
 

 

 

$JLOH�6RIWZDUH�'HYHORSPHQW�RI�

(PEHGGHG�6\VWHPV�
 

������������	
����'���
 

Version : 1.0 
Date : 2005.04.08 
 
Authors 
Teodora Bozheva 
Hanna Hulkko 
Tuomas Ihme 
Jouni Jartti 
Outi Salo 
Stefan Van Baelen 
Andrew Wils 

���������
��������
�����
	��
���������������
���
��������	������������
����	
��	��
���
�	
������
 

Status 
Final 
 
Confidentiality 
Public 

 

Abstract 
This document contains a summary of agile 
software development and real-time embedded 
software development as well as a review of 
existing experiences on adopting agile 
methodologies and practices in embedded 
software development projects. In addition, the 
document contains also an analysis of the 
current status of agile practices and methods in 
the Agile ITEA consortium. The analysis is 
based on a questionnaire study that was 
conducted in January and February 2005. 

 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :2 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

TABLE OF CONTENTS 
 

1. INTRODUCTION.......................................................................................................................................5 

2. AGILE SOFTWARE DEVELOPMENT..................................................................................................5 
2.1 OVERVIEW .............................................................................................................................................5 
2.2 HOME GROUND ......................................................................................................................................5 
2.3 APPROACHES .........................................................................................................................................7 
2.4 BUSINESS RATIONALE FOR USING AGILE METHOD .................................................................................7 

2.4.1 Improved return on investment......................................................................................................7 
2.4.2 Early cancellation of failing projects ............................................................................................8 
2.4.3 Reduced delivery schedules...........................................................................................................8 
2.4.4 Higher quality ...............................................................................................................................8 
2.4.5 Improved control ...........................................................................................................................9 
2.4.6 Reduced dependence on individuals and increased flexibility ......................................................9 
2.4.7 Statistics ........................................................................................................................................9 

3. DEFINITION OF AGILE SOFTWARE DEVELOPMENT ................................................................14 

4. REAL-TIME EMBEDDED SOFTWARE DEVELOPMENT..............................................................15 
4.1 OVERVIEW ...........................................................................................................................................15 
4.2 METHODOLOGIES FOR HIGH-LEVEL EMBEDDED SOFTWARE DEVELOPMENT ......................................15 

4.2.1 Overview .....................................................................................................................................15 
4.2.2 Unified Process ...........................................................................................................................16 
4.2.3 Dess.............................................................................................................................................16 
4.2.4 Empress.......................................................................................................................................16 
4.2.5 MDA............................................................................................................................................17 

4.3 CHARACTERISTICS OF REAL-TIME EMBEDDED SOFTWARE ..................................................................17 
4.3.1 Embedded system ........................................................................................................................18 
4.3.2 Embedded software .....................................................................................................................18 
4.3.3 Real-Time System ........................................................................................................................18 
4.3.4 Memory Constraints....................................................................................................................19 
4.3.5 CPU constraints ..........................................................................................................................20 
4.3.6 Bandwidth Constraints................................................................................................................21 
4.3.7 Power Consumption Constraints.................................................................................................21 
4.3.8 Functional characteristics...........................................................................................................22 
4.3.9 Communication ...........................................................................................................................22 
4.3.10 User interface..............................................................................................................................22 
4.3.11 Command and control.................................................................................................................23 
4.3.12 Operational characteristics.........................................................................................................23 

4.4 QUALITY ATTRIBUTES OF EMBEDDED SOFTWARE ...............................................................................23 
4.4.1 Quality of Service ........................................................................................................................23 
4.4.2 Dependability ..............................................................................................................................24 
4.4.3 Availability ..................................................................................................................................24 
4.4.4 Reliability ....................................................................................................................................25 
4.4.5 Safety...........................................................................................................................................25 
4.4.6 Robustness...................................................................................................................................26 
4.4.7 Testability....................................................................................................................................26 
4.4.8 Maintainability/Serviceability .....................................................................................................27 
4.4.9 Security........................................................................................................................................27 
4.4.10 Field loadable Software ..............................................................................................................27 
4.4.11 Configurable software.................................................................................................................28 
4.4.12 Flexible Software ........................................................................................................................28 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :3 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public  

 

 
© Copyright AGILE Consortium 

4.5 SOFTWARE ARCHITECTURE CHARACTERISTICS ....................................................................................28 
4.5.1 Software Architecture..................................................................................................................28 
4.5.2 Scheduling Type ..........................................................................................................................29 
4.5.3 Interrupt handling .......................................................................................................................29 
4.5.4 Tasking and Exception Handling ................................................................................................29 
4.5.5 Processor privilege usage ...........................................................................................................29 
4.5.6 Languages used...........................................................................................................................29 
4.5.7 Modularity...................................................................................................................................30 
4.5.8 Portability ...................................................................................................................................30 
4.5.9 Configurability ............................................................................................................................30 
4.5.10 Operating Systems and Kernels used ..........................................................................................30 
4.5.11 Hardware architecture characteristics .......................................................................................31 
4.5.12 Development tools .......................................................................................................................31 

4.6 EMBEDDED AGILE SOFTWARE DEVELOPMENT ....................................................................................31 
4.6.1 Unifying Embedded and Agile Software Development................................................................31 

5. EMPIRICAL BODY OF EVIDENCE: STATE-OF-THE-ART...........................................................33 
5.1 INTRODUCTION ....................................................................................................................................33 

5.1.1 Challenges facing the development of embedded software .........................................................33 
5.1.2 Motivation for using agile methods in embedded software development ....................................34 
5.1.3 The experiences of adopting agile practices in embedded software development ......................35 

5.2 PROJECT MANAGEMENT AND PLANNING ..............................................................................................35 
5.2.1 Planning Game (iteration planning) ...........................................................................................35 
5.2.2 Short Iterations / Small releases .................................................................................................37 

5.3 DESIGN ................................................................................................................................................37 
5.3.1 Simple Design..............................................................................................................................37 
5.3.2 Light Documentation...................................................................................................................38 

5.4 IMPLEMENTATION................................................................................................................................39 
5.4.1 Continuous Integration ...............................................................................................................39 
5.4.2 Pair Programming ......................................................................................................................40 
5.4.3 Refactoring..................................................................................................................................40 

5.5 TESTING...............................................................................................................................................41 
5.5.1 Unit testing..................................................................................................................................41 
5.5.2 Acceptance testing.......................................................................................................................43 

5.6 SUMMARY OF EXPERIENCES FROM DIFFERENT AGILE PRACTICES .........................................................43 
5.7 FUTURE RESEARCH NEEDS..........................................................................................................45 

5.7.1 Shortcomings of existing studies .................................................................................................45 
5.7.2 Future research needs.................................................................................................................45 

6. CURRENT STATUS ON AGILE METHDOS IN EUROPEAN  SOFTWARE DEVELOPMENT 
ORGANIZATIONS: RESULTS FROM A QUESTIONNAIRE STUDY....................................................47 

6.1 INTRODUCTION ....................................................................................................................................47 
6.2 BACKGROUND OF THE STUDY ..............................................................................................................47 
6.3 RESULTS OF THE STUDY.......................................................................................................................51 

6.3.1 Agile Process Model ...................................................................................................................52 
6.3.2 Close communication ..................................................................................................................53 
6.3.3 Agile software engineering practices ..........................................................................................54 
6.3.4 Quality Assurance Techniques ....................................................................................................56 

6.4 FUTURE RESEARCH NEEDS AND LIMITATIONS OF THE STUDY .............................................................57 
6.5 SUMMARY AND CONCLUSIONS ............................................................................................................57 

7. REFERENCES..........................................................................................................................................58 

APPENDIX A: SUMMARY OF EMPIRICAL STUDIES............................................................................61 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :4 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public  

 

 
© Copyright AGILE Consortium 

CHANGE LOG 
Vers. Date Author Description 
0.1 29.09.04 Hanna Hulkko First draft created  
0.2 21.10.04 Hanna Hulkko The first version of the empirical body of evidence 
0.3 10.3.2005 Tapio 

Matinmikko 
The contributions of Teodora Bozheva, Jouni Jartti, and Andrew 
Wils added 

0.4 1.4.2005 Tuomas Ihme,  Integration of and corrections and additions to all chapters  
0.5 7.4.2005 Outi Salo “Current Status on Agile Methods in European Software 

Development Organizations: A Questionnaire Study” chapter 
added 

1.0 8.4 Tuomas Ihme Refinements of the chapter organization and corrections of the 
numbering of figures and tables  

 
 

APPLICABLE DOCUMENT LIST 
Ref. Title, author, source, date, status Identification 
   
   
   
   



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :5 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

1.  INTRODUCTION 

This document contains a summary and review of the existing experiences on adopting agile 
methodologies or practices in embedded software development. In addition, a brief overview on the 
characteristics distinctive to agile software development as well as to embedded software 
development is presented. The document is based on a literature survey and a questionnaire study, 
which the existing experiences have been collected from.  
 
The document is structured as follows: First, agile software development and real-time embedded 
software development are characterized. Secondly, a summary and review of the existing 
experiences on adopting agile methodologies or practices in embedded software development 
projects is presented. Thirdly, an analysis of the current status of agile practices and methods in the 
Agile ITEA consortium is described. Every main chapter contains also an overview or introduction 
section. 
 
 

2. AGILE SOFTWARE DEVELOPMENT 
Author: Teodora Bozheva, ESI 

2.1 Overview 
In the field of software development there are no practices or processes that fit all the projects. 
Today's enterprise solutions are complex, time critical and developed against rapidly changing 
business needs. Agile methods recognize these factors and instead of trying to resist them, embrace 
changes via business value based prioritization, short feedback cycles and quality-focused 
development. When appropriately used they bring a number of business benefits as better project 
adaptability and reaction to changes, reduced production costs, improved systems quality and 
increased user satisfaction with the final solution. 

2.2 Home ground 
B. Boehm and R. Turner [1] define five factors that organizations and projects can use to determine 
whether they are in either the agile or disciplined home grounds, or somewhere in between. The 
term “disciplined” is only used to refer to the traditional plan-driven methods without implying that the 
agile methods are non-disciplined. Table 1 summarizes the home grounds: 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :6 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

Table 1. Agile and Disciplined Method Home Grounds 

Characteristics Agile Disciplined 
Application 
Primary Goals Rapid value; responding to 

change 
Predictability, stability, high 
assurance 

Size Smaller teams and projects Larger teams and projects 
Environment Turbulent; high change; project-

focused 
Stable; low-change; 
project/organization focused 

Management 
Customer 
Relations 

Dedicated on-site customers; 
focused on prioritized increments 

As-needed customer interactions; 
focused on contract provisions 

Planning and 
Control 

Internalized plans; qualitative 
control 

Documented plans, quantitative 
control 

Communications Tacit interpersonal knowledge Explicit documented knowledge 
Technical 
Requirements Prioritized informal stories and 

test cases; undergoing 
unforseeable change 

Formalized project, capability, 
interface, quality, forseeable 
evolution requirements 

Development Simple design; short increment; 
refactoring assumed inexpensive 

Extensive design; longer 
increments; refactoring assumed 
expensive 

Test Executable test cases define 
requirements, testing 

Documented test plans and 
procedures 

Personnel 
Customers Dedicated, collocated CRACK* 

performers 
CRACK* performers, not always 
collocated 

Developers At least 30% full-time experts 
able to tailor [and revise] a 
method to fit a new situation;  
no personnel, who, with training, 
is able to perform just procedural 
steps (e.g. coding a simple 
method, simple refactoring);  
no personel, who is not able or 
not willing to collaborate or follow 
shared methods. 

50%** experts able to tailor [and 
revise] a method to fit a new 
situation;  
10% throughout;  
30% personnel, who, with training, 
is able to perform just procedural 
steps (e.g. coding a simple method, 
simple refactoring);  
no personel, who is not able or not 
willing to collaborate or follow 
shared methods. 

Culture Comfort and empowerment via 
many degrees of freedom 
(thriving on chaos) 

Comfort and empowerment via 
framework of policies and 
procedures (thriving on order) 

* Collaborative, Representative, Authorized, Committed, Knowledgable 
** These numbers will particularly vary with the complexity of the application 
 
Since all the items in the table are self-explained, we are not going to discuss them in more details. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :7 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

                                                     

 

2.3 Approaches 
There are a growing number of methods for agile software development, and a number of agile 
practices such as Scott Ambler's Agile Modeling [2]. The best known ones include: eXtreme 
Programming (XP) [3], Scrum [4, 5], Feature Driven Development (FDD) [6], Adaptive Software 
Development (ASD) [7], Lean Development (LD) [8], Crystal methods [9], and Dynamic Systems 
Development Method (DSDM) [10]. Authors of all of these approaches (except LD) participated in 
writing the Agile Software Development Manifesto1, which establishes the backbone of all the agile 
approaches.  
While individual practices are varied, they fall into six general categories2: 

• Visioning. A good visioning practice helps assure that agile projects remain focused on key 
business values (for example, ASD's product visioning session).  

