),

unify gg(Xs,Ys).

:- instdef nonvar list -> bound([℄; [old|old℄).

:- pred unify val val(list(T),list(T)) <= eq(T).

:- mode unify val val(in(nonvar list),in(nonvar list)) is semidet.

unify val val([℄,[℄).

unify val val([X|Xs℄, [Y|Ys℄) :-

unify oo(X,Y),

unify oo(Xs,Ys).

Fig. 1.7. HAL
ode for equating two nonvariable obje
ts of type list(T).

unify var val(X,Y) f

QueryX = X;

repeat

f Next = *QueryX;

trail(QueryX); /* trail
hain pointer */

QueryX = Y; / repla
e by value */

QueryX = Next; g

until (QueryX == X) g

Fig. 1.8. Pseudo-C
ode for HAL uni�
ation of a variable and value

unify var var(X,Y) f

QueryX = *X;

QueryY = *Y;

while (QueryX != Y && QueryY != X) /* while equality not found */

if (QueryX != X && QueryY != Y) f /* if loops unfinished */

QueryX = *QueryX; /* advan
e */

QueryY = *QueryY;

g else f

trail(X); trail(Y); /* else trail X and Y */

Tmp = *X; *X = *Y; *Y = Tmp; /* merge
hains */

break; g g /* and finish */

Fig. 1.9. Pseudo-C
ode for HAL uni�
ation of two variables

The easiest
ase for handling an equation of the form X = f(A

1

; : : : ; A

p

)

o

urs when X is known to be bound and A

1

; : : : ; A

p

are new. This is simply

left to Mer
ury. If one (or more) of A

1

; : : : ; A

p

are not new, they are repla
ed

by new variables and equations as in the Mer
ury
ase.

The se
ond
ase, when X is new, will require the
onstru
tion of a new

stru
ture on the heap. For this to happen, and sin
e arguments within a

stru
ture are not allowed to be new in HAL, ea
h variable A

i

with instan-

tiation new must �rst be initialised. If the type of the variable is known at

ompile time to be a Herbrand type or other solver type, initialisation is not

a problem. If, however, the type is known to be neither Herbrand nor any

other solver-type, a
ompile-time error
an be issued. Finally, if the type of

the variable is not known at
ompile-time (i.e., it is a variable type), we must

all a general initialisation pro
edure that de
ides what to
all at run-time

and
an result in a run-time error if the type ends up not being a solver

type. This would be simple if one
ould at run-time
he
k whether a variable

has a type whi
h is an instan
e of
ertain type
lass (su
h as herbrand/1

or solver/1). However, this is not yet possible in Mer
ury. Thus, in order

to support this and other type-related queries, HAL de�nes the following

internal type
lass:

:-
lass hal type info(T) where [

pred maybe init(T::no) is det,

pred is type herbrand(T::oo) is semidet,

pred is type solver(T::oo) is semidet℄.

where maybe init/1 initialises the variable in the heap if this is needed be-

fore performing a
onstru
tion, is type herbrand su

eeds if the type is

Herbrand, and is type solver su

eeds if the type is a non-Herbrand solver-

type. HAL will also automati
ally
reate an instan
e of hal type info/1 for

every user-de�ned type t as follows. If t is neither Herbrand nor a solver

type, the instan
e is:

:- instan
e hal type info(t) where [

pred(maybe init) is error,

pred(is type herbrand) is fail,

pred(is type solver) is fail℄.

where error will issue a run-time error, and fail will always fails. If t is not

a Herbrand but a solver type, the instan
e is:

:- instan
e hal type info(t) where [

pred(maybe init) is init,

pred(is type herbrand) is fail,

pred(is type solver) is true℄.

where init is the predi
ate appearing in the solver(t) as the implementa-

tion of method init/1, true always su

eeds and fail always fails. Finally,

if t is a Herbrand type, the instan
e is:

:- instan
e hal type info(t) where [

pred(maybe init) is dummy init,

pred(is type herbrand) is true,

pred(is type solver) is fail℄.

where dummy init does nothing (as we will see, Herbrand variables do not

require initialisation before a
onstru
tion), and true and fail are as before.

Using the above predi
ates, the
onstru
tion of term X = f(A

1

; : : : ; A

p

)

an be done as follows. Let us assume that all variables have variable type,

variables A

o

1

; : : : ; A

o

m

are old while A

n

1

; : : : ; A

n

l

are new. Then, the trans-

lation to Mer
ury is essentially:

maybe init(A

n

1

), : : :, maybe init(A

n

l

),

X = f(A

1

, : : :, A

p

),

(is type herbrand(A

n

1

) -> A

n

1

= init heap(X,n

1

� 1) ; true),

: : :,

(is type herbrand(A

n

l

) -> A

n

l

= init heap(X,n

l

� 1) ; true),

(is type herbrand(A

o

1

) -> fix
opy(X,o

1

� 1) ; true),

: : :,

(is type herbrand(A

o

m

) -> fix
opy(X,o

m

� 1) ; true)

where the method maybe init is �rst used to initialise all non-Herbrand new

variables. On
e this is done, the
onstru
tion
an be s
heduled as a Mer
ury

onstru
t. Then, is type herbrand is used to perform a run-time
he
k to

see if the a
tual type of the arguments is a herbrand type and, if so,
all

spe
ialised
ode to appropriately initialise the argument. This is done by the

init heap(X; i) fun
tion, whi
h
reates a self referen
e in the i

th

slot of the

heap region pointed to by X and returns it. Note that indi
es for slots on the

heap start from 0 and, therefore, we must use init heap(X,n

j

� 1) rather

than init heap(X,n

j

). The fun
tion is de�ned as:

init heap(X,i) f return X[i℄ = &(X[i℄); g

Note that init heap is e�e
tively a spe
ialized version of init/1 for the

PARMA representation of variables inside data stru
tures.

Finally, ea
h old herbrand argument A

o

k

was
opied by Mer
ury into the

new heap stru
ture. For
ases where this simple
opy may not have a
hieved

the desired result we need to
all fix
opy(X; o

k

�1). If A

o

k

was an unbound

variable, the
opy performed by Mer
ury results in a referen
e to the
y
le in

the o

th

k

ell rather than the o

th

k

ell being pla
ed in the
y
le. Thus, fix
opy

needs to add the o

th

k

ell into the
y
le. If A

o

k

is bound but not dereferen
ed

(this
an happen for sta
k and register variables), fix
opy must repla
e the

ontents of the o

th

k

ell by what it refers to. The pro
edure is de�ned as:

fix
opy(X,i) f

AXi = &(X[i℄); Xi = X[i℄;

if (derefd var(Xi))

if (derefd var(*Xi)) f trail(Xi); *AXi = *Xi; *Xi = AXi g

else *AXi = *Xi; g

If, as it is usually the
ase, the types are known at
ompile time the

generated
ode
an be (and is) simpli�ed enormously. Knowing the type

allows the run-time type
he
ks to be eliminated and the
ode simpli�ed

appropriately.