• Project initiation. A project's overall scope, objectives, constraints, clients, risks, etc. should 
be briefly documented (for example, ASD's one-page project data sheet).  

• Short, iterative, feature-driven, time-boxed development cycles. Exploration should be done 
in definitive, customer-relevant chunks (for example, FDD's feature planning).  

• Constant feedback. Exploratory processes require constant feedback to stay on track (for 
example, Scrum's short daily meetings and XP's pair programming). Customer involvement. 
Focusing on business value requires constant interaction between customers and 
developers (for example, DSDM's facilitated workshops and ASD's customer focus groups).  

• Technical excellence. Creating and maintaining a technically excellent product makes a 
major contribution to creating business value today and in the future (for example, XP's 
refactoring).  

 
Some agile approaches focus more heavily on project management and collaboration practices 
(ASD, Scrum, and DSDM), while others such as XP focus on software development practices, 
although all the approaches touch the six key practice areas. Good introduction to the agile 
approaches can be found in [11] and [12]. 
 

2.4 Business rationale for using Agile method  
One can find different lists of reasons why the agile methods should be practiced and what are the 
business benefits from applying them. Steve Hayes [13] identifies the following fundamental factors:  

• Improved return on investment (RIO)  
• Early detection and cancellation of failing products 
• Reduced delivery schedules  
• Higher quality software  
• Improved control of a project  
• Reduced dependence on individuals and increased flexibility 

 

2.4.1 Improved return on investment  
Hayes [13] writes, “This is the fundamental reason to use agile methods, and it's achieved in a 
number of different ways. In an agile project, the initial requirements are the baseline for ROI. If the 
project runs to completion with no changes, then the business will get the projected returns. 
However, by providing frequent opportunities for customer feedback, agile methods let customers 
steer the project incrementally, taking advantage of new insights or changed circumstances to build 
a better system and improve the ROI. By delivering working software early and often, agile projects 
also present opportunities for early deployment and provide earlier return on smaller initial 
investments.” 

 
1 www.agilemanifesto.org/ 
2 What Is Agile Software Development?, Jim Highsmith, Cutter Consortium



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :8 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

2.4.2 Early cancellation of failing projects  
It’s a common observation that projects go well enough during the bigger part of its duration and 
afterwards it is delayed for months or even cancelled [13]. In such a situation the sponsors face a 
difficult choice: to stop it or to continue funding it hoping to get some ROI.  
 
One of the reasons for getting in such a situation is optimistic reporting of progress on abstract 
intellectual tasks such as analysis and design, because it is difficult, if not impossible to estimate 
them correctly until the real implementation begins [13]. This means that the traditional methods 
suppose a hidden delay, which could be only determined when coding has started.  
 
Steve Hayes [13] argues that “Agile projects avoid this situation by performing analysis, design and 
implementation in short increments, and judging progress by the delivery of working software, which 
gives much more solid feedback on actual vs planned progress. Overly optimistic planning becomes 
obvious much earlier in agile projects, giving the sponsor the chance to review the costs and benefits 
of the project, and where appropriate cancel the project with minimal investment.” 

2.4.3 Reduced delivery schedules 
The agile methods instruct focussing on high-priority features and using short development 
iterations. This reduces the delivery schedules, which opens better business and market 
opportunities. 
 
Developing adaptable products is an aim of most of the software organizations. By maintaining the 
product in a running and near shippable state, modifications to it can be quickly introduced. The 
ability of the team to embrass the changes required by the clients and rapidly incorporate them in the 
current product is a powerful mean to retain satisfied customers. 

2.4.4 Higher quality 
Steve Hayes [13] writes that “Of the four fundamental variables you can use to control a software 
development project, cost, time, scope and quality, most agile methods explicitly use scope as their 
control variable. All agile methods emphasise the production of high quality software, and extreme 
programming in particular adds a number of practices to support this objective.” 
 
The participants in the eXPERT project directly observed the higher quality produced using the 
XP+PSP3 method. For instance the defects uncovering and removal followed a stable trend without 
accelerations as shown in Figure 1. Accelerative defect trends were typical for previous projects. 

New, Fixed and Closed Bugs Trend

0

20

40

60

80

100

120

140

25
.10

.200
2

08
.11

.200
2

22
.11

.200
2

06
.11

.200
2

20
.12

.200
2

10
.01

.200
3

24
.01

.200
3

07
.02

.200
3

21
.02

.200
3

07
.03

.200
3

21
.03

.200
3

04
.04

.200
3

18
.04

.200
3

New
Fixed
Closed

 
                                                      
3 A combination of XP with some PSP (Personal Software Process by W. Humphrey) practices 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :9 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

                                                     

Figure 1. Bugs tend applying the eXPERT mehod4

 

2.4.5 Improved control 
Agile projects typically produce fewer paper artefacts. However, at the end of every iteration (which 
is up to two months long) they deliver a running product, which gives sponsors and customers 
improved visibility and control of a project. Hayes [13] argues, “This is further enhanced by emphasis 
on integrated, multi-disciplinary teams, where information is routinely shared, and highly visible.” 
 

2.4.6 Reduced dependence on individuals and increased flexibility 
Hayes [13] writes, “Agile projects emphasize sharing of information, and performing analysis, design 
and coding on a team, rather than individual basis. This helps prevent situations where development 
is critically dependent on an individual, who might become unavailable on short notice. It also means 
that development doesn't become bottlenecked. On an agile project it should be possible to get 
everyone on the team working in the same area of the system, and change this area from one week 
to another depending on business priorities.” 
 
To wrap up, the agile methods do deliver direct benefits to business and for projects in turbulent 
environments, the flexibility and feedback provided by these practices may be particularly critical. 
 

2.4.7 Statistics  
During November 2002 to January 2003, Shine Technologies ran a web-based survey [14] to gauge 
the market interest in Agile Methodologies. The survey consisted of 10 questions, and received 131 
valid submissions. Figures 2 to 6 depict the results of the following five questions: 

Question 4: Has adoption of Agile processes altered the quality of your applications? 
Question 5: Has adoption of Agile processes altered the cost of development? 
Question 6: Has adoption of Agile processes altered the level of business satisfaction with the 

software? 
Question 7: What feature of your Agile processes do you like the most? 
Question 10: What proportion of projects do you believe are appropriate for Agile processes? 

 
The survey [14] comments Figure 2 that “Adoption of Agile processes has had a significant effect on 
the quality of applications delivered. Of knowledgeable respondents, 88% claimed better or 
significantly better quality. Across all respondents this number falls to 84%. Only 1% of 
knowledgeable respondents believed that quality was adversely affected in any way.” 
 
 

 
4 eXPERT project (www.esi.es), Nemetschek’s case study 

http://www.esi.es/


   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :10 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

 
Figure 2. The results from the question “Has the adoption of Agile processes altered the 
quality of applications?” [14] 

 
The survey [14] summarizes Figure 3, “Across respondents with average knowledge or better, 48.6% 
believed that development costs were reduced. Including the responses that indicated that costs 
were unchanged, a whopping 95% believe Agile processes have either no effect or a cost reduction 
effect.” 
 
 

 
 

Figure 3. The results from the question “Has adoption of Agile processes altered the cost of 
development?” [14] 

 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :11 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

Figure 4 represents that business satisfaction of better or significantly better was a phenomenal for 
83% of respondents with average knowledge or better. Only 1% of the respondents believe it has 
had a negative effect. 
 

 
 

Figure 4. The results from the question “Has adoption of Agile processes altered the level of 
business satisfaction with the software?” [14] 

Respondents ranked “Respond to change over plan” (47.3%) and “People over processes” (30.5%) 
as the most positive features of Agile processes (Figure 5). This appreciation of a responsive and 
people-centric model is a striking change from the traditional methodologies that value plans and 
processes. 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :12 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

 
 

Figure 5. The results from the question “What feature of your Agile processes do you like the 
most?” [14] 

The survey [14] summarizes Figure 6, “Only 16% of respondents believe that Agile processes are 
applicable to all projects. This is in line with the Agile belief that it should be applied only where it will 
deliver benefit. Interestingly 88.5% of respondents believe that Agile processes should be used at 
least half the time. This indicates that Agile processes should be used only for the right projects, and 
that there is room for other methodologies to sit along side Agile and be used on a project-by-project 
basis as appropriate.” 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :13 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

 
 

Figure 6. The results from the question “What proportion of projects are appropriate for Agile 
processes?” [14] 

 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :14 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

3. DEFINITION OF AGILE SOFTWARE DEVELOPMENT 

Author: Jouni Jartti, Nokia 
 
Agility in embedded SW development is an ability to make changes in order to maximize the overall 
customer value whilst minimizing the loss of initial customer value; customer value being the cross 
function of money, time, effort, functionality or any quality characteristics like reliability or 
dependability. 
 
Figure 7 clarifies the benefits of agile SW development. The goal is to increase customer value 
through change driven Agile SW development. Change has always cost and benefits, it is important 
to minimize the cost of the change, and try to maximize the benefits in the new improved customer 
value situation. 

 
 

Benefit
from 

change

New 
value 

 
 

 
 
 
 

Cost of 
change

Original 
value 

 
 
 
 
 
 
 

Change
 
 
 
 
 

Figure 7. The benefits of agile SW development 

 

The word agility means the quality of being agile; readiness for motion; nimbleness activity, dexterity 
in motion. Agility can be also seen as an attribute of an organization and its processes. Agility is 
defined as the ability to react to changing situations quickly, appropriately, and effectively. In other 
words, an agile organization notices relevant changes early, initiates action promptly, creates a 
feasible and effective alternative plan quickly, and reorients work and resources according to this 
new plan quickly and effectively. 

 
Software development agility has been identified as a necessary, new approach to software 
development in domains where new business concepts, new customer segments, new products, and 
technologies need to be introduced and used under tight time pressures. Several approaches have 
been proposed to support process agility, such as Extreme Programming [3]and RUP [15]. The 
principles of agile software process have been phrased as follows:  

• "Our highest priority is to satisfy the customer through early and continuous delivery of 
valuable software. Welcome changing requirements, even late in development. Agile 
processes harness change for the customer's competitive advantage. Deliver working 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :15 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

software frequently, from a couple of weeks to a couple of months, with a preference to the 
shorter timescale. Working software is the primary measure of progress. “ 

• “Continuous attention to technical excellence and good design enhances agility. Simplicity--
the art of maximizing the amount of work not done--is essential. “ 

 
The embedded SW development has new challences for agile SW development. Hardware sets tight 
requirements for the software and requirements for hardware related software cannot be frozen 
before development starts. Also in the embedded systems performance and reliability are key issues 
not just functionality and therefore co-design is needed between hardware and software.  Agile SW 
development should welcome changes also in these demanding embedded environments and 
produce working systems fast. 

4. REAL-TIME EMBEDDED SOFTWARE DEVELOPMENT 

 
Authors: Andrew Wils, K.U.Leuven 
 Stefan Van Baelen, K.U. Leuven 
 Hanna Hulkko, VTT  
 Tuomas Ihme, VTT 

4.1 Overview 
Embedded software development is characterized by the existence of resource constraints. 
Dependent on the application domain, this limited availability of resources can be of a different 
nature: processor capacity, RAM, storage memory, bandwidth, power, user interface, etc. 
Methodologies for Embedded Software Development typically provide support for developing 
software that has to perform within such a resource-constraint environment.  
 
Due to the real life usage characteristics of embedded systems, e.g. need for accurate real-time 
behaviour, need for reliable operation, and long lifecycle of products, embedded software as a part of 
an embedded system has to often meet several stringent and specific requirements. Common 
software development processes often do not suffice to ensure and certify these requirements. This 
chapter provides an overview of typical embedded software characteristics and development 
methodologies. 

4.2 Methodologies for High-Level Embedded Software Development 

4.2.1 Overview 
Traditional spiral, waterfall and V models for embedded software development have evolved into 
more elaborate processes and methodologies, suitable for more complex embedded systems. As 
component-based software design is especially suited for embedded systems development these 
processes are often based on traditional component-based methodologies.  
 
Examples of component and object-oriented methodologies include KobrA [16], COSM [17], 
Catalysis [18], Octopus [19], ROOM [20], the Rose RealTime Approach [21], RT Perspective method 
of ARTISAN [22], ROPES [23], and Telelogic Tau [24]. Complementing these are more standards-
driven processes such as CMM/CMMI and ISO. In most methodologies, UML takes a paramount role 
as the de facto modelling standard. The UML Profile for Scheduling, Performance and Time, the 
UML Profile for Quality of Service and the newly released UML 2 specification further increase the 
suitability of UML for embedded and real-time systems [25]. 
 
However, software engineering research and products have had only a limited success in addressing 
the more constrained traditional problems of real-time and embedded systems [26].  