For example,
onsider the
onstru
tion of T = f(U; V; S; Z) where T and

Z are new, U is known to be bound (to h(X)), S is known to be bound (to

a), and V is old (and part of a
y
le). In this
ase we know the type of all

arguments
ompletely. The generated
ode is

maybe init(Z), %% Noop as Z is Herbrand

T = f(U,V,S,Z), %% Mer
ury
onstru
t

Z = init heap(T,3),%% initialize Z

fix
opy(T,1) %% fix V

After exe
uting the Mer
ury
onstru
tion T = f(U; V; S; Z) the heap is as

shown in Figure 1.10(a). Applying init heap(T,3) and fix
opy(T,1) gives

the heap shown in Figure 1.10(b).

h REF a

REF(X)

h

REFREF

(U) (V)

f

(T) (Z)

h REF a

REF(X)

h

REFREF

(U) (V)

REFf

(T) (Z)

(a) After Mer
ury
onstru
t (b) Corre
ted version

Fig. 1.10. Adapting Mer
ury's term
onstru
tion for Herbrand terms

To illustrate polymorphi

ode,
onsider the literal X = [AjY ℄ where both

X and Y have type list(T), A has type T, X is new and both A and Y are

old. The
onstru
tion
ode is shown below:

X = [A|Y℄ %% Mer
ury
onstru
t

(is type herbrand(A) -> %% if A is a term solver type

fix
opy(X,0) ; true), %% fix A

fix
opy(X,1) %% fix Y

The third and �nal
ase handles the equation X = f(A

1

; : : : ; A

p

) when

X is old. The generated
ode
he
ks if X is bound in whi
h
ase it treats

the equation as if it were the de
onstru
tion X = f(B

1

; : : : ; B

p

) followed by

equations A

i

= B

i

. Otherwise, X is a variable and the
ode
onstru
ts the

term f(A

1

; : : : ; A

p

) on the heap

10

and then equates X to this term using

unify var val.

Consider again the literal X = [AjY ℄ where both X and Y have type

list(T) and A has type T, this time with A new and both X and Y old.

The generated
ode has the form

10

Depending on whether arguments are solver types or not this may not be possible,

ausing a run-time error.

(nonvar(X) -> %% de
onstru
t

Xd = deref(X),

Xd = [An|Yn℄, %% Mer
ury de
onstru
t

A = An, %%
opy operation (A is new)

unify oo(Y,Yn) %% arbitrary unifi
ation

; %%
onstru
t

maybe init(A), %% possible initialization of A

X = [A|Y℄, %% Mer
ury
onstru
t

(is type herbrand(A) -> %% if A is a term solver type

A = init heap(X,0) ; true), %% fix A

fix
opy(X,1)) %% fix Y

Again a run-time error
an o

ur ifX is a variable, sin
e the
all to maybe init

will raise an ex
eption if A does not have a solver type.

1.4.5 Implementation of herbrand/1 Methods

Supporting the methods in the herbrand type
lass is straightforward on
e

the representation of terms is de
ided. We have already de�ned var/1 and

nonvar/1 in Se
tion 1.4.4. The ===/2 predi
ate only needs to
he
k whether

two variables are in the same referen
e
hain. This
an be implemented as

follows (
f. the
ode for unifying two variables in Figure 1.9).

===(X,Y) f

if (!var(X) || !var(Y)) return FALSE; /* not both vars */

QueryX = *X; QueryY = *Y;

while (QueryX != Y && QueryY != X) /* while equality not found */

if (QueryX != X && QueryY != Y) f /* if neither loop finished */

QueryX = *QueryX; /* advan
e */

QueryY = *QueryY;

g else

return FALSE; /* not identi
al */

return TRUE; g

1.5 Dynami
 S
heduling

Most modern logi
 programming languages allow predi
ates or goals to delay

until a parti
ular
ondition (su
h as be
oming bound or being uni�ed with an-

other variable) is satis�ed. Essentially they are implemented by hooks in the

uni�
ation algorithm using attributed variables [6℄. SISCtus Prolog provides

the ability to suspend a goal until a term is instantiated, ground or two terms

are either identi
al or de�nitely not identi
al, and
onjun
tions and disjun
-

tions of these. ECL

i

PS

e

provides the ability to suspend a goal until a term

is bound to a variable or instantiated, and provides a user extensible hook

(
onstrained) whi
h is used to indi
ate any
hange made to a variable by a

onstraint solver. In HAL, dynami
 s
heduling hooks (we
all them delay
on-

ditions) are implemented by individual
onstraint solvers, and are
ompletely

extensible.

In the remainder of this se
tion we des
ribe the general dynami
 s
hedul-

ing me
hanisms of HAL, and how Herbrand solvers �t into this s
heme. In

the next se
tion we dis
uss how this is implemented.

1.5.1 Dynami
 S
heduling in HAL

The HAL language provides a form of more \persistent" dynami
 s
heduling

designed spe
i�
ally to support
onstraint solving. A delay
onstru
t is of the

form

ond

1

==> goal

1

| � � � |
ond

n

==> goal

n

where the goal goal

i

will be exe
uted every time the delay
ondition
ond

i

is

satis�ed. This is useful, for example, if the delay
ondition is satis�ed every

time the lower bound of a solver variable has
hanged. Delayed goals may

also
ontain
alls to the spe
ial predi
ate kill/0. When this is exe
uted, all

delayed goals in the immediate surrounding delay
onstru
t are killed; that

is, will never be exe
uted again.

The delay
onstru
t of HAL is designed to be extensible, so that program-

mers
an build
onstraint solvers that support delay. In order to do so, one

must
reate an instan
e of the delay type
lass de�ned as follows:

:-
lass delay(D,I) <= delay id(I) where [

pred delay(D, I, pred),

mode delay(oo, in, in(pred is semidet)) is semidet ℄.

:-
lass delay id(I) where [

impure pred get id(I::out) is det,

impure pred kill(I::in) is det ℄.

where type I represents the unique identi�er (id) of ea
h delay
onstru
t,

type D represents the supported delay
onditions (su
h as bound(X) in the

ase of the Herbrand solver), delay/3 takes a delay
ondition, an id and a

goal,

11

and stores the information in order to exe
ute the goal whenever the

delay
ondition holds, get id/1 returns an unused id, and kill/1
auses all

goals delayed for the input id to no longer wake up.

The HAL
ompiler translates ea
h delay
onstru
t into the base delay

methods provided by the
lasses as follows. Consider the generi
 delay
on-

stru
t shown above. This
onstru
t is translated into:

get id(Id), delay(
ond

1

,Id,goal

0

1

), : : :, delay(
ond

n

,Id,goal

0

n

)

11

To simplify analysis, ea
h goal

i

must be semidet and may not
hange the in-

stantiation state of variables. As a result, the possibility of delayed
ode waking

up
an be ignored during mode and determinism
he
king sin
e su
h
ode
an

never
hange the
urrent instantiation or determina
y.

where ea
h
all to kill/0 in goal

i

is repla
ed by a
all to kill(Id) in goal

0

i

.

The separation of the delay type
lass into two parts allows di�erent solver

types to share delay ids. Thus, we
an build delay
onstru
ts whi
h involve

onditions belonging to more than one solver as long as they use a
ommon

delay id.

As mentioned above, a
onstraint solver supporting dynami
 s
heduling

must de
lare an instan
e of the delay/2 type
lass. In order to do so it needs

to

� de�ne a type D expressing the kinds of allowable delay
onditions;

� de�ne a type I for representing identities (ids) for delay
onstru
ts;

� de�ne the predi
ate get id/1 whi
h returns a new unused delay id;

� de�ne the predi
ate kill/1 whi
h
auses all delaying
ode with the input

delay id to no longer wake up (and hen
e e�e
tively be removed from the

solver); and

� de�ne the predi
ate delay/3 whi
h takes a delay
ondition, delay id and

a goal, and stores the information in order to exe
ute the goal when the

delay
ondition holds.

If the programmer uses the annotation deriving delay instead of us-

ing deriving herbrand when de�ning a
onstru
tor type t, the
ompiler

will automati
ally generate a Herbrand
onstraint solver for t that supports

delay. As we will see later, the reason to distinguish between Herbrand solvers

that support delay and those whi
h do not is a matter of eÆ
ien
y: the im-

plementation of delay for Herbrand solvers introdu
es an overhead that HAL

programmers might wish to avoid when support for dynami
 s
heduling is

not needed.

In order to generate a Herbrand solver that supports delay, the HAL

ompiler makes use of the following types,
lasses, instan
es and predi
ates

de�ned in the system module:

:- export abstra
t typedef herbrand delay id = int.

:- export typedef delay
ond(T) -> (bound(T) ; tou
hed(T)).

:- export
lass herbrand delay(T) <= herbrand(T) where [℄.

:- export instan
e delay id(herbrand delay id).

:- export instan
e delay(delay
ond(T),herbrand delay id) <=

herbrand delay(T).

:- export impure pred get id(herbrand delay id).

:- mode get id(out) is det.

:- export impure pred kill(herbrand delay id).

:- mode kill(in) is det.

:- export pred delay(delay
ond(T),herbrand delay id, pred) <=

herbrand delay(T).

:- mode delay(oo, in, in(pred is semidet)) is semidet.

The module de�nes the type herbrand delay id as an integer and ab-

stra
tly exports it (i.e. the type is visible from outside but its parti
ular

de�nition is not). It also exports the type delay
ond(T) whi
h de�nes the

delay
onditions supported for a herbrand variable of type T: bound(X) will

su

eed whenever variable X be
omes bound, while tou
hed(X) will su

eed

whenever variable X be
omes bound or aliased to another variable whi
h also

has asso
iated delayed goals. While the bound(X)
ondition will su

eed at

most on
e, the tou
hed(X)
ondition may su

eed more than on
e. Note that

tou
hed(X) does not wake when X is bound to a variable without any asso-

iated delayed goals sin
e su
h a uni�
ation does not
hange the \meaning"

of the
onstraint store.

12

The purpose of the herbrand delay/1
lass is simply to re
ord whi
h

Herbrand types support delay. The rest of the module exports the instan
es

of
lasses delay id/1 and delay/2 whi
h will be used by all Herbrand
on-

straint solvers that support delay, and the predi
ates whi
h implement the

asso
iated methods. All Herbrand solvers whi
h support delay will use the

ommon delay
onditions bound(X) and tou
hed(X), the
ommon delay id

type herbrand delay id, and its system-de�ned instan
e of delay id. Note,

however, that herbrand delay id
an also be used by user-de�ned solvers.

Based on the above types and
lasses, the only di�eren
e at
ompile-time

between a type de�ned as deriving herbrand and one de�ned as deriving

delay is that, for the latter, the HAL
ompiler automati
ally generates an

instan
e of the herbrand delay/1
lass, in addition to those of herbrand/1,

solver/1, and eq/1
lasses whi
h are generated for both types.

As an example of the use of delay, the following
ode shows (part of)

a simple Boolean
onstraint solver whi
h is implemented using Herbrand

onstraint solving.

:- export typedef boolv -> (f ; t) deriving delay.

:- export pred and(boolv::oo,boolv::oo,boolv::oo) is semidet.

and(X,Y,Z) :-

(bound(X) ==> kill, (X = f -> Z = f ; Y = Z)

| bound(Y) ==> kill, (Y = f -> Z = f ; X = Z)

| bound(Z) ==> kill, (Z = t -> X = t, Y = t ; notboth(X,Y))).

:- export trust pure pred notboth(boolv::oo,boolv::oo) is semidet.

notboth(X,Y) :-

(bound(X) ==> kill, (X = t -> Y = f ; true)

| bound(Y) ==> kill, (Y = t -> X = f ; true)

| tou
hed(X) ==> (X === Y -> kill, X = f ; true)

| tou
hed(Y) ==> (X === Y -> kill, X = f ; true)).

12

This is analogous to the
ase of unifying an attributed variable to a non-attributed

variable.

The
onstru
tor type boolv is used to represent Booleans. Sin
e the type

is de�ned as deriving delay, the
ompiler will automati
ally generate in-

stan
es of the
lasses herbrand delay/1, herbrand/1, solver/1 and eq/1.

Thus old variables of this type are allowed and represent unknown Boolean

values.

The Boolean
onstraint solver de�nes two
onstraints: and(X,Y,Z) whi
h

implements the formula X ^ Y $ Z, and notboth(X,Y), whi
h implements

the formula :X _:Y . Both
onstraints are de�ned using dynami
 s
heduled

ode. The
ode for and(X,Y,Z) delays until one of its arguments is bound

(whi
h for this type is equivalent to ground), and then exe
utes on
e (it is

immediately killed on wake up). If either X or Y is bound the
onstraint is

solved. If Z is bound to f the
onstraint notboth(X,Y) is
reated. Note that

we
ould also have made use of tou
hed delay
onditions in the de�nition of

and.

The
ode for notboth(X,Y) delays until either X or Y is bound in whi
h

ase the
onstraint is enfor
ed, or if X or Y is tou
hed (bound or uni�ed

with a di�erent variable whi
h also has delayed
ode). In the se
ond
ase

if X and Y are identi
al (===), the delay
onstru
t is killed and both are

set to false (the only way to satisfy the
onstraint), otherwise the
onstru
t

remains. This illustrates how delayed
ode
an be exe
uted multiple times.

Note that notboth/2 uses the impure predi
ate \===," however, sin
e the

a
tions of notboth as seen from the outside are pure, we use a trust pure

de
laration for the
onstraint.

To illustrate how dynami
 s
heduling works,
onsider the exe
ution of

goal:

and(A,B,C), and(A,C,D), and(A,E,F), D = f, C = G, A = E, B = t.

where all variables are assumed to have just been initialised. Initially all three

and
onstraints delay. When the
onstraint D = f is exe
uted, and(A,C,D)

wakes up, kills its delay
onstru
t and
alls notboth(A,C) whi
h delays.

When C = G is exe
uted, no delayed goal wakes up sin
e there is nothing

delaying on G. When A = E is exe
uted, notboth(A,C) wakes (sin
e A is

tou
hed) but sin
e A === C fails the wake up does nothing. Exe
uting B =

t wakes and(A,B,C), kills its delay
onstru
t and adds the
onstraint A =

C. This wakes notboth(A,C) sin
e it
auses a tou
hed event on A (and C),

�nds that they are identi
al, kills its delay
onstru
t and sets both A (and

C through the equality) to f. This wakes and(A,E,F) whi
h kills its delay

onstru
t and sets F to f. The solution gives A = C = D = E = F = G = f

and B = t.