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :16 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

4.2.2 Unified Process 
The Unified Process (UP) [15] is a component-based process that is use-case driven, architecture-
centric, iterative and incremental. It describes a proven family of techniques that supports the 
complete software development life cycle. The UP was brought together by the people behind the 
UML and makes heavy use of it. The fundamental idea of the UP is to retain the organization of the 
spiral model (that prescribes to plan a phase, analyse risk, and do the step) in an iterative process 
where every macro-phase is organized in an incremental way, by means of several iterations (Figure 
8). 
 

time

Vision Baseline 
Architecture 

Initial
Capability 

Product 
Release

Inception Elaboration Construction Transition

 
Figure 8. The Unified Process is an iterative and incremental process. 

4.2.3 Dess 
The ITEA DESS project defines a methodology for component-based development on top of the UP 
[27], and a notation for component modelling on top of UML. The DESS methodology captures the 
best practices of the classical V development model and incremental development approaches.  It 
defines 3 workflow V’s that can logically be connected by means of artefact flows but without any 
time ordering. The 3 Workflow-V's, which can be seen as standing in parallel, are:  

• A Realization Workflow-V, containing workflows dealing with the realization of a system 
(system development);  

• A Validation & Verification Workflow-V, containing workflows dealing with validation, 
verification and testing;  

• A Requirements Management Workflow-V, containing workflows dealing with establishing 
and maintaining the requirements of the system on all levels of the organization.  

 
Although the approach supports incremental development, only the Requirements Management 
Workflow-V partially deals with evolution during the system lifecycle. But the DESS methodology can 
be used as a starting base for component-based development, extending it with adequate 
methodological support for evolution. The DESS component notation defines a component 
specification and documentation standard on top of UML. It supports component interface 
specification, component connections (wiring), hierarchical component development, component 
frameworks and connector specification and design. Although versioning is considered as a part of 
the component identification, little support is present for component and interface evolution. Also the 
DESS component notation can be used as a starting base for component modelling, extending the 
notation and specification with adequate notational support for evolution. 
 

4.2.4 Empress 
The ITEA EMPRESS project positions evolution of real-time and embedded component systems in 
the UP, allowing it to cope with product families and software evolution at design-time as well as run-
time. The resulting EMPRESS process has an extra run-time phase, next to the existing Inception, 
Elaboration, Construction and Transition phases. Also, it extends existing UP workflow details, 
activities and activity steps [28].  



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :17 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

4.2.5 MDA 
A recent trend in embedded software development is the application of model transformations. The 
Model-Driven Architecture (MDA) [29-31] as defined by the Object Management Group (OMG) is a 
state-of-the-art architecture for model-driven software development. MDA wants to obtain a maximal 
software reuse by abstracting the software development from the actual platform to run upon and the 
implementation language to use. This is achieved by developing a software model on a higher, 
platform-independent level, which is later on transformed into a model on a lower, platform-specific 
level, taking into account all specificities of the target platform. 
 
The key principle of MDA is the separation of a software system into a number of parts (models), 
such as a specification of the system functionality and the specification of the functionality realization 
(implementation) on a specific platform. MDA provides support for the realization of a system on 
several concrete platforms, both in parallel to each other as being part of the portability support 
during the total lifetime of the system. The architectural framework defined by MDA offers a number 
of guidelines to structure the models and transform higher-level models into lower-level ones. These 
mappings are used to target the described software system towards a concrete language and 
execution environment. As such, concepts for control software can be developed uniformly, and 
afterwards tailored to a concrete machine and execution environment.  
 
System integration is realized in MDA by integrating subsystems on the model level, supporting the 
reusability, integration and interoperability of the system concepts and the evolution of the software 
on top of the fluctuations of the state-of-the-art platform technologies. The basic concepts of MDA 
are models and model mappings. A model is a formal specification of the functional logic, the 
structure and the behaviour of a system at a certain abstraction level. Abstraction levels introduced 
by MDA are as follows: 

• The Computation Independent Model (CIM) is a system model that provides an abstract 
view on the software components within the system. It is computation independent because 
it doesn't further describe the design details of the components and their internal functioning. 
The CIM specification is thus limited to a description of the goals and functions of the 
software system, not how they operate or how they are realized. 

• The Platform-Independent Model (PIM) details the computational algorithms and the design 
details of the various software components, and further specifies the interaction between 
these components. But the model still hides the technical details and realization of the 
system (language, middleware platform, execution environment, operating system). The 
algorithms and component interactions are described on a platform independent manner, 
abstracting the technological realization details that are irrelevant for the fundamental 
functional realization of the system and its components. 

• The Platform-Specific Model (PSM) specifies the realization of the functionality on a specific 
platform. Technological details will be introduced related to the target platform. This model 
for instance uses language-specific concepts and concepts from the operating system on 
which the embedded software will run.  

 
The MDA approach is very promising for embedded software development, because the PIM to PSM 
mapping of MDA provides support for the realization of the same system on several concrete 
platforms. The realizations can be done both in parallel to each other at one moment in time, or as a 
retargeting of the system towards a different hardware and/or software environment as part of an 
evolution or porting process. 
 

4.3 Characteristics of Real-time Embedded Software 
Software development for Real-time Embedded (RTE) systems is characterized foremost by special 
requirements that are asked from the software. A thorough characterization of real-time embedded 
software characteristics has been done in a previous ITEA project DESS. The following description is 
a summary of the DESS results [32] with some additions by the authors of this deliverable. 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :18 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

4.3.1 Embedded system 

4.3.1.1 Common characteristics 
Embedded systems are all dedicated to one or more specific tasks. Large networked systems can 
include the whole technological spectrum of embedded systems from deeply embedded application 
specific hard real-time systems to software intensive applications.  

4.3.1.2 Generic definition 
 
Embedded systems are systems that are embedded as components in a larger system [26].  
 

4.3.2 Embedded software 

4.3.2.1 Common characteristics 
Embedded software is often constrained by the hardware’s capabilities, especially by the amount of 
memory and processing power available [33]. Because many embedded systems rely on battery 
power, it is crucial to design and validate them for controlled power consumption. Also, since 
embedded software is often implemented on small machines with limited RAM, it is necessary to 
include memory considerations in the design. [34] In addition, the hardware constraints can also 
hinder development by e.g. preventing running all test code at the same time in the test environment 
[35]. 

4.3.2.2 Generic definition 
According to IEEE [36], the part of an embedded system implemented with software, i.e. embedded 
software, can be defined as “software that is a part of a larger system and performs some of the 
requirements of that system; for example, software used in an aircraft or rapid transit system”. 
Embedded software consists of built-in computer programs for controlling high value-added products 
such as switching and production control systems, space instruments, wireless communication 
devices, home electronics goods, and mechatronic machines [37]. It can be classified based on its 
purpose of use to at least three major classes [37]: 

- System software, including the operating system, communication, device control and 
platform-specific functions (e.g. initialization tests, memory loader etc. by which it is 
possible to deal with hardware problems) 

- Product family software not unique to the application (to be used in products of several 
kinds) 

- Application software, which is specific to one application 

4.3.3 Real-Time System 

4.3.3.1 Common characteristics 
The real-time aspect of the embedded systems becomes apparent in many ways. Depending on the 
type of application, emphasis is put on delivering a service, the quality of the service, or a certain 
speed in responsiveness in delivering the service. 

4.3.3.2 Generic definition 
The correctness of real-time systems depends not only on the logical results but also on the time at 
which the results are produced [38].Usually, three types of “real-time” are distinguished: 
• Hard real-time. The deadlines of hard real-time services must be met because their missing can 

cause severe consequences. In the case of missing a hard real-time deadline, the embedded 
application will be considered “failed”. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :19 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

• Soft real-time. Soft real-time constraints allow that deadlines are missed, however in this case 
the quality of service comes into play. If the quality might be endangered in such a way that the 
overall result becomes unacceptable, the system may be considered “failed” as well. 

• Statistical real-time. Statistical real-time deadlines may be missed, as long as they are 
compensated by faster performance elsewhere to ensure that the average performance meets a 
hard real-time constraint. To be able to fully assess the consequences of the statistical 
behaviour, stochastic analysis is required. However, it is always possible to transform this into a 
deterministic analysis by investigating the worst case situation. 

 

4.3.3.3 Metrics 
Test equipment will have to be prepared to allow verification of several timing constraints (Figure 9): 
• Period: As the controller behaves periodically, all necessary computations and adjustments of 

actuators must be completed within the given time interval. The period is e.g. imposed by a 
sensor device delivering its value periodically. 

• Deadline: The deadline of a task is measured relative to the beginning of the period. The task 
has to be guaranteed to have finished before this deadline. Note that the deadline is less than 
the period length, if there are several tasks that have to be completed within the given period. 

• Response Time: This is the longest time ever taken by a task from the beginning of its period 
until it completes its required computation, i.e. including all possible interferences by higher 
priority tasks and interrupt routines. The real-time constraint is represented by the fact that the 
worst-case response time of a task has to be smaller than its deadline. 

• Release Time: An offset value that represents the arrival (release) of a certain task with regard 
to the beginning of the period. The release time of a task must not be later than thedeadline of 
the task minus WCET, where WCET is the Worst-Case Execution Time of the task. 

• Jitter: The amount of time the response time of a task can vary due to interferences and 
inaccuracies caused to it and its predecessors. 

 

 
Figure 9. The definition of time-constraint metrics 

4.3.4 Memory Constraints 

4.3.4.1 Common characteristics 
Memory constraints come in two flavours: constraints on the size and on the behaviour. Size 
constraints are particularly important in products for mass consumer markets. Indeed, if the memory 
of such products has to be increased, then this will have an immediate influence on the price of the 
appliance. Even for products where price is not an issue, the size is best determined in such a way 
that ample space is left for possible future extensions. Especially when microcontrollers with on-
board RAM and/or ROM are used, a substantial gain in cost can be obtained by designing the 
software in such a way that it fits the on-chip resources, and no additional, external memory is 
required. 
 
If there is a requirement for predictable, deterministic behaviour of the memory, then this constraint 
has an influence on the way the memory is used. Again, there is a hard and a soft version of the 
constraint. The hard variety demands that all bytes that are used are somehow accounted for by the 
application. For the soft variety, this is not required. However, deterministic behaviour usually 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :20 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

disallows dynamic memory use, as well as time-unpredictable features such as virtual memory, 
cache or garbage-collection schemes. 
 

4.3.4.2 Generic definition 
Memory constraints can be summarised as follows: 
• Cost: minimise the size to keep it as low as possible. For microcontrollers, the cost function has 

a discontinuity when the size of the required memory resources exceeds what is available on-
chip. 

• Load: maximise the size to cater for future extensions 
• Hard determinism: no dynamic behaviour, and all bytes accounted for 
• Soft determinism: no dynamic behaviour. 

4.3.4.3 Metrics 
The following metrics apply to memory constraints (and are quite self-explanatory): 
• Size 
• Load 
• Cost 
• Dynamic behaviour 
• Accounting for the data 
 

4.3.5 CPU constraints 

4.3.5.1 Common characteristics 
Two main issues are important to CPU constraints: 
• The CPU performance must be well dimensioned. The CPU must be sufficiently powerful so that 

the application’s algorithms still satisfy the real-time constraints. Also, the CPU must not be used 
at a 100% of its capacity at this time, to allow for future expansions. If the application is intended 
for mass markets, then care must be taken not to go for a performance overkill solution, because 
that might not be cost effective. 

• The CPU usage must be deterministic. To ensure a deterministic CPU usage, it is better to take 
a time-triggered approach rather than using an interrupt-driven approach, although this can not 
always be avoided. 

4.3.5.2 Generic definition 
CPU constraints can be reduced to: 
• Overall performance must be sufficient to support current requirements 
• Load must allow to cater for future extensions 
• Determinism: no dynamic behaviour, or at least try to reduce to the strict minimum 

4.3.5.3 Metrics 
The following characteristics of the CPU can be measured (e.g. with a logic analyser) or estimated 
by code inspection and processor spec study): 
• Intrinsic performance (from datasheets) 
• Actual performance (to be measured with e.g. logic state analyser) 
• Load (to be measured with e.g. logic state analyser) 
• Determinism of the behaviour (to be checked with e.g. logic state analyser and by inspection of 

the code) 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :21 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

4.3.6 Bandwidth Constraints 

4.3.6.1 Common characteristics 
A number of embedded applications have very stringent bandwidth requirements, dictated by the 
amount of communication that is required (e.g. over buses). It specifies the maximum amount of data 
that can be moved over a channel, e.g. in bits per second. Furthermore, there may be constraints on 
the total time that a communication is allowed to take. 
 

4.3.6.2 Generic definition 
The two constraints regarding bandwidth are: 
• Maximum transmission speed, which determines the maximum bandwidth the signal can/should 

use 
• Total transmission time, which becomes important if the speed at which the data is sent, has to 

be artificially reduced to meet the previous constraint, either due to the amount of data or the 
unavailability of the full bandwidth. 