Currently HAL only supports simple delay
onditions, rather than
on-

jun
tions or disjun
tions of delay
onditions. For example, it would be
on-

venient to repla
e the last two lines of
onstraint notboth(X,Y) by the single

line

(tou
hed(X);tou
hed(Y)) ==> (X === Y -> kill, X = f ; true)

These more
omplex delay
onditions are not dire
tly supported by HAL yet,

but
an be implemented by straightforward program transformation.

1.6 Implementing Dynami
 S
heduling

In this se
tion we begin by dis
ussing the usual approa
h to implementing

dynami
 s
heduling for Herbrand
onstraints in the WAM, then we
onsider

how it is implemented in HAL.

1.6.1 Implementing Dynami
 S
heduling in the WAM

Most Prolog systems, in
luding SICStus Prolog and ECL

i

PS

e

support dy-

nami
 s
heduling based on Herbrand
onstraint solving using attributed vari-

ables [6℄. For simpli
ity we shall illustrate the delay me
hanism assuming a

single (delay) attribute, and only explain waking up when a variable is bound

to a non-variable using the builtin freezewhi
h
orresponds to the delay
on-

dition bound. See also the se
tion on Attributed Variables in [5℄ for a more

detailed explanation.

Essentially a new kind of variable is introdu
ed, whi
h we will represent

using the tag ATT. An attributed variable is stored in two
ontiguous data

ells. The �rst
ell a
ts like a variable, while the se
ond
ell is where we store

the attributes of the variable, whi
h for our purposes is a list of goals to be

exe
uted when the variable is bound to a non-variable.

The goal freeze(X,G)
reates a new attributed variable Y with attribute

[G℄, and then uni�es it with X.

Uni�
ation is extended to attributed variables as follows. When an attrib-

uted variable X is uni�ed with a non-variable term, then all the delayed goals

in the delay attribute of X are exe
uted. If an attributed variable X is uni�ed

with another attributed variable Y, then the two lists of delayed goals are

on
atenated, and this repla
es the delayed goal for Y (say), and X is pointed

at Y.

Consider the goal

G = write(X), freeze(X,G), H = write(g(Y)), freeze(Y,H), X = Y, X = f(Z).

then after the �rst four literals exe
utes the heap holds the two attributed

variables X and Y with their delayed goals. The heap state is shown on the

left of Figure 1.11. On the uni�
ation of X and Y the two lists are appended

and the attribute of Y, and X is pointed at Y, resulting in the heap state in

the middle of Figure 1.11. When X is bound to f(Z) it is �rst dereferen
ed to

obtain Y, the goal list [G,H℄ is remembered for exe
ution, and Y pointed to

f(Z). The heap state is now as in the right of Figure 1.11. The delayed goals

are then exe
uted,
ausing f(Z)g(f(Z)) to be printed (although the other

order g(f(Z))f(Z) is equally probable in pra
ti
e).

ATT(X) [G]

ATT(Y) [H] ATT(Y) [G,H] STR(Y) [G,H]

REF (Z)f/1

REF(X) [G](X) [G]REF

Fig. 1.11. WAM heap representation for dynami
ally s
heduled goals and after

exe
uting ea
h literal X = Y, X = f(Z).

Prolog systems typi
ally in
lude a global register for holding all the delayed

goals s
heduled. The goals in this register are exe
uted only at
ertain points

in the
ode, typi
ally just before a predi
ate
all is made.

1.6.2 Implementing Dynami
 S
heduling in HAL

As we saw in Se
tion 1.5.1, ea
h delay
onstru
t is
onverted by the
ompiler

to a more low-level set of delay primitives: get id/1, kill/1 and delay/3.

In the following subse
tions we will explain how the pro
edures get id/1,

kill/1 and delay/3 are implemented for Herbrand solvers.

1.6.3 Storing Dynami
ally S
heduled Goals

Herbrand delay
onditions bound(X) and tou
hed(X) are asso
iated with

variable X by pla
ing an entry in the alias
y
le asso
iated with X. Sin
e

ea
h entry in the alias
y
le must be a variable, they all have a variable tag

(REF). Thus, we
an use any other tag (whi
h is already used by the type)

to represent a delay node (DEL). We use tag 1.

A delay node is stored as four
onse
utive heap
ells as shown in Fig-

ure 1.12. These four
omponents are: a dummy variable node whi
h points

to the next
omponent, the DEL tagged delay node pointing to the next

variable in the alias
hain, a pointer to the doubly linked list of goals to be

woken on a bound event, and a pointer to the doubly linked list of goals

to be woken on a tou
hed event. The system maintains at most one delay

node in any alias
y
le. The apparently unne
essary extra (dummy) variable

node allows us to ensure that we never en
ounter the DEL tagged node in a

ontext where it might be
onfused with the usual fun
tor that uses tag 1. In

parti
ular, fix
opy performs a one step dereferen
e on things whi
h appear

to be variables; we need to make sure it doesn't en
ounter a delay node at

that point or it will mistake it for a bound term. Note that this also means

that we should take
are when dereferen
ing a variable, sin
e if we store the

resultant address we may have a dire
t pointer to the dummy node, whi
h if

dereferen
ed will in
orre
tly appear to be a bound term.

REF DEL bound goals touched goals

REF

REF

Fig. 1.12. A delay node within an alias
y
le.

Adding a dynami
ally s
heduled goal to the alias
y
le is straightforward.

We sear
h the alias
y
le for a delay node; if there isn't one we
reate a new

empty one and pla
e it in the
y
le. We then add the goal to the appropriate

doubly linked list of goals (depending on the delay
ondition). Note that if

the variable is already bound, then the goal is simply exe
uted immediately.

1.6.4 Modifying Uni�
ation for Delay

For herbrand delay types we need to modify the
ode for manipulating

variables in order to re
ognize when a delay
ondition has been satis�ed.

When unifying an alias
y
le with a stru
ture we know that both bound(X)

and tou
hed(X) for any variable X in the
hain is satis�ed. Thus, we need

to adjust the unify var val/2 algorithm to dete
t whether a delay node

appears in the
hain and, if so, exe
ute both lists of delayed goals. The
ode

is shown in Figure 1.13 (
f. the original
ode in Figure 1.8). If we dete
t that

the next item in the
hain has a DEL tag then we are
urrently looking at

the dummy variable in the
hain, and the next element is the delay node.

We re
ord this and skip past the delay node. Otherwise we pro
eed as usual.

If after traversing the
hain we have dete
ted a delay node, we exe
ute both

lists of delayed goals.

Unifying two alias
y
les is more
omplex, as shown in Figure 1.14. If only

one variable
hain
ontains a delay node we pro
eed as in Figure 1.9. If both

ontain a delay node then we need to merge their delay nodes, and also wake

up goals with a tou
hed delay
ondition. Note that we have to be
areful not

to insert an extra node in between the two
y
le elements in a delay node.