4.3.6.3 Metrics 
Both constraints can be measured: 
• The average, maximum and minimum amount of bits, sent per second, can be monitored 
• The total time of a typical, a best case and a worst-case transmission can be measured to 

evaluate the quality of service rendered. 
 

4.3.7 Power Consumption Constraints 

4.3.7.1 Common characteristics 
Especially in handheld appliances, power management has an important impact on the autonomy of 
the system. Therefore, it must be under control right from the beginning of the design. Also, as the 
power is in such cases drawn from a battery, these constraints will have an impact on the overall 
design of the appliance, and indeed, the choice of battery. Specifically for software, care must be 
taken that the hardware is used only when required (e.g. if the system contains a heater or a 
backlight, don’t switch it on when it is not necessary). 
 

4.3.7.2 Generic definition 
There are several direct and derived aspects to the power consumption constraints, and this time, 
not all of them can be expressed as electric or temporal quantities: 
• Autonomy of the system 
• Cost 
• Weight 
• Dimensions 

4.3.7.3 Metrics 
The power consumption of the embedded system can readily be measured: 
• Power = voltage * current, both of which can be measured 
• Energy capacity of the battery (from the battery specs) 
Other quantities: 
• Dimensions 
• Weight 
• Cost 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :22 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

4.3.8 Functional characteristics 
Functional characteristics describe the system. Although they can be categorised, deriving metrics 
from them is quite impossible. This feature therefore has been omitted 

4.3.9 Communication 

4.3.9.1 Common characteristics 
Embedded systems usually have one or several means to communicate besides the User Interface. 
They can be classified as follows: 
• Bus as an internal communication between its constituent parts 
• Bus as a dedicated external communication to similar and/or different devices 
• Network as an open connection to similar and/or different devices 
• Physical read/write devices (magnetic/optical media, …) 
 
 
All possibilities share one feature: no matter how the connection(s) is (are) ultimately established, 
strict protocols are to be followed. Those protocols dictate some of the real-time and performance 
requirements. 
 

4.3.9.2 Generic definition 
A distinction can be made based on the communication type: 
• Internal bus 
• External bus 
• (Wireless) network connection. 
• Carrier 
 
They all make use of one or more protocols. 
 

4.3.10 User interface 

4.3.10.1 Common characteristics 
Most embedded systems perform some interaction with the human operator as well. To accomplish 
this, a large variety of interfaces are available: 
• Keyboard 
• Display with GUI 
• touch screen 
• voice input 
• voice output 
• image input 
• fingerprint (for identification and authentication) 
• sensors, measuring other types of data 
 

4.3.10.2 Generic definition 
A classification is needed here to describe the different I/O possibilities: 
• Manual input (keyboard, touch screen) 
• Visual input (scanners) 
• Visual output (display, possibly with GUI) 
• Voice input 
• Voice output 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :23 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

• Sensor input 
 

4.3.11 Command and control 

4.3.11.1 Common characteristics 
Command and Control functions usually remain restricted to the embedded system itself, but in 
some applications, an embedded system may get additional authority to control other (embedded) 
systems of the larger system it is part of. This is usually done by allowing the embedded system to 
take in, or drive discrete and/or analog lines. 
 

4.3.11.2 Generic definition 
Basically, only two kinds are available: 
• Discrete I/O 
• Analog I/O 
 

4.3.12 Operational characteristics 
For these types of characteristics, it is oftentimes quite difficult to distil some generic definitions. 
Even more cumbersome (and indeed in many cases impossible) is to derive metrics from them. 
Therefore, definitions and/or metrics were only added where they made sense. In the other cases, 
they were simply omitted. Only extensive testing and verification against the defined requirements for 
the system can reveal whether a design goal is not met. Needless to say that in view of the large 
variety of systems, this task is very difficult to generalise. 
 

4.4 Quality Attributes of Embedded Software 

4.4.1 Quality of Service 

4.4.1.1 Common characteristics 
For most of the partners, this is the number one characteristic. Although “Quality of Service” is a very 
vague term, it can be described by the following three phrases: 
• The service must be delivered with the desired functionality; 
• The service must be delivered in a timely manner; 
• Sometimes, also a quick readiness after switching the appliance on is very desirable. 
 
The level of fulfillment of these aspects can vary even for one and the same embedded system, 
depending on its set of “missions”, or intended purposes. On one occasion, only a very basic 
functionality/service may be required, while put in another situation, much more is expected from the 
same appliance. Depending on the requirements put to it, it may happen that the additional 
functionality/services required from the system need not to be delivered at the same high quality of 
the basic functionality, and that it is perfectly acceptable that the quality goes down even further 
when the system is solicited even more. This is usually called “graceful degradation”. 
 
Although “Quality of Service” is impossible to quantify, it can be broken down into other aspects, 
which may prove a little easier to handle, e.g.: 
• Functionality (see Section 4.3.8): can be checked against specifications 
• Timing constraints (See section 4.3.3): can be quantified 
• Dependability (see Section 4.4.2) 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :24 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

4.4.2 Dependability 

4.4.2.1 Common characteristics 
This characteristic seems very subjective at first. Yet, it is of utmost importance for most embedded 
systems. The Quality of Service provided by e.g. a handheld appliance “depends” on it; In case the 
embedded system is used in a safety-critical situation, the safety of the operators (and possibly 
many more people) “depends” on it. 
 
Operators must be able to put their trust into the system. This can only be achieved when the system 
has a high rate of availability, and provides reliable service to the user. However, this is usually not 
enough. How can an operator put his trust in a system when there is no way of verifying the 
correctness of its operation? The notion of safety comes into play at this point. This means that 
dependability can be further expressed in terms of these three characteristics, which will in turn 
provide a way to quantify dependability. 
 
When redundancy is built into the system, then this will have an impact on the dependability.  

4.4.2.2 Generic definition 
Trustworthiness of a system such that reliance can justifiably be placed on the service it delivers. 
Availability, reliability and safety must be ensured. 
 

4.4.3 Availability 

4.4.3.1 Common characteristics 
In applications where short periods of downtime are acceptable, they must be minimised in order to 
maximise the availability of the service that is delivered (closely related to the Quality of Service). A 
number of statistical methods, based on the history of the system, have proven their value on the 
hardware level. For software, however, most of the stochastic approach is still being investigated 
and/or developed. Dependent on how redundancy is built into the system, there will be an impact on 
the availability. See section 4.4.4 for a discussion in combination with related characteristics. 
 

4.4.3.2 Generic definition 
Measure of correct service delivery with respect to the alternation of correct or incorrect service 
(dependability with respect to readiness for usage). 
 

4.4.3.3 Metrics 
Cumulative downtime or uptime over an extended period of time (possibly expressed as a 
percentage) are the typical measures used to describe this aspect. Also the number of failures per 
(extended) period of time (e.g. a year) can provide valuable information, or even better, the mean 
time of occurrence of the first failure. These are statistical metrics, which can be drawn from historic 
data, if available. 
 
At this time, it makes sense to distinguish between repairable systems (either subject to 
maintenance and/or failing systems can be replaced entirely) and non-repairable systems 
(inaccessible systems like satellites). For the latter ones, cumulative up or downtime has little or no 
meaning. If a failure causes the system to go down, then it becomes practically impossible to get it 
operational again. It is not always necessary to consider the fact if a system is repairable or not, but 
whenever it is believed to have an impact on the characteristic, it will be taken into account. 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :25 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

4.4.4 Reliability 

4.4.4.1 Common characteristics 
The reliability is closely related to the safety: it is the length of time the system must be able to 
operate without the safety aspects being jeopardised. Very often, reliability and safety are therefore 
treated together, and usually, a trade-off will have to be made between them. A means to change 
reliability/safety can be adding redundant systems, or adding components to verify the correct 
operation of the basic functionality. The net result of redundancy is that safety increases (more error 
situations can be detected and trapped/reported), but that reliability decreases (the redundant 
system itself can fail as well). 
 
Again, probabilistic approaches can be used to refine the reliability measure. Such a metric could be 
the probability that a failure occurs before a certain time elapsed. Those approaches are again much 
better defined for hardware than for software, and if it is not possible to derive this from historic data, 
an a-priori analysis is very difficult for a software application. 
 
If redundancy is added to the system, with a decision-making algorithm to sort out the failing 
subsystems and (possibly) stop the whole operation as soon as the discrepancies become too big, 
then this will have a definite influence on the four characteristics which are closely linked together: 
dependability, availability, safety and reliability. In general: 
- safety will go up (there are backup subsystems that can take over) 
- reliability will go down: (there are more possible causes for failures, also the decision-making 

subsystem itself can fail) 
- if the decision-making algorithm has the authority to shut down the overall system, then 

availability might go down as well (more possible failures can cause more alarming situations 
than before) 

- the dependability will definitely be influenced by the characteristics above, but the question if it 
will improve or deteriorate depends on which of the three characteristics are focused. 

 

4.4.4.2 Generic definition 
Measure of continuous correct service delivery (dependability with respect to continuity of service). 

4.4.4.3 Metrics 
Usually, quantities like MTBF (Mean Time Between Failures) are calculated/estimated. This metric 
loses its meaning for non-repairable systems. The first failure is usually fatal. Therefore, it is more 
important to use MTTF (Mean Time To Failure) in this case. 
 

4.4.5 Safety 

4.4.5.1 Common characteristics 
A more stringent aspect than reliability is the safety of the embedded application. Software safety is 
concerned with the problems of building software for embedded systems where failures can result in 
loss of life or property. Potential hazards must be defined, and the probability of their occurrence 
estimated. Of course, this occurrence must be avoided at all cost, but the probability is never zero, 
because electronic failure rates are not zero either. In this case, possible software failures must be: 
• Traced, so that can not lead to one of the defined hazards (fault tree analysis); 
• If it does lead to a defined hazard, the probability is lower than the one defined; 
• Any occurrence is detected and announced to the operator, so that corrective actions are still 

possible. 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :26 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

Safety will definitely be influenced by redundancy. See section 4.4.4 for a discussion in combination 
with related characteristics. 
 

4.4.5.2 Generic definition 
Measure of continuous delivery of either correct service or incorrect service after benign failure 
(dependability with respect to the non-occurrence of catastrophic failures). 
 

4.4.5.3 Metrics 
Fault analysis will lead to requirements, which need to be added to the specification requirements 
and they must be tested against. This metric as such is unavoidably following from a stochastic 
analysis. If historic data is available, then a metric similar to MTBF can be redefined to reflect the 
Mean Time Between Catastrophic Failures, or the mean time of occurrence of the first catastrophic 
failure can be derived. For non-repairable systems, the MTTF should again be used instead. 
 

4.4.6 Robustness 

4.4.6.1 Common characteristics 
This depends on the kind of application, but embedded systems are often used in environments 
where reset and/or repair are not desirable. In that case, the system must be up at all times, and it 
must remain functional, even when the data sent to it is erroneous. The embedded system must be 
able to handle any circumstance in which the overall system is used. 
 

4.4.6.2 Generic definition 
The degree to which a system or component can function correctly in the presence of invalid inputs 
or stressful environment conditions. 
 

4.4.7 Testability 

4.4.7.1 Common characteristics 
There are two distinct aspects to the testability of an embedded system: the testability of the 
application during development and/or qualification for use, and the ability of the embedded system 
to evaluate its own condition. 
 
Testability at development time is not an easy issue. Some formal methods/tools allow to test and 
verify (and in some cases: prove) that a certain automaton is behaving the way it was designed, or 
conversely, that it is not. A clear advantage of this approach is that a large part of the embedded 
software application can be tested without the need for the final hardware. The development 
environment can already be used. Coverage analysis is a good example of what can be 
accomplished in a simulated mode. 
 
One of the topics described in the safety aspect was the ability to detect and announce the 
occurrence of a failure. This means that substantial efforts must be made to allow for the 
implementation of Built-In-Tests, which monitor the health of the system. In order to accomplish this 
task, it may be required that special components are added to provide the required feedback. 
Although the additional components will reduce the reliability, they will have a positive effect on 
safety. Special care must be taken when such components, or even parts of the application, are 
provided by a third party. 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :27 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

4.4.7.2 Metrics 
Although it is very difficult to measure the complexity and testability of software, a number of 
quantities can be calculated (e.g. McCabe number). Many software development tools allow the 
programmer to calculate this indicator. It is to be used with care though, because it is not that difficult 
to influence the number by non-essential tampering with the source code. 
 
A good indicator that can be used, however, is the amount of coverage of the requirements that can 
be obtained from the tests that have been conducted. Tools and formal methods exist for 
accomplishing this task. 
 
Defining a metric about “how well” an embedded system is capable of self-diagnosing its current 
state is next to impossible at this point. 
 

4.4.8 Maintainability/Serviceability 

4.4.8.1 Common characteristics 
For some applications, it is a must that defective systems can be replaced and/or repaired very 
quickly. Even when this aspect is not a requirement, it is highly desirable to ensure customer 
satisfaction. 
 