If the variables are the same we immediately return, otherwise we look

through the X
y
le until we either �nd Y (in whi
h
ase we return), or �nd

a delay node, or
omplete the
y
le. We then look through the Y
y
le until

we either �nd X , in whi
h
ase we return, or �nd a delay node or
omplete

the
y
le. If we found no delay nodes we pro
eed as before. If we �nd one

delay node, we insert the other
hain just after the delay node. If we �nd

two delay nodes we merge the lists of delayed goals into the delay node for

unify var val(X,Y) f

QueryX = X;

DelayNode = null;

repeat f

Next = *QueryX;

if (tag(*Next) != REF) f /* Found delay node */

DelayNode = Next; /* save in DelayNode */

QueryX = (strip tag(*Next)); /*
ontinue */

g else f

trail(QueryX);

*QueryX = Y;

QueryX = Next;

g g

until (QueryX == X)

if (DelayedNode) f

exe
ute delayed goals(*(DelayNode+1)); /* exe
ute bound goals */

exe
ute delayed goals(*(DelayNode+2)); /* exe
ute tou
hed goals */

g g

Fig. 1.13. Pseudo-C
ode for HAL uni�
ation of a variable and value supporting

delay

X (using merge delay goals) and then insert the the X
y
le just after the

dummy node in the
y
le of Y , stripping out the rest of the delay node.

13

We now illustrate the exe
ution of the same goal, as previously
onsidered

for the usual Prolog approa
h

G = write(X), freeze(X,G), H = write(g(Y)), freeze(Y,H), X = Y, X = f(Z).

freeze(X,G) :- (bound(X) ==>
all(G)).

then after the �rst four literals exe
utes the heap holds the two attributed

variables X and Y and their delay nodes holding the delayed goals. The heap

state is shown on the top of Figure 1.15. On the uni�
ation of X and Y the

two lists are appended and the
y
les are merged, eliminating the delay node

of Y, resulting in the heap state in the middle of Figure 1.15. When X is

bound to f(Z) the goal list [G,H℄ is remembered for exe
ution, and every

(non-delay) element in the
y
le for X is pointed to f(Z). The heap state is

now as in the bottom of Figure 1.15. The delayed goals are then exe
uted,

ausing f(Z)g(f(Z)) to be printed.

As we
an see the heap usage by the HAL representation is more
om-

pli
ated than the
orresponding WAM representation. Note also that the

addition of delay for a solver type potentially slows down all uni�
ations

for that type sin
e we may need to sear
h both alias
y
les to determine if

13

A
tually by keeping tra
k of the previous pointers we
an avoid using the dummy

node for Y , unless the delay nodes are the �rst things we en
ounter in both
hains.

unify var var(X,Y) f

if (X == Y) return; /* short
ut return */

QueryX = X;

DelayNodeX = null;

repeat f /* sear
h for delay node in X */

NextX = *QueryX;

if (NextX == Y) return; /* short
ut return */

if (tag(*NextX) != REF) f /* found delay node */

DelayNodeX = NextX;

break; g

QueryX = NextX; g

until (QueryX == X);

if (DelayNodeX == null) f /* no delay in X, just unify */

NextY = *Y; /* sear
h for insert pla
e */

if (tag(*NextY) != REF) f /* found delay node */

DelayNodeY = NextY;

trail(X); trail(DelayNodeY); /* add X to
y
le for Y */

Tmp = strip tag(*DelayNodeY); /* after Ys delay node */

*DelayNodeY = add tag(DEL,*X);

*X = Tmp;

g else f /* otherwise Y not dummy node */

trail(X); trail(Y);

Tmp = *X; *X = *Y; *Y = Tmp; g

return; g

QueryY = Y;

DelayNodeY = null;

repeat f /* sear
h for delay node in Y */

NextY = *QueryY;

if (NextY == X) return; /* short
ut return */

if (tag(*NextY) != REF) f /* found delay node */

DelayNodeY = NextY;

break; g

QueryY = NextY; g

until (QueryY == Y);

if (DelayNodeY == null) f /* add Y to
y
le for X */

trail(Y); trail(DelayNodeX); /* after Xs delay node */

Tmp = strip tag(*DelayNodeX);

*DelayNodeX = add tag(DEL,*Y);

*Y = Tmp;

g else if (DelayNodeY == DelayNodeX) /* same variable */

return;

else f

merge delay goals(DelayNodeX, DelayNodeY); /* merge into X delay */

trail(QueryY); trail(DelayNodeX);

*QueryY = strip tag(*DelayNodeX);

*DelayNodeX = *DelayNodeY;

exe
ute delayed goals(*(DelayNodeX+2)); /* exe
ute tou
hed goals */

g g

Fig. 1.14. Pseudo-C
ode for HAL uni�
ation of two variables supporting delay

REF DELREF [][G](X)

REF DELREF [][H](Y)

REF DELSTR [][G,H](X)

STR(Y) REF (Z)f/1

REF DELREF [][H](Y)

REF DELREF [][G,H](X)

Fig. 1.15. HAL heap representation for dynami
ally s
heduled goals and after ex-

e
uting ea
h literal X = Y, X = f(Z).

we have delay nodes in them. That is why HAL requires the user to expli-

itly indi
ate whether a Herbrand type requires support for delay, so that

it
an generate
alls to the more eÆ
ient versions of unify var val and

unify var var where possible.

1.6.5 Killing Dynami
ally S
heduled Code

Be
ause the dynami
ally s
heduled
ode is potentially exe
uted multiple

times, the delay
onstru
ts need to be expli
itly killed when they are no longer

needed. As we have seen before, for Herbrand
onstru
ts the herband delay id

type is an integer and the get id predi
ate is thus implemented using a global

integer
ounter. The ability to kill dynami
ally s
heduled
ode is managed by

asso
iating with ea
h herband delay id the list of delayed goal nodes that

make up the
onstru
t. The kill/1 predi
ate simply traverses this list re-

moving ea
h delayed goal node from the doubly linked list in whi
h it o

urs.

1.7 Evaluation

Our empiri
al evaluation has three aims. The �rst is to
ompare the perform-

an
e of HAL and its Herbrand solver with a state-of-the-art Prolog imple-

mentation, SICStus Prolog. The se
ond is to investigate the impa
t of ea
h

kind of de
laration on eÆ
ien
y. The third is to
ompare HAL with Mer-

ury so as to determine the overhead introdu
ed by the run-time support for

Herbrand solving.

To a
hieve the �rst aim we take a number of Prolog ben
hmarks

14

and

ompare them with the equivalent HAL programs. In order to build these

equivalent programs we must �rst transform built-ins not present in HAL

(su
h as
ut) into their HAL equivalents (su
h as if-then-else). Also, although

Prolog does not have type, mode and determinism de
larations, the
urrent

HAL
ompiler requires them. We solve this problem by de�ning a \universal"

onstru
tor type for the HAL program whi
h
ontains all fun
tors o

urring

in the program and de
laring this type to be a Herbrand solver type support-

ing dynami
 s
heduling by using deriving delay.

Note that all integers,
oats,
hars and strings in the original Prolog pro-

gram must be wrapped in the HAL program, and ea
h wrapping fun
tor must

appear in the \universal"
onstru
tor type. Finally, all predi
ate arguments

are de
lared to have this type and mode oo, and all predi
ates are de
lared

to have determinism nondet. Most of these tasks are done automati
ally by

a pre-pro
essor.

For example, for the original hanoi Prolog program (the
ode in Se
-

tion 1.2 minus the de
larations), the prepro
essor will add the de
larations

:- typedef htype -> (int(int) ; float(float) ; a ; b ;
 ; [℄

; [htype|htype℄ ; mv(htype,htype) ; htype-htype)

deriving delay.

:- pred hanoi(htype,htype).

:- mode hanoi(oo,oo) is nondet.

:- pred hanoi2(htype,htype,htype,htype,htype).

:- mode hanoi2(oo,oo,oo,oo,oo) is nondet.