4.4.8.2 Metrics 
MTTR stands for Mean Time To Repair and is an important indicator for repairable systems. 
Although this is a very deterministic measurement, there are so many external factors that can 
influence the actual repair time. In case a more sophisticated measure is needed, a statistical 
approach may be taken, and instead of looking at the (constant) MTTR, the probability that the actual 
repair time exceeds the MTTR can be investigated. In most practical situations, however, the MTTR 
proves to be adequate to describe a system’s maintainability. It is clear that MTTR only applies to 
repairable systems. 
 

4.4.9 Security 

4.4.9.1 Common characteristics 
Some embedded systems have direct access to public networks. The problem at hand is that the 
opposite also holds: the public network has access to the system. This must be handled with 
extreme care, and the usual solutions which hold for “standard” computers, are not powerful enough 
to ensure secured access. 
 

4.4.9.2 Generic definition 
Dependability with respect to the prevention of unauthorized access and/or handling of information. 
 

4.4.10 Field loadable Software 

4.4.10.1 Common characteristics 
Upgrading software is a very important aspect: it allows to correct possible flaws, and/or provides a 
possibility to enhance the functionality in the field. Care must be taken that the new software 
versions are still compatible with the older hardware. 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :28 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

4.4.10.2 Metrics 
Some measures will have to be taken and verified to ensure data integrity during and after download. 
Needs proof by analysis. 
 

4.4.11 Configurable software 

4.4.11.1 Common characteristics 
From a supplier’s point of view, it is very interesting to reuse large parts of previous systems. -New 
products are often based on software components or products baselines developed in the previous 
projects [39]. Thus, considering the issues related to the reusability of the product under 
development is necessary. Still, different customers will have different requirements, even when the 
same standards are followed. Also, if the same software is to be used on different systems with 
different capacity, then developing the software in such a way that it is scalable is an important 
advantage. Control over the scale itself is then exerted through configuration. Making the software 
configurable is a major factor in decreasing development time. 
 

4.4.11.2 Metrics 
Care must be taken that only the parts of the software that apply to the application at hand are 
activated and nothing else. Needs proof by analysis 

4.4.12 Flexible Software 

4.4.12.1 Common characteristics 
Closely related to the previous topic is the flexibility of the software that is developed. Not only is it 
desirable to make small adjustments to a particular application (configurable), it also has to possible 
to accommodate for late changes in specs, or simply reuse of a certain part of the software in an 
entirely different area. So, a well-thought API is always a big advantage. 
 

4.4.12.2 Metrics 
Care must be taken that only the parts of the software that apply to the application at hand are 
activated and nothing else. Needs proof by analysis. 
 

4.5 Software architecture characteristics 
Again, generalising the following aspects of embedded systems is quite difficult. The way these 
characteristics are usually verified is through inspection of design, code or test cases. 

4.5.1 Software Architecture 

4.5.1.1 Common characteristics 
Embedded software is usually organised in several layers. Practice has shown that in many cases, 
the number of layers turns out to be three: 
• I/O hardware access, operating system; 
• Middleware, not really tightly linked to hardware, but providing basic services such as device 

drivers and interrupt handlers. Access to this layer is done through an API. A very interesting 
approach is to implement a “virtual machine” at this level. This way a nice path towards 
portability is laid down; 

• Top layer contains the functionality of the application. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :29 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

 
The main advantage of such an organisation is that general and application-dependent features can 
be kept apart quite nicely. Also, if needed, different software development tools can be deployed per 
layer. 
 

4.5.2 Scheduling Type 

4.5.2.1 Common characteristics 
This is very dependent on the type of constraints that were put forward: hard or soft real-time 
requirements. For hard requirements, a time-triggered approach is to be preferred, because it is a lot 
easier to prove that the software has a predictable behaviour. When reaction time to external 
influences is of the highest priority, and hard requirements are not present, then an event-driven 
architecture might give better results. A mixed approach is also possible. 
 
For some applications, many events have to be handled in parallel, so yet another scheduling is 
required: concurrency. This can be achieved in close interaction with an operating system that has 
this functionality, or a static or dynamic scheduling scheme can be compiled directly in the 
application. It will become apparent from what follows that this choice will have many consequences. 
 

4.5.3 Interrupt handling 

4.5.3.1 Common characteristics 
When hard real-time requirements have the highest priority, then the frequent use of interrupts 
should be avoided as much as possible, because they have a negative influence on the predictability 
of the software. A polling-scheme or other time-triggered approach is better. 
 

4.5.4 Tasking and Exception Handling 

4.5.4.1 Common characteristics 
The same remark holds for these features, although an exception would be allowed to signal 
hardware failures. 
 

4.5.5 Processor privilege usage 

4.5.5.1 Common characteristics 
In most cases, the mode with most privileges is used to allow direct and strict control over all 
hardware, which again is improving the predictability. The use of dual modes can be beneficial when 
strict software partitioning is required. 
 

4.5.6 Languages used 

4.5.6.1 Common characteristics 
 
As was to be expected, a large variety of languages are used: from assembly language over C to 
object-oriented languages such as C++, Java and Ada. The code is often implemented using a low-
level language such as assembly, because of the need for performance optimization (e.g. timing and 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :30 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

power consumption constraints) [40]. This makes the code hard to understand and monitor for 
quality and consistency [39], is more error-prone and needs low-level code implementation testing 
more than higher-level languages [41]. 
 
Also, modelling languages such as UML and SDL are in use, or ESTEREL for creating finite state 
machines. For designing GUIs, graphical rapid prototyping are used quite often. 
 
It would seem that when safety-criticality aspects of the software have higher priority, there is a shift 
towards more abstraction: higher-level languages and modelling descriptions. Although the costs 
involved are usually higher, and learning curves are steeper, the long-term benefits are worth it. 
 

4.5.7 Modularity 

4.5.7.1 Common characteristics 
By carefully separating the different functionality of the embedded software into different modules, 
the way lies open to define a consistent, recognisable template that can be reused throughout the 
whole application. By maintaining strict rules and discipline in the implementation of such an 
approach, reuse and a full-fledged component approach are within reach. 
 

4.5.8 Portability 

4.5.8.1 Common characteristics 
The development environment and the language constructs used should ensure portability as much 
as possible, to avoid software changes each time the hardware is upgraded or replaced. 
 

4.5.9 Configurability 

4.5.9.1 Common characteristics 
Whereas a previous section already discussed this feature to some extent, it only dealt with the static 
aspect of changing the configuration of the embedded software. This time, the dynamics of the 
program sometimes need to be changed on the fly, at runtime. If the changes control a part of the 
software that steers hardware, then the system may behave quite differently after such a change. 

4.5.10 Operating Systems and Kernels used 

4.5.10.1 Common characteristics 
Again, the architecture choice impacts this aspect a lot. If requirements disallow the use of a number 
of features, then an appropriate choice of OS and/or kernel can make the embedded software 
application more deterministic, and can be a big help in proving that this is the case. Use of a 
stripped-down kernel, or even eliminating the need for a kernel can be a valid choice. New research 
efforts about component-oriented run-time layers proves very promising, but also the more 
“classical” real-time operating systems have their merit, depending on the type of application, 
because they provide extendibility towards the future. 
 
Care must be taken when using the memory features of the processor or the operating system. For 
some application, it is considered no problem to make use of virtual memory and/or cache. Other 
applications can not allow those features to be used, again for reasons of predictability. 
 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :31 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

4.5.11 Hardware architecture characteristics 
Due to the large variety of possible used hardware components and architectures, generalisation 
and measurement is quite difficult, if not impossible and was therefore omitted. The characteristics of 
the hardware usually follow from: 
• The specifications of the customer 
• Decisions made in the design to meet the specifications 
• Conclusions deduced from a prototype. 
 

4.5.12 Development tools 

4.5.12.1 Common characteristics 
In embedded software development, the use of custom hardware and real-time and performance 
constraints result to a limited set of development tools which can be used [40], and for example, can 
force the project to develop their own tools if suitable ones are not available [41]. In addition, most 
development environments and tools for creating and debugging embedded software are primitive 
compared to equivalent tools for richer platforms [42, 43]. Various commercial and also experimental 
environments are used to control several aspects: 
• High-level design tools + code generators 
• Language-specific development environments 
• Graphical rapid prototyping + code generators 
• Configuration management tools 
• Test case generation packages 
• Documentation generation packages 
• Scheduling tools 
• Problem reporting/tracking tools 
• Requirements tracking tools. 
 
 

4.6 Embedded Agile Software Development 

4.6.1 Unifying Embedded and Agile Software Development 
 
Recently a number of new challenging but very promising research directions were opened, unifying 
agile software development methodologies with analysis and modelling, with more rigorous plan-
based methodologies such as UP and MDA, with standards and certification, such as CMMI and 
DOD-STD-2167, and with real-time and embedded system development. Since most agile 
methodologies focus on code and neglect the higher-level software development activities such as 
analysis and modelling, a crucial part of the software development process is rather neglected. 
Recently, a number of attempts have been made to integrate analysis and modelling with agile 
principles, resulting in e.g.. Agile Modelling [2] and extreme modelling [44]. 
 
Although the Unified Process (UP) and agile software development seem to be quite contradictory 
on first sight, they are not necessarily exclusive since synergisms are possible and can offer the best 
of both worlds [45-47]. By incorporating techniques from both methods, an innovative process seems 
possible that delivers better quality software quicker than today. Since the Unified Process is a 
process framework, it can be tailored to the project discriminants that agile methodologies explicitly 
established and that are compatible with the overall UP superstructure. As such, important agile 
practices can be incorporated in the development process, while still acknowledging the importance 
of architecture, model abstraction and risk assessment. An Agile-oriented RUP instantiation can thus 
be made as light- or heavy-weighted as desired (in artefacts, deliverables, formality, rules, 
processes, …), as even Grady Booch himself explains in describing dX - A minimal RUP Process 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :32 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public 

 

 
© Copyright AGILE Consortium 

[48]. Regarding MDA, current research is trying to apply and integrate agile approaches within the 
MDA framework, resulting in a Agile Model-Driven Development (AMMD) approach, a more realistic 
and light-weight down-to-earth approach as an alternative to very complex MDA-related tools and 
methodologies [49-51]. 
 
Regarding standardization, current research is focusing on integrating agile methods within a CMMI-
standardized environment [52]. While standards provide guidelines what to do at an organizational 
level, agile methods can provide solutions to how to do it, how to develop software at a project level. 
Together, these models could form an innovative, comprehensive framework for structuring the 
software development organization. 0n the other hand, standards are also evolving and adapted in 
order to enable IID (iterative and incremental development) [53]. For instance, the DOD-STD-2167 
standard was updated to DOD-STD-2167A and later to MIL-STD-498 in order to be able to perform 
evolutionary development. 
 
Since embedded software development has a number of specific requirements and characteristics, 
embedded software development differs significantly from classical software development. This 
means that the agile development methods and practices as applied for classical software 
development can not identically be copied for embedded real-time software development, but have 
to be evaluated, adapted, extended and integrated with proven embedded software development 
techniques in order to meet its specific requirements. Although embedded systems are quite an 
unexplored domain field for the application of agile methods, recently research is being done to 
investigate how and which agile practices can be applied within embedded real-time software 
development [35] [54]. 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :33 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

 

5. EMPIRICAL BODY OF EVIDENCE: STATE-OF-THE-ART 
Authors: Hanna Hulkko, VTT 
 Tuomas Ihme, VTT 

5.1 Introduction 
 
This chapter contains a summary and review of the existing experiences on adopting agile 
methodologies or practices in embedded software development projects. The document is based on 
a literature survey, in which the existing experiences have been collected.  
 
A brief overview on the challenges facing embedded software development is given together with 
motivation why agile methods should be adopted in the field of embedded systems development. 
Then, the existing experiences of adopting agile practices in embedded systems development 
projects are presented according to different stages of software development lifecycle. Motivation 
why to use a specific agile practice in embedded software development is provided together with the 
challenges of its adoption resulting from the characteristics of the embedded domain. Additionally, 
positive and negative experiences from the practice’s adoption are summarized together with 
practical advice on how to apply the practice, and how the practice can be modified to suite the 
needs of embedded software development. Then, the reported experiences of all practices are 
summarized, and shortcomings of the current knowledge are discussed together with identified 
needs for future research. Finally, the identified future research needs are mapped with the scope 
and goals of the AGILE-ITEA project.  
 

5.1.1 Challenges facing the development of embedded software  
 
For a large embedded software project a hybrid method blending and balancing the features of 
different agile and non-agile methods and practices is often the choice due to varying characteristics 
of the different parts of the product [55]. Software methodologies should today provide a capability to 
develop, deploy, and evolve complex real-time and embedded systems whose requirements, 
platforms and operating environments are only partially fixable and may change unpredictably. The 
following special challenges will be discussed in more detailed: changing hardware requirements, 
unavailability of target hardware and presence of large, heterogeneous teams.  