The prepro
essor will also repla
e the three o

urren
es of 1 in the program

text by int(1) and
reate predi
ates for the wrapped versions of >, is and

fun
tion -.

To a
hieve our se
ond aim of investigating the impa
t of ea
h kind of

de
laration on eÆ
ien
y, we take these Prolog-equivalent HAL programs and

progressively transform them as follows.

� The �rst step is to add pre
ise type information, i.e., to add the required

type de�nitions and a

urate predi
ate type de
larations. All types must

still be de
lared as Herbrand solver types supporting delay sin
e the

asso
iated terms may sometimes be treated as logi
al variables. This also

14

See http://www.
sse.monash.edu.au/~mbanda/hal.

implies that we must
ontinue to wrap integers and other primitive types

sin
e they may be pla
ed in data stru
tures or equated before they are

�xed.

� The se
ond step is to remove the support for dynami
 s
heduling for

those Herbrand solver types upon whi
h nothing is delayed. We simply re-

pla
e the dire
tive deriving delay by the dire
tive deriving herbrand

wherever possible.

� The third step adds a

urate mode de
larations. Types whi
h are never

asso
iated with the old instantiation need not be de
lared as Herbrand

solver types (i.e. their deriving herbrand dire
tive is removed) and,

in the
ase of the primitive types, su
h types
an have their wrapping

removed.

� In the fourth and last step pre
ise determinism de
larations are added.

We then evaluate the eÆ
ien
y of the programs obtained at ea
h step.

Our third and �nal aim is to
ompare the eÆ
ien
y of HAL and Mer
ury

to determine the overhead introdu
ed by the run-time support for HAL, i.e.,

the overhead introdu
ed by trailing, the reserved REF tag used for solver-

types, extra type
lasses, predi
ate renamings, et
. In order to do so we

took the program resulting from
ompiling the HAL program obtained in the

fourth step above, and modi�ed it by using the Mer
ury libraries (instead

of HAL ones), eliminating any uni�
ation-related
ode (whi
h was a
tually

dead-
ode anyway), and eliminating any predi
ate renaming introdu
ed due

to the use of type
lasses, et
. The resulting program was then
ompiled

using two di�erent
ompilation grades of Mer
ury: one that does not provide

trailing and one that does. Both grades also avoid reserving the extra REF

tag for solver-types, but are otherwise equivalent to the Mer
ury grade used

for
ompiling the HAL programs. Note that sin
e Mer
ury does not provide

full uni�
ation, we
ould only do this for ben
hmarks with no remaining

herbrand types.

All timings are in se
onds on a dual Pentium II-400MHz with 632M of

RAM running Linux 2.2.9. We have turned garbage
olle
tion o� in all three

systems: SICStus Prolog 3.8.6 (
ompa
t
ode), Mer
ury (release-of-the-day

2003-08-09 version), and HAL.

We have used a subset of the standard Prolog ben
hmarks: aiakl, boyer,

deriv, fib, mmatrix, serialize, tak, warplan, hanoi and qsort. The last

two are shown in two forms, one using \normal" lists and append/3, the other

using di�eren
e lists. The reason for
hoosing these ben
hmarks is that they

did not require extensive
hanges to the original Prolog ben
hmarks

15

and

hen
e the
omparison is fairer. To this we added two HAL ben
hmarks using

15

aiakl, deriv, qsort, serialize and tak only required repla
ement of
uts by

if-then-else while warplan also needed to transform the n+ built-in into an if-then-

else and in
lude a well-typed version of univ for warplan. The only ex
eption is

boyer, for whi
h the starting point was a restri
ted Mer
ury version, rather than

the Prolog one.

delay, both based around Boolean
onstraint solving. The �rst bqueens is

the
lassi
 n-queens problem, the se
ond nono is a nonogram solver.

16

Ben
hmark Preds Lits OSICS SICS None T TS TSM TSMD Mer
+tr Mer

aiakl 7 21 0.09 0.08 0.39 0.94 0.97 0.02 0.03 0.03 0.01

boyer 14 124 1.79 0.51 2.36 2.00 2.23 0.11 0.05 0.08 0.02

bqueens 23 99 | 73.38 4.86 5.04 5.04 4.77 4.73 | |

deriv 1 33 1.54 2.41 5.02 4.88 4.08 0.83 0.68 0.69 0.15

�b 1 6 1.20 1.21 0.36 0.33 0.27 0.02 0.02 0.01 0.01

hanoiapp 2 7 2.57 2.61 6.30 14.36 13.77 0.64 0.32 0.27 0.19

hanoidi� 2 6 1.81 1.75 0.54 0.73 0.74 0.66 0.63 | |

mmatrix 3 7 1.26 1.26 1.22 2.96 2.35 0.10 0.05 0.04 0.01

nono 30 181 | 16.35 11.21 17.56 17.56 2.12 2.08 | |

qsortapp 3 10 2.94 1.60 5.14 10.13 10.10 0.51 0.22 0.21 0.11

qsortdi� 3 10 2.91 1.64 5.22 9.92 10.06 0.53 0.24 | |

serialize 5 19 1.41 1.36 2.30 2.56 2.83 0.63 0.46 | |

tak 1 9 0.49 0.60 0.90 0.76 0.68 0.08 0.06 0.05 0.01

warplan 25 88 0.51 0.60 2.12 1.14 1.06 0.40 0.32 | |

Average 1.16 0.77 0.77 1.04 8.61 1.38 1.11 2.72

Table 1.1. Exe
ution times in se
onds

Table 1.1 provides the exe
ution time for the ben
hmarks. The se
ond

and third
olumns of Table 1.1 detail the ben
hmark sizes (number of predi
-

ates and literals before normalization, ex
luding dead
ode and the query).

Subsequent
olumns give the exe
ution time for:

� the original program run with SICStus Prolog (OSICS),

� the modi�ed Prolog program run with SICStus Prolog (SICS),

� the Prolog-equivalent HAL program (obtained with the prepro
essor)

whi
h
ontaints no pre
ise de
larations (None),

� with pre
ise type de
larations (T),

� with pre
ise type de
larations and s
heduling information (i.e. repla
ing

deriving delay by deriving herbrand wherever possible) (TS),

� with pre
ise type de
larations, s
heduling information, and mode de
lar-

ations (TSM),

� with pre
ise type de
larations, s
heduling information, and mode and

determinism de
larations (TSMD),

� this last version run with Mer
ury (if possible)
ompiled with trailing

support (Mer
+tr),

� the same Mer
ury version without trailing support (Mer
).

16

See e.g. http://www.puzzlemuseum.
om/griddler/griddler.htm

The last row of the table
ontains the geometri
 mean speed ratio between

the pre
eeding
olumn and the
urrent
olumn. For example, programs in the

TSM
olumn are, on average, 8.61 times as fast as the
orresponding program

in the TS
olumn.

The ben
hmarks nono and bqueens use dynami
 s
heduling
ode whi
h

is required to be semidet. Hen
e, we required some modi�
ation of the ori-

ginal
ode to ensure that the determinism was
he
kable by the
ompiler for

versions before TSMD.

In general, the original and modi�ed SICStus programs have similar speed.

deriv slows down be
ause of loss of indexing
aused by the introdu
tion of

if-then-elses, while the two versions of qui
k sort improve be
ause a badly

pla
ed
ut in the original program is repla
ed by a more eÆ
ient if-then-else.