5.1.1.1 Changing hardware requirements 
 
In embedded systems, a change in one component (hardware or software) usually causes a change 
in another [56]. Often, the hardware requirements and design are incomplete at the beginning of the 
project, which leads to requirement changes on software created by hardware [35, 39]. The changes 
in the hardware design and interfaces are often adapted with software, since changing the software 
is cheaper and easier [57]. After the hardware is ready, fixing and tuning the system are made with 
software as the needs are discovered, which again means unexpected requests and changes [57]. 
These changing requirements often cause also delays in project schedule, which can cause 
bottlenecks in embedded software projects, where e.g. the hardware development is incomplete 
when the software is ready for testing [56]. All these issues together with high costs and practical 
limitations of after-release corrections require high effectiveness of pre-release change identification 
[39]. 

5.1.1.2 Unavailability of target hardware 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :34 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

In embedded systems development project, the software and hardware are usually developed 
concurrently, and thus, the target hardware is not available until late in the project [33]. This causes 
problems for testing the software, e.g. by making early integration testing difficult [39], and creating a 
need for using simulators for testing purposes.  

5.1.1.3 Presence of large, heterogeneous teams 
 
The software developers in embedded systems development projects have often background in 
electrical engineering [57] unlike traditional software engineers. In addition to the software teams 
involved in embedded systems development, hardware, mechanical, and business teams are often 
present. Since the embedded systems development projects can require tens or hundreds of person 
months and input from numerous areas of expertise, the teams are often large. Additionally, the 
teams can often be geographically distributed between different sites [35]. In addition to the 
presence of heterogeneous teams, the concurrency and sharing of software parts places high 
demands on communication between the different technology groups. Thus, shared communication 
mechanisms, information distribution and distributed decision making are very important in 
embedded system development [39]. 
 

5.1.2 Motivation for using agile methods in embedded software development 
 
Some of the characteristics of embedded systems and software development discussed in Chapter 4 
and also in the previous section create a special need for the adoption of agile methods and 
practices. As one of the main principles and motivation behind all agile methods is responding to 
changes in e.g. requirements or technology [58], the volatile nature of embedded software 
development, which is mainly caused by the changing hardware requirements, can be obviously 
accommodated with the use of agile methods [35, 57, 59]. The iterative development approach and 
periodical re-evaluation and planning of the project and its goals enables the embedded software 
developers to respond to the changing hardware design. In addition, it decreases the probability of 
after-release changes, which is important since most embedded software programs are stored in 
ROM, and thus it is very expensive to change the software once the final image has been transferred 
onto the chip [56]. The iterative and incremental design approach is also useful in the development 
of safety-critical software, since it enables periodical re-evaluation of safety-issues and helps to find 
failure scenarios [60]. 
 
Another characteristic of embedded systems development in favor of adopting agile methods is the 
elevated importance of testing [35], as testing is also a central activity in several agile methods, such 
as eXtreme Programming [3], Lean Software Development [8] and Dynamic Systems Development 
[10]. According to Grenning [33], unit and acceptance testing practices of eXtreme Programming 
enable embedded software developers to make meaningful progress prior to hardware availability. 
Removing defects from the product through resilient testing in different lifecycle stages also 
increases the reliability of the end product, which is very important in many embedded systems (see 
Chapter 4 and also the previous section). Additionally, testing helps to minimize the probability of 
after-release defect corrections, which are very expensive and difficult because they are often mass-
produced [40]. However, the embedded system development places also specific constraints to 
testing (see section 5.5), which can affect the feasibility of the agile testing practices.  
 
Third aspect of agile methods, which makes them well suited for the needs of embedded systems 
development, is their emphasis on communication and collaboration. Since embedded systems 
development involves large, multidisciplinary and often geographically distributed teams (see the 
previous section), there is a need for efficient communication between the different teams, especially 
hardware and software developers [35]. Also, embedded software development projects can have 
several stakeholder groups, such as partner developer company, internal management, internal and 
external customers, mechanical and hardware engineers, and adopting agile practices such as the 
Planning Game can simplify the software team’s interface with the stakeholders [61].  



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :35 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

 
Finally, the hardware engineering backgrounds common to embedded software developers can be a 
source of change resistant attitudes and on the other hand, a reason for lack of knowledge on 
general software development activities and practices. According to Greene [57], the attitude 
problems can be overcome by adopting agile practices, since the agile principle of barely sufficient 
process decreases the reluctance to adopt new practices and tools, and the agile principle of valuing 
people over processes helps to overcome the developers’ aversion to oppressive processes. This is 
also supported by Morsicato and Poppendieck [60] who argue that XP practices are adopted more 
voluntarily than “traditional” software development processes, because XP contributes and improves 
the developers work directly, and does not feel like an extra burden forced by the process 
improvement instances. Additionally, adopting agile practices can be an effective way to transfer 
some of the best practices of software development to the developers with hardware engineering 
backgrounds [57], and thus increase their knowledge on software engineering.  
 

5.1.3 The experiences of adopting agile practices in embedded software 
development 
The experiences of adopting agile practices in embedded software development projects are 
presented in the following sections according to subsequent lifecycle stages of software 
development, i.e. planning and project management, design, implementation and testing. The agile 
practices, of which there are reported adoption experiences, are discussed one at a time under 
appropriate lifecycle phases. The following issues are covered: 

- Motivation, i.e. to which special characteristics or needs of embedded systems 
development the practice can contribute to 

- Challenges, i.e. special characteristics of embedded systems development, which might 
impede the adoption of the practice 

- Positive experiences, i.e. reported benefits gained from adopting the practice 
- Negative experiences, i.e. reported drawbacks faced when adopting the practice 
- Suggestions for adoption and use, i.e. practical advice on how to apply the practice, 

and how the practice can be modified to suite the needs of embedded software 
development. Also, additional practices (“embedded agile” practices) suggested to be 
used in embedded software development projects to support the adoption of agile 
practices are presented here, if they have been reported.  

 
A summary of the experiment reports, from which the positive and negative experiences can be 
found in Appendix 1. Additionally, the summaries of Appendix 1 have been utilized in Section 5.6, 
where the types of development projects where agile practices have been adopted are discussed, 
including e.g. different application domains and product types. 
 

5.2 Project management and planning 

5.2.1 Planning Game (iteration planning) 
 
Planning Game is a joint session between the customer and developers where the contents of the 
next iteration is planned. In XP, Planning Game is held in the beginning of each iteration. [3] 
 
 
Practice Planning Game (iteration planning) 
Motivation - Embedded systems development is unpredictable due to potential need 

for performance optimization and effort needed to find complex, hidden 
bugs [40]. Thus, iterative planning is more feasible than trying to 
predict the whole project in the beginning.  

- The final split between HW and SW functionality is done at a late stage 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :36 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

of the development, and the software may have to be tuned to meet 
technological constraints related to memory and power consumption. 
This is why SW requirements cannot be frozen initially, but they should 
be refined iteratively. [35] 

- The incremental planning enables the periodical re-evaluation of safety 
issues and helps to find more failure scenarios, which is needed in 
safety-critical systems development [60] 

Challenges - Majority of embedded systems software is not directly visible to the real 
customer, which limits the possibilities and value of communication 
between the developers and end customer [40]. There's often only very 
few user stories but each user story comprises a multiplicity of complex 
functions. 

- Since embedded software can have limited interaction with user, 
development is often based on architecture and high-level design 
specifications rather than user requirements [40]. 

Positive experiences - Planning game simplified the team’s interface with multiple 
stakeholders (partner company, internal management, internal and 
external customers, mechanical and HW engineers) [61] 

- Including team members to making estimations increased commitment 
[62] 

- Direct communication with the customer improved visibility and 
improved the team’s attitude. Also, a clearer definition of expectations 
was obtained. [62] 

- Helps to avoid unattractive, wrong or obsolete features [55]. 
Negative experiences - End user not interested from software or a part of software, but from the 

whole embedded product, and thus getting priorities from the end 
customer is not feasible [63] 

- Only 80-90% of the requirements were captured at planning game, rest 
were discovered during implementation (due to lack of end customer) 
[64] 

Suggestions for 
adoption and use 

- A marketing team with technical expertise or engineers with business 
expertise can act as a proxy for the real customer to define and 
prioritize the features for the project and next iteration, because the 
actual customer might not understand or be interested in the technical 
decisions, because they are not necessarily visible directly in the end 
product. The real customer and the proxy should frequently discuss the 
overall development to make sure they have the same visions for the 
system. [40] 

- For the initial development cycle (early iterations), do an up-front 
product feasibility study. For follow-on development cycles, do an up-
front feasibility study. Establish general long term plans focusing on the 
decomposition of the project into small components and stories. [40] 

- Hardware team can be used as customer to define and prioritize 
requirements with [63] 

- HW requirements should be fixed first, and then SW requirements can 
be defined and planned as in XP [65] 

- Since the most critical requirements should be implemented first 
according to XP, this means planning and implementing the device 
drivers first (real-time requirements depend on device drivers, HW 
needs to be verified for production with drivers, and testing needs I/O 
functionalities) [65] 

- Stable and volatile parts of SW were identified, and long term planning 
was made to the stable ones, but the volatile parts were planned only 
one iteration ahead [62] 

- If dedicated customer is not an option, majority of requirements should 
be established before the first iteration [64] 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :37 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

5.2.2 Short Iterations / Small releases 
 
In XP, new releases of the system are made in short cycles, which span from days to couple of 
months [3]. The same principle of short iterations is also a central part of the whole agile philosophy 
[58]. Additionally, the small releases support the concept of small and incremental changes important 
in agile software development. 
 
Practice Short Iterations / Small releases 
Motivation - The software requirements change constantly due to hardware 

changes in an embedded project. Short iterations provide a good 
possibility for adjusting to these changes. [35] 

- Embedded software development is experimental in the beginning, but 
the practices should turn more rigorous as the project progresses due 
to the increasing area of impact of SW changes [35]. Short 
development cycles provide a good possibility for adjusting the 
practices. 

Challenges - Decomposing the functionality into small releases can be hard, 
because embedded systems are often monolithic systems (i.e. do not 
function without all components), which are composed of several, 
distinct-purposed components. [40] 

Positive experiences - Smaller releases enabled early risk alleviation by providing a possibility 
to test tools while producing a limited set of functionality in the first 
iterations [64]. 

Negative experiences - Because development was focused at one feature at a time, feature’s 
interaction was not considered enough and thus the most complex 
tasks were faced at the end of the project [64]. 

Suggestions for 
adoption and use 

- Release schedule was integrated to system integration and testing 
schedules [64]. 

- 3-month release cycle chosen so that one feature could be done in one 
iteration [64]. 

- Extra-long cycles may be required at the start of the project. A large 
amount of work is needed up-front to do detailed feature 
decomposition plans to allow for rapid cycles. [40]. 

 

5.3 Design 

5.3.1 Simple Design 
 
According to XP, the software should be designed in the simplest way, which meets the 
requirements [3]. Aiming to simplicity is also a part of the overall agile philosophy [58].  
 
Practice Simple Design 
Motivation - There are inherent needs for simplicity in embedded software design: 

- Although embedded systems are layered (HW, HW-specific SW 
and application SW), over-design of layers should not be done [65] 

- The need for an operating system should be assessed for cost-
benefit, and the use of operating system avoided for simplicity if 
not necessarily needed [65] 

- Software design should be started even if no HW exists yet by 
defining the SW/HW interfaces in the simplest possible way, and 
developing the SW to work with the interface description [33] 

Challenges - Up-front design is particularly important in embedded systems 
development for meeting specific requirements such as real-time 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :38 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

performance and portability [40] 
- Some design decisions which have to be made early in the 

development, like HW choices and division of work among 
components, should be done based on careful design, because they 
are very hard to change later [40] 

- Preliminary architecture design has to be done, and design is driven by 
performance issues rather than adding new functionality [35] 

- Distributed development and heterogeneous teams are reality in 
embedded systems development: up-front design documentation is 
needed for effective communication and effort synchronization [35] 

- In large, complex systems a predefined architecture is needed, and it 
should be as stable as possible. Thus, refactoring is not enough, but a 
design needed. Also, models should be utilized to enable automatic 
code generation. [66] 

Positive experiences - XP helps to focus on the simplest solutions that are necessary now 
[61].  

Negative experiences - If more time had been spent on design, high-risk areas of the code and 
interaction of the features might have been identified better (in a 
mission-critical software development project) [64] 

- Non-critical assembly code should not be optimized, because it causes 
poor maintainability [57] 

Suggestions for 
adoption and use 

- For the initial development cycle (early iterations), senior architects 
create an up-front initial system architecture. For follow-on 
development cycles, senior designers involve in assessing whether the 
previous cycle’s architecture is reasonable. [40] 

- Keep a balance between extensible components for future features and 
designing and coding the current feature [40]. 

-Up-front designing [61], [67]: 
-- Initial, non-agile architecture was not very detailed and remained 

useful in the XP process  
-- In the beginning of each iteration, the design was revised due to 

the features that were added 
-- Designing for the current iteration and making some provisions for 

the one after that 
-- Detailed designing in order to have valid estimates 
-- Designs were analyzed using several use case scenarios. 

- HW-related issues were planned as far as possible [61] 
- In mission-critical environment, requirements rarely change because 

they have been diligently defined in a contract between the customer 
and business team prior to the project’s inception and thus, 80-90% of 
all requirements should be completely defined prior to the first iteration 
[64] 

- Device drivers should be written to work in current product, and not try 
to make generalizable code (but places for generalization can be 
identified in comments) [65] 

 

5.3.2 Light Documentation 
 
Placing emphasis on working software over documentation and minimizing the amount of 
unnecessary work is a principle of all agile software development methods [58]. For example, in 
Lean Software Development, “Eliminate waste” is one of the seven principles [8]. 
 
Practice Light Documentation 
Motivation - 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :39 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

Challenges - In embedded systems development, distributed development and 
heterogeneous teams are common: up-front design documentation is 
needed for effective communication and effort synchronization [35, 66] 

- Relying on self-documenting code through code commenting can be 
unfeasible due to performance tradeoffs caused by the comments [40] 

- Long lifetime of products places requirements for explicit 
documentation (also because possibilities for self-documentation are 
limited)[40] 

- Lack of architectural and other documentation can limit the possibilities 
for refactoring [40] 

- Certain embedded systems are subject to regulatory requirements 
regarding documentation [40] 

- In the development of safety-critical systems, emphasis is placed 
requirements traceability [60], and thus extra documentation is 
required  

Positive experiences - XP prompted to ask the following questions about the software design 
document at the start of each iteration: “Is this necessary now” [61] 

- Focusing more on coding enables early cycle and memory usage 
metrics to be taken from the initial code in a development stage, where 
HW choices can still be changed if necessary. The metrics also 
facilitate project course corrections and more accurate planning. [40] 

Negative experiences - The Light Documentation practice relies much on tacit knowledge which 
may cause problems if the project team changes [55].  

Suggestions for 
adoption and use 

- Create artefacts for internal use documenting how to use software and 
hardware [40]. 

- Produce documentation based on the introduction of the initial junior 
staff to the project and use this documentation in introducing new 
junior staff [40]. 

- Brief developer-level documents, “Mini-docs”, were created by the 
project team as needed for promoting knowledge transfer around the 
team. [67] 

 

5.4 Implementation 

5.4.1 Continuous Integration 
 
In XP, the code is integrated and tested after few hours to a day of development. [3] 
 
Practice Continuous Integration 
Motivation - Long integration periods can make the integration very complex and 

time-taking due to numerous separate code bases of different product 
variations [63] 

Challenges - Embedded software development environments may lack appropriate 
tools needed for the integration, e.g. integration can take too much 
time [63] 

- In safety-critical systems development, integrations may need to be 
controlled to assess the effects of the changes, and spontaneous 
continuous integration may not be feasible [64] 

Positive experiences - 
Negative experiences - The used tool built new code base slowly and locked the code until the 

integration was ready, so developers did not integrate frequently [63] 
Suggestions for 
adoption and use 

- Developers should do code integration to the code base immediately 
after unit testing, and integration test should be ran at nights [63] 

- In one safety-critical systems development project, all integrations were 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :40 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

be assessed and accepted by a separate change control board who 
also assured that the change requests had been fulfilled. This board 
met bi-weekly, which caused a longer time period between 
integrations. These longer integration periods enabled to think about 
the effects of a change in detail, but on the other hand, made the 
integration harder and more time taking. [64] 

 

5.4.2 Pair Programming 
 
XP suggests, that at least all production code is written by two people using one computer. [3] 
 
Practice Pair Programming 
Motivation - Enhances communication, which is especially important between HW 

and SW developers in embedded projects [35] 
- Helps to disseminate knowledge on different areas of the system to the 

developers, which is important in embedded projects because of 
several different technology domains 

Challenges - Pair programming can be perceived as a radical change and met with 
resistance, which is especially the case with embedded SW engineers, 
who are more resistant to process changes [40] 

- The developers of embedded systems can work in shifts to minimize 
the effects of HW shortage [63], which can complicate finding common 
time for pair work 

Positive experiences - Pair programming found very beneficial, as it was accompanied with 
code reviews, which became more valuable and active, as everyone 
new the code they were reviewing [61] 

Negative experiences - Cross-training benefits were not as extensive as hoped, because the 
need for specialized domain knowledge in embedded system 
development too vast for anyone to have [57] 

- In complex environments, experts and feature owners are needed over 
common knowledge (knowledge transfer benefits of PP not as 
extensive or even important) [64] 

- High initial adoption, which decreased during the project, and finally, 
only risky changes were made in pairs. Formal reviews were replaced 
by pair programming at first, but then brought back due to low usage of 
PP, missed defects and organizational pressure [64] 

Suggestions for 
adoption and use 

- In assembly coding, pair programming has value only in the initial 
development stages (detailed design and initial coding) [57] 

- Pairs worked on design and complex coding tasks, simple and 
repetitive tasks were done solo in a co-located office space [63] 

- Co-ordination was needed to match pair member’s working times [63] 
- In mission-critical environment, pair programming should be 

accompanied by formal code and test case reviews [64] 
- Cross-Functional Pair Programming is a modification of pair 

programming, in which software and hardware developers are paired 
to create all or a part of an embedded system. It is most beneficial 
when the embedded system includes new or unused HW, and both 
pair members have knowledge of each others areas. [68] 

 

5.4.3 Refactoring 
 
Refactoring means improving the structure of code without changing its functionality, and is one of 
the practices of XP [3].  



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :41 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

 
Practice Refactoring 
Motivation - Useful in performance optimization which is important in many 

embedded software design due to resource and timing constraints [40] 
Challenges - Cannot be done in the same way at the end of a HW design cycle than 

at SW cycle, because the HW gets gradually more fixed [69] 
- Affects timing, and can thus be hazardous in systems with real-time 

constraints [35] 
- Limited by specialized areas, lack of architectural and other 

documentation, and partitioning of the functionality to separate units 
(e.g. processors) [40] 

Positive experiences - Refactoring helped to find failure scenarios in safety-critical software 
development (also root-cause analysis of found bugs proved, that 
when team felt something should have been refactored, they were 
right) [60] 

- Refactoring reduced the amount of “kludginess” in the code and 
improved the quality of legacy code [57] 

Negative experiences - Before XP, root cause of most bugs was code reviews, and after, 
insufficient refactoring [61] 

- Large refactorings created significant defects (too much reliance on test 
suite to detect possible defects caused by refactoring) [64] 

Suggestions for 
adoption and use 

- Performance optimizations should always be done based on measured 
problems, not speculation [33] 

- In safety-critical software development, where the effects of refactoring 
have to be carefully assessed, the developers wrote down identified 
refactoring needs to a “wish list”, and the permissions to refactoring 
were granted by a separate change control board [64] 

 

5.5 Testing 

5.5.1 Unit testing 
 
Practice Unit testing / TDD / Test first 
Motivation - Embedded systems often have high requirements for reliability, 

exception handling correctness and mean-time-to-failure, and thus, 
systematic and rigorous development processes and testing are 
needed [40] 

- In safety-critical systems development, XP’s testing practices help to 
assure, that the safety controls are not violated when the system is 
changed [60] 

- Assembly coding used in many embedded systems is more error-prone 
and needs low-level code implementation testing more [41] 

Challenges - Many embedded systems do not have the devices (e.g. display) or 
memory (to store the test code) required for unit testing [65] 

- Daily testing not necessarily possible due to shared HW simulators 
(with HW teams) [35] 

- Memory and performance issues can prevent running all test code at 
the same time in the test environment [35] 

- Use of test code can be limited by memory constraints, or it can alter 
timing and hide errors [40] 

- Use of breakpoints or single-stepping can be blocked by timing 
constraints and multi-tasking [40] 

- HW simulators are expensive, take time to implement and can be slow; 
dual targeting to both simulator and real HW takes extra effort [40] 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :42 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

- Regression tests require test harnesses and equipment, and it is 
difficult to verify the internal state of the system for correctness [40] 

- Usually in embedded software development, no OO languages are 
used. Thus, lack of tools for unit testing can make them hard to 
automate, so emphasis should be put on acceptance tests. [33] 

- Incompatible compilers of development and target environments slow 
development down, because the code has to be downloaded to the 
target system after each compile, and this can take time. This makes it 
also harder to port a unit test tool. [33] 

Positive experiences - Resulted in increased quality, ease of coding, more focused planning 
and design, and enabled timely feedback [33] 

- Unit tests were the most useful of the 13 adopted agile practices, 
because they enabled testing components at a low level, which was 
needed especially as assembly was used as the programming 
language [57] 

- In large mission-critical system development, 1500 unit tests written 
and merged into a test suite, which was perceived very useful and 
critical to refactoring [64] 

- TDD resulted in lower bug rate [59] 
- TDD was easy to adopt [61] 

Negative experiences - If simulators are used for unit testing, the real peripheral HW cannot be 
used in testing [65] 

- Manual checking of the code enabled easy separation of typos from 
actual bugs [70] 

- Automated testing requires more accurate syntax use and more 
detailed test cases than manual testing [70] 

- Unit testing was not mandatory, so many developers did not use it [63] 
- Existing tests were not updated according to code changes, so there 

was nothing to test refactorings against [63] 
- Large test suite takes a lot of effort to maintain according to changes, 

and thus, sometimes the design decisions were affected by 
unwillingness to make major changes to the test suite [64] 

Suggestions for 
adoption and use 

- Unit testing can be done by running test scripts on PC, which has been 
connected to the HW with a serial port. Scripts can be made, which 
send messages through the serial line and collect the responses, and 
then the responses can be compared to expected ones. [65] 

- In real-time systems development, unit tests can be written to check 
execution times, but usually HW is needed for actual testing [33] 

- Due to the use of different development and target environments in 
embedded software development, dual-targeting (i.e. enabling the SW 
to be compiled and ran in both target HW and development PC) should 
be done to enable early (unit) testing and simulations. [33] 

- Trouble log which used little memory and was fast to execute was used 
to obtain error descriptions [59] 

- Dual targeting (i.e. ability to run the SW on both target HW and PC) 
was used to separate SW and HW bugs and to enable automation of 
unit tests [59] 

- HW-related unit tests were used to test HW controllers and drivers 
independently during development, and by HW vendor as final test 
suite before shipping [59] 

- In a project where part of a legacy system was implemented, a test 
suite for testing interfaces with legacy code would have been 
necessary in addition to the “unit test suite” [64] 

 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :43 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

5.5.2 Acceptance testing 
 
Practice Acceptance testing 
Motivation - In real-time systems development, acceptance tests can be written to 

simulate loads and event sequences, and then performance (e.g. CPU 
usage) can be measured [33] 

- System bugs are not automatically blamed on software, because it is 
easy to test whether the software actually causes them or not. This 
also improves the communication between SW and HW engineers [59] 

Challenges - Memory and performance issues can prevent running all test code at 
the same time in the test environment [35] 

Positive experiences  
Negative experiences - In a mission-critical project, there was too much reliance on the test 

suite. Instead, a balance between code reviews, automated regression 
tests and acceptance tests should be used [64] 

Suggestions for 
adoption and use 

- Acceptance tests must be automated as much as possible by replacing 
outer SW layers with a test interface. As much as possible should be 
tested without HW and manual intervention. [33] 

- Domain tests were used to test separate domains, when unit testing 
was too fine-grained and system testing too high-level. One domain 
was built and loaded to HW, and I/O from rest of the system replaced 
by mock objects. This was used e.g. for tracing timing problems [59] 

5.6 Summary of experiences from different agile practices 
 
In the previous sections of this chapter, existing experiences on the adoption of agile practices in 
industrial embedded systems, and mission- and safety-critical systems development projects were 
presented together with motivation and challenges for their adoption. Experiences from nine agile 
practices were discussed under five software development lifecycle stages. It is evident, that these 
nine practices represent only a part of all practices of numerous agile methods. Also, since the 
experiences on their adoption stem from less than ten projects, the coverage of different application 
domains, product types, team compositions and other characterizing elements representing the wide 
spectrum of embedded systems development projects, the coverage of different project types is 
quite limited. In rest of this section, the findings of the presented state-of-the-art review are 
summarized. First, the practices, of which there are reported experiences, are summarized, and their 
overall reported usefulness discussed. Then, the project types and application domains where the 
agile practices have been adopted are summarized (see Appendix 1).  
 
As discussed earlier, experiences form nine agile practices from five lifecycle stages of software 
development were found from literature. Adoption of also other agile practices (such as Coding 
standards of XP and Sprint reviews of Scrum) were mentioned, for example, coding standards in 
([57], [61], [63] and [40] and reviews in [40] and [64]. However, only little actual experience from 
them was reported. Table 2 summarizes the amount of experiences from the nine agile practices 
together with their reported main benefits and challenges, as discussed earlier in this chapter. The 
practices are arranged so, that the practice, of which there are most experiences is first in the table, 
and the one of which there are least experiences, is last.  
 