The Prolog-equivalent HAL versions are mostly slower than the modi�ed

SICStus versions. Slow-down o

urs in aiakl, boyer and warplan be
ause

no indexing is
urrently available for possibly unbound input arguments.

Surprising speed-up o

urs for fib and hanoidiff; we suspe
t be
ause of

Mer
ury's handling of re
ursion. For the ben
hmarks with delay, sin
e the

s
heduling strategies are impossible to make the same, the
omparison is

rather meaningless.

Generally, adding pre
ise type information leads to a slow down (on av-

erage 0.77 times as fast). For the version with no information, we used a

monomorphi
 \universal" type whi
h in
luded all the fun
tors in the pro-

gram. For the version with type information, we use the polymorphi
 types

where appropriate. The slow down is due to the use of polymorphi
 uni�
ation

predi
ates. The
ompiler
ould remove this
ost by providing type spe
ialized

versions of these predi
ates (indeed if we use only non-polymorphi
 types the

relative performan
e is 1.33 in favour of types). The programs fib and tak

do not use polymorphi
 types and therefore do not in
ur this
ost. We see

improvements for both of these ben
hmarks. For warplan we gain a large

improvement be
ause it allows a type spe
ialized version of univ to be used.

Adding pre
ise s
heduling information provides a modest improvement for

most of the ben
hmarks (average 1.04 times). It provides no improvement for

bqueens and nono, both of whi
h make extensive use of dynami
 s
heduling.

Adding mode de
larations provides the most speed-up (on average 8.61

times). This is be
ause it allows
alls to the Herbrand solver to be repla
ed by

alls to Mer
ury's spe
ialized term manipulation operations and also allows

indexing. Interestingly bqueens obtains no speedup sin
e the bulk of the time

is in the sear
h, using the dynami
 s
heduling, and this is un
hanged. For

nono the dynami
 s
heduled
ode is itself
omplex, and so bene�ts from mode

information.

Determinism de
larations also lead to signi�
ant speed-up (on average

1.38 times). Again the ben
hmarks with dynami
 s
heduling are the least

a�e
ted, sin
e the sear
h dominates.

The times given in �nal three
olumns of Table 1.1 are too small to make a

meaningful
omparison. For that reason, Table 1.2 shows the exe
ution times

for 100 repeats of ea
h ben
hmark. We omit bqueens, hanoidiff, nono,

qsortdiff, serialize and warplan sin
e their �nal HAL versions still need

herbrand types.

Ben
hmark TSMD Mer
+tr Mer

aiakl 4.85 4.3 3.55

boyer 9.37 10.53 9.97

deriv 79.73 76.02 35.52

�b 2.61 2.61 1.17

hanoiapp 40.07 40.15 34.78

mmatrix 5.27 4.99 4.99

qsortapp 32.79 33.25 24.23

tak 6.06 6.35 4.2

Average 1.01 1.40

Table 1.2. Exe
ution times in se
onds for 100 repeats

Ben
hmark None TS TSM TSMD Mer

aiakl 3637 2641 0 0 0

boyer 4904 4904 0 0 0

bqueens 3562 3581 3446 3446 |

deriv 40530 40530 0 0 0

�b 1897 1897 0 0 0

hanoiapp 72704 72704 0 0 0

hanoidi� 7168 7168 6144 6144 |

mmatrix 7970 7970 0 0 0

nono 953 953 307 307 |

qsortapp 51449 51449 0 0 0

qsortdi� 51126 51126 352 352 |

serialize 17244 17244 1552 1552 |

tak 5173 5173 0 0 0

warplan 34 34 2 2 |

Table 1.3. Memory usage in Kbytes for the Trail

The HAL version running with pre
ise de
larations is very similar to the

Mer
ury version with trailing support. When we
ompile the Mer
ury version

without trailing support we see an improvement of 1.4 times on average.

Ben
hmark None TS TSM TSMD Mer

aiakl 2712 38498 1231 1231 1231

boyer 5948 5950 3561 3561 3561

bqueens 81074 641074 101074 101074 |

deriv 27712 27712 24949 24949 24949

�b 2371 2371 0 0 0

hanoiapp 41472 438783 37888 36864 36864

hanoidi� 6656 20480 57344 57344 |

mmatrix 19610 47659 79 79 79

nono 641082 641074 641082 641082 |

qsortapp 25842 269666 25607 25490 25490

qsortdi� 25446 261314 28317 28317 |

serialize 8928 90622 8331 8331 |

tak 5173 5173 0 0 0

warplan 23 22 18 18 |

Table 1.4. Memory usage in Kbytes for the Heap

Ben
hmark None TS TSM TSMD

aiakl <1 (2) 0 (1) 0 (1) 0 (1)

boyer <1 (2) <1 (2) 0 (1) 0 (1)

bqueens 80 (154) 85 (154) 100 (154) 100 (154)

deriv <1 (129) <1 (129) 0 (1) 0 (1)

�b 0 (1) 0 (1) 0 (1) 0 (1)

hanoiapp 0 (1) 0 (1) 0 (1) 0 (1)

hanoidi� 25 (2) 25 (2) 100 (2) 100 (2)

mmatrix <1 (2) 0 (1) 0 (1) 0 (1)

qsortapp 0 (1) 0 (1) 0 (1) 0 (1)

qsortdi� <1 (2) <1 (2) 100 (2) 100 (2)

serialize 1 (18) 1 (18) 100 (18) 100 (18)

tak 0 (1) 0 (1) 0 (1) 0 (1)

warplan <1 (4) 1 (4) 99 (4) 99 (4)

Table 1.5. Per
entage of
hains with more than one element, and maximum
hain

We have also investigated the e�e
t of the de
larations on memory usage.

Table 1.3 shows the trail usage for ea
h ben
hmark, whereas Table 1.4 shows

heap usage. The size of the trail is mostly a�e
ted by the presen
e or ab-

sen
e of pre
ise mode de
larations. Adding pre
ise mode de
larations greatly

redu
es trail size | only those ben
hmarks with Herbrand solver types may

need to use the trail.

In many
ases, adding pre
ise type de�nitions
auses a signi�
ant in
rease

in heap usage. This is due to the use of polymorphi
 data types. The uni�
-

ation predi
ates for su
h types
onstru
t data stru
tures for run time type

information on the heap, and the a�e
ted ben
hmarks make many
alls to

these predi
ates.

Adding pre
ise modes
auses a signi�
ant redu
tion in heap size for most

ben
hmarks. This is mainly be
ause most of the
alls to the uni�
ation pre-

di
ates
an be removed. It is also no longer ne
essary to box primitive types,

su
h as ints and floats. For example, without su
h boxing fib and tak use

no heap spa
e at all.

Finally, we have investigated the size of the alias
y
les
onstru
ted using

PARMA bindings. The results are shown in Table 1.5. Virtually all
y
les

have length one immediately before being bound to a non-variable term.

Only four ben
hmarks, bqueens, deriv, warplan and serialize, have a

maximum
y
le length of more than two (154, 129, 4 and 18 respe
tively).

The
y
les disappear for deriv with mode information. The per
entage of

non unit
y
les dramati
ally in
reases for qsortdiff and serialize with

the addition of mode information. The number of non unit
y
les does not

in
rease; rather, the number of unit
y
les is redu
ed to zero be
ause the

addition of mode information allows us to remove the deriving herbrand

de
larations for some types, meaning that we do not use PARMA
hains

when binding variables of those types.

1.8 Related Work

As far as we know, HAL is the �rst logi
 programming implementation to

use the PARMA variable representation and binding s
heme sin
e it was in-

trodu
ed in [12℄. We note that [8℄ dis
usses in detail the di�eren
es between

the PARMA and WAM s
hemes. However, there seems to be no
ompelling

reason to prefer one over the other; in fa
t, arti�
ial examples
an be
on-

stru
ted for whi
h ea
h s
heme easily outperforms the other. There has been

some earlier work on the impa
t of type, mode and determinism information

on the performan
e of Prolog, but the results are quite uneven. In [9℄, in-

formation about type, mode and determinism is used to (manually) generate

better
ode. Its results show up to a fa
tor of two speedup for mode inform-

ation, and the same result for type information. [13℄ des
ribes Aquarius, a

Prolog system in whi
h
ompile-time analysis information (in
luding type,

mode and determinism information) is used for optimizing the exe
ution. In

its results, analysis information had a relatively low impa
t on speed: on av-

erage about 50% for small programs without built-ins (for tak 300%) and

about 12% for larger programs with built-ins (for boyer only 3%). Finally,

in the
ontext of the PARMA system, [12℄ also reports on speedup obtained

from information provided by
ompile time analysis. Its results are highly

ben
hmark dependent, with only 10% speed up for boyer but a fa
tor of 8

for nrev.

It is diÆ
ult to dire
tly
ompare our results (from Se
tion 1.7) with those

found for Aquarius and PARMA. One problem is the di�eren
es between

the underlying abstra
t ma
hines and the optimizations performed by ea
h

ompiler. For instan
e, Mer
ury performs parti
ular optimizations like spe-

ializing the tags per type, the use of a separate sta
ks for deterministi
 and

nondeterministi
 predi
ates and a middle-re
ursion optimization, whi
h are

not found in PARMA or Aquarius. On the other hand, Mer
ury la
ks real last

all optimization. However, in a

ord with our �ndings, for all systems mode

information gives greater speedups than type information. Another problem

is that their information is obtained from
ompile time analysis, rather than

from programmer de
larations. We suspe
t that
ompile time analysis is not

powerful enough to �nd a

urate information about the larger ben
hmarks,

while in our experiments the programmer provides this information. This

would explain why our performan
e improvements are more uniform (and

larger) a
ross all ben
hmarks, regardless of size.

1.9 Con
lusions

Our empiri
al evaluation of HAL is very pleasing. It demonstrates that it

is possible to
ombine Mer
ury-like eÆ
ien
y for ground data stru
ture ma-

nipulation with Prolog-style logi
al variables by using PARMA bindings to

ensure that the representation for terms used by HAL's Herbrand solver is

onsistent with that used by Mer
ury for ground terms. This means that

the
ompiler is free to use the more eÆ
ient Mer
ury term manipulation

operations whenever this is possible.

There are however a number of ways to improve HAL's Herbrand
on-

straint solving whi
h we shall investigate. These in
lude better tra
king of

where one-step dereferen
ing may be (or rather, is not) required, and more

spe
ialized
ases for equality and indexing for old terms.

Prolog-like programs written in HAL run somewhat slower than in SIC-

Stus, in part be
ause there is no term indexing for possibly unbound instan-

tiations. However, on
e de
larations are provided the programs run an order

of magnitude faster. (Mu
h of this arises from the sophisti
ated
ompilation

te
hniques used by the underlying Mer
ury
ompiler.) Our results show that

the biggest performan
e improvement arises from mode de
larations while

type and determinism de
larations give moderate speed improvement. All

de
larations redu
e the spa
e requirements.

It should be remembered that de
larations are not only useful for improv-

ing eÆ
ien
y. They also allow
ompile time
he
king to improve program

robustness, help program debugging and fa
ilitate integration with foreign

language pro
edures.

A
knowledgements

Many people have helped in the development of HAL. In parti
ular, we would like

to thank the Mer
ury development team, espe
ially Fergus Henderson and Zoltan

Somogyi, who have helped us with many modi�
ations to the Mer
ury system to

support HAL. We would also like to thank David G. Je�ery, Ni
k Nether
ote and

Peter S
ha
hte.

Referen
es

1. H. A��t-Ka
i. Warren's Abstra
t Ma
hine. MIT Press, 1991.

2. B. Demoen, M. Gar
��a de la Banda, W. Harvey, K. Marriott, and P.J. Stu
key.

An overview of HAL. In J. Ja�ar, editor, Pro
eedings of the Fourth International

Conferen
e on Prin
iples and Pra
ti
es of Constraint Programming, LNCS,

pages 174{188. Springer-Verlag, O
tober 1999.

3. T. Dowd, P. S
ha
hte, F. Henderson, and Z. Somogyi. Using im-

purity to
reate de
larative interfa
es in Mer
ury. Te
hni
al Report

2000/17, Department of Computer S
ien
e, University of Melbourne, 2000.

http://www.
s.mu.oz.au/resear
h/mer
ury/information/papers.html.

4. M. Gar
��a de la Banda, P.J. Stu
key, W. Harvey, and K. Marriott. Mode
he
k-

ing in HAL. In J. LLoyd et al., editor, Pro
eedings of the First International

Conferen
e on Computational Logi
, LNCS 1861, pages 1270{1284. Springer-

Verlag, July 2000.

5. Programming Systems Group. SICStus Prolog User's Manual, release 3.11.0

edition, 2003.

6. C. Holzbaur. Metastru
tures vs. attributed variables in the
ontext of extensible

uni�
ation. In Pro
eedings of the International Symposium on Programming

Language Implementation and Logi
 Programming, number 631 in LNCS, pages

260{268. Springer-Verlag, 1992.

7. D. Je�ery, F. Henderson, and Z. Somogyi. Type
lasses in mer
ury. Te
hni
al

Report Te
hni
al Report 98/13, Department of Computer S
ien
e, University

of Melbourne, Melbourne, Australia, 1998.

8. T. Lindgren, P. Mildner, and J. Bevemyr. On Taylor's s
heme for unbound

variables. Te
hni
al report, UPMAIL, O
tober 1995.

9. A. Mari�en, G. Janssens, A. Mulkers, and M. Bruynooghe. The impa
t of ab-

stra
t interpretation: an experiment in
ode generation. In Pro
. of the ICLP89,

pages 33{47, 1989.

10. K. Marriott and P.J. Stu
key. Programming with Constraints: an Introdu
tion.

MIT Press, 1998.

11. Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer-

ury: an eÆ
ient purely de
larative logi
 programming language. Journal of

Logi
 Programming, 29:17{64, 1996.

12. A. Taylor. PARMA{bridging the performan
e gap between imperative and

logi
 programming. Journal of Logi
 Programming, 29(1{3), 1996.

13. P. Van Roy. Can Logi
 Programming Exe
ute as Fast as Imperative Program-

ming? Report 90/600, UCB/CSD, Berkeley, California 94720, De
 1990.

14. D. H. D. Warren. An abstra
t Prolog instru
tion set. Te
hni
al Report 309,

SRI International, Menlo Park, U.S.A., O
t. 1983.