Table 2. Summary of experiences from different agile practices 

Practice # 
exp. 

Main benefit Main challenge 

Unit testing / 
Test first / 
TDD 

6 Assembly coding used in many 
embedded systems is more error-
prone and needs low-level code 

implementation testing more 

Use of test code can be limited by 
memory constraints, or it can alter 

timing and hide errors 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :44 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

Lack of tools, programming 
language and device restrictions 

Pair 
programming 

3 Enhances communication, which is 
especially important between HW 
and SW developers in embedded 

projects 

Need for specialized domain 
knowledge in embedded system 

development is too vast, so cross-
training benefits of pair 
programming are not as 

substantial 
Refactoring 3 Useful in performance optimization 

which is important in many 
embedded software design due to 

resource and timing constraints 

Refactoring affects timing, and can 
thus be hazardous in systems with 

real-time constraints 

Simple design 3 Helps to focus on the simplest 
solutions that are necessary now. 

Up-front architectural design is 
particularly important for meeting 

real-time performance and 
portability requirements and 
enabling partitioning of work 

Planning game 2 Enables effective prioritization and 
selection of requirements based on 

the latest hardware design 

Planning with customer may not be 
feasible, because the software part 

of the system is not 
visible/interesting to the customer 

Continuous 
integration 

2 Long integration periods can make 
the integration very complex and 

time-taking due to numerous 
separate code bases of different 

product variations 

Integrations may need to be 
controlled to assess the effects of 

the changes, and spontaneous 
continuous integration may not be 

feasible (esp. in safety-critical 
systems) 

Short 
iterations / 
small releases 

1 Enable responding to changes in 
requirements caused by hardware 

changes 

Breaking large functionalities into 
short releases might not be 

practical 
 

Synchronizing release schedule 
with hardware releases for system 

integration and testing can be 
difficult 

Acceptance 
tests 

1 Acceptance tests can be written to 
simulate loads and event 

sequences, and then performance 
(e.g. CPU usage) can be 

measured 

- 

Light 
documentation 

1 Helps to avoid unnecessary 
documentation. Focusing more on 

coding enables early cycle and 
memory usage metrics to be taken 

from the initial code in a 
development stage, where HW 
choices can still be changed if 
necessary. The metrics also 

facilitate project course corrections 
and more accurate planning.  

Explicit documentation is needed 
due to maintainability, traceability 

and communication issues 

 
An important factor in the industrial significance of the results of this review is the information, on 
which types of projects the experiences have been derived from. Embedded systems development 
projects can be characterized using different attributes, such as their application domain, product 
type, team size, etc. Although in embedded systems development projects there are often many 
people involved, the size of the teams in the reported projects was only between 4 – 10 persons, 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :45 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

except in one project, where it was temporarily increased up to 18 persons. Another common 
characteristic of embedded software development is the use of low-level programming languages as 
opposed to e.g. object-oriented languages. This was also the case in all of the projects included in 
this review: in every experience report, where the used programming language was given, it was 
either assembly, C, or a combination of both. Third way to characterize the projects where the 
experiences have been reported from is the application domain and type of the developed product. 
This information, collected from the experience reports summarized in Appendix 1, is presented in 
Table 1.  
 

Table 1. Application domains of experience reports 

Application domain / product type 
Automotive industry: 

- Developing customer-specific functions to bus software 
- Developing the front end of built-in car multimedia system 

Public safety communication systems: 
- Re-implementing a part of a mission-critical, soft real-time system 

Pharmaceutical instrument: 
- Safety-critical system development 

Processor firmware development (2 reports from the same project) 
Real-time mobile spectrometer development (4 reports from the same project) 
Embedded legacy product development (application domain not reported) 

 
 

5.7 FUTURE RESEARCH NEEDS 

5.7.1 Shortcomings of existing studies 
 
In the collection and review of the experience reports on adoption of agile methods and practices in 
embedded systems development projects, some shortcomings were identified in the existing 
empirical knowledge. First, the amount of material related to using agile methods in the development 
of embedded systems is very small: in all, approximately twenty publications were found in the 
performed literature survey, of which less than ten were actual experience reports. In addition, the 
number of embedded projects where agile practices have been adopted is even lower than ten, 
since in two occasions, the same project had been reported in more than one report. Second, almost 
every reported experience is related to adopting eXtreme Programming, or a set of its practices, 
while other agile methods, such as Scrum and Feature Driven Development (see e.g. [11]), are left 
without attention. Third, majority of the reported experiences are anecdotal, i.e. no measured, 
quantitative data or metrics have been presented to describe the concrete effects of the adoption of 
the agile practices. Also, no scientific, empirical studies, such as experiments or case studies, have 
been made (or at least published) related to the subject. Finally, as discussed in Section 5.6, the 
experience reports cover only a limited amount of different application domains and product types 
from the field of embedded systems. Additionally, the teams of the reported projects have been quite 
small, and not distributed, so the applicability of agile methods to larger teams has not been 
addressed in the reports.  
 

5.7.2 Future research needs 
 
The literature survey and review of the existing experiences on using agile methods in the 
development of embedded systems showed that the current knowledge on the subject is at a quite 
rudimentary level. Thus, in future, systematic scientific research and additional industrial experiences 
are needed to obtain concrete evidence on the possibilities and limitations of using agile methods 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :46 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

and practices in the development of embedded systems. The research should be performed on 
different application domains of embedded systems, which are important but yet unstudied, such as 
the field of telecommunications. Also, the effect of different types of business models and product 
types to the adoption of agile methods should be considered. Furthermore, the studies should not 
focus solely on XP and its practices, but include also other agile methods. The overall goal of the 
research should be determining the most suitable and beneficial agile practices and methods 
including “embedded” variants of them for embedded systems development and identifying 
possibilities for tailoring and integrating them pragmatically to suit e.g. certain domains, product 
types or development contexts. 
 
In AGILE-ITEA project [71], this work will be done by devising an agile based assessment framework 
to be used in industrial projects to help identifying project-specific constraints and needs for adopting 
different agile practices. The assessment will be a part of an agile software development 
framework for the embedded systems domain including all relevant processes and tools. The 
framework will be customized for different application domains, and accompanied by a 
deployment model whose purpose is to facilitate the industrial adoption of the framework. 
Additionally, experiences from the adoption of the agile practices will be collected into an 
experience base for systematic and effective dissemination and utilization of the knowledge.  
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :47 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

                                                     

6. CURRENT STATUS ON AGILE METHDOS IN EUROPEAN  
SOFTWARE DEVELOPMENT ORGANIZATIONS: 

RESULTS FROM A QUESTIONNAIRE STUDY 
Author: Outi Salo, VTT 

6.1 Introduction 
This document reports the results from a questionnaire study that was made during January-
February 2005 for European software development organizations of Agile ITEA project. The purpose 
of the questionnaire was, for one, to collect the past experiences of industrial partners’ of Agile ITEA 
project regarding the use of agile methods and practices in these organizations. This work is related 
to WP1: T1.2 in Agile FPP. Thus, the questionnaire was designed in order to systematically collect 
and analyze this information. In more general, however, this study aims at mapping how the 
European software development organizations currently use different Agile methods and practices 
and how useful and potential they are regarded in different project contexts. 

The target group of this questionnaire was especially the project managers and software developers 
of industrial Agile ITEA organizations. The questionnaire was/is available on a www server at VTT 
Technical Research Centre of Finland5. The contact persons of 18 Agile ITEA partner organizations 
were requested to disseminate the www link of the questionnaire to the software developers and 
project managers of their software development projects– whether agile or non-agile ones. However, 
it was required that only one questionnaire would be filled for one specific project that was either a 
finished or an ongoing one. Also, multiple filled questionnaires were encouraged for each 
organization in order to gain different views in one organization. 

6.2 Background of the Study 
A total of 35 filled questionnaires were received from 13 out of the 18 target organizations from 8 
European countries. Following Figure 10 illustrates how the number of filled questionnaires 
distributed between the respondent organizations. Thus, six of the target organizations filled out a 
questionnaire of one project, where as the largest number of responses from one organization was 
as high as seven. It should be noted, that the percentages are counted from the data points that 
were available on each topic. Thus, the missing data points do not skew the results.  

 
5 The questionnaire form can be found on http://cgi.vtt.fi/html/kyselyt/agile/ 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :48 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Number of Filled Questionnaires

Nu
m

be
r o

f R
es

po
nd

en
t O

rg
an

iz
at

io
ns

 

Figure 10. Frequency of Filled Questionnaires in Respondent Organizations  

 

The focus group of the questionnaire was the personnel strictly involved in the daily software 
development activities, i.e. software developers and project managers. Following Figure 11 
illustrates the distribution of respondents in following categories: 1) project managers, 2) software 
developers, 3) personnel that was responsible for managing the project but also participated in 
software development, 4) other, i.e. software process improvement and managerial personnel, and 
5) missing information.  

 

Project 
Manager

69 %

Other
14 %

Missing 
Information

3 %
Project 

Manager & 
Software 

Developer
3 %

Software 
Developer

11 %

 

Figure 11. Role of Respondents in the Software Development Projects 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :49 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

The software development of the reported projects fell into three main categories: own vendor 
product development, development of a product for company internal use and component 
development for customer product. Figure 12 illustrates the division of the projects in these 
categories. 

77 %

14 %

9 %

Development of own ven
product

dor

Internal product development

Component development
customer product

 for

 

 

Figure 12. Frequency of Filled Questionnaires in Respondent Organizations  

26 (i.e., 74.3 %) of the reported projects were currently ongoing whereas the number of finished 
projects was 9 (25.7 %). The duration - either estimated or realized - of these projects are illustrated 
in Table 3.  

Table 3. Estimated/total duration of the projects 

Project Duration Frequency Percent 
2-4 weeks 1 2,9
between 1-2 months 2 5,7
between 2-6 months 8 22,9
>6 months 24 68,6

 
The majority of the reported projects (i.e., 68.6 %) lasted or were estimated to last six months or 
more. Accurately, the lengths of the projects reported in this category were reported to be:  

1) over 6 months but under one year of duration (5 projects) 
2) one year (3 projects) 
3) over one year but under two years of duration (6 projects) 
4) two years (5 projects) 
5) three years (2 projects) 
6) five years (3 projects) 

 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :50 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

The size of the reported software development projects is illustrated in Table 4. It can be seen that 
as much as 60% of the projects (i.e., 21) consisted of smallish (i.e., maximum of 10 developers) 
teams that are well suited in Agile software development context. 
 

Table 4. Number of project members 
 

Team Size Frequency Percent 
<4 9 25,7 
4-10 12 34,3 
11-30 10 28,6 
31-100 3 8,6 
>300 1 2,9 

 
One important aspect, regarding agile software development, is the criticality level of the application 
that is being developed. It should be taken into careful consideration when adopting and adapting 
agile practices for an organization. The criticality of the applications that are being developed in the 
reported projects are illustrated in Table 5. As it can be seen, the vast majority of the respondent 
projects develop a software product that, when failed, causes either discomfort for its user (32.4 %) 
or tolerable loss of money (38.2 %). Though failure of software product is always undesired, in 70.6 
% of the projects the failure of its product, however, will not cause any permanent damage for its 
user. Originally, the agile methods (e.g., XP) are recommended and developed especially for this 
kind of software development [72]. However, these novel methods are developed consistently to 
include new ways of quality assurance. In the respondent projects, an effect of critical loss of money 
for the user was reported for 23.5 % of the projects where as the loss of a life or many lives was 
caused by only 5.8 % of the developed software applications.  
 

Table 5. Criticality level of the application that is developed in the project 
 

Criticality Level Frequency Percent Valid Percent
discomfort 11 31,4 32,4
tolerable loss of 
money 13 37,1 38,2

critical loss of money 8 22,9 23,5
loss of life 1 2,9 2,9
loss of many lives 1 2,9 2,9
Total 34 97,1 100,0
Missing 1 2,9  
Total 35 100,0  

 
The managing of constant changes in, for example, product requirements during the software 
development process is one of the main benefits for adopting agile practices [73]. In Table 6 it is 
illustrated what was. As it can be seen, approximately half (51.5 %) of the reported findings fell into 
the category of “5-10%” and close to one third of the findings were in the category of “11-30%”. 
Dynamism of the application requirements. 
 
 
 
 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :51 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

Table 6. Estimated requirements-change per month 

Dynamism level Frequency Percent 
Valid 

Percent 
<5% 4 11,4 12,1
5-10% 17 48,6 51,5
11-30% 10 28,6 30,3
31-50% 2 5,7 6,1
Total 33 94,3 100,0
Missing 2 5,7  
Total 35 100,0  

 

6.3 Results of the Study 
One of the main goals of the study was to enquire how the agile software development methods and 
practices are curretly used in a selected group of European software development organizations and 
how potential they are regarded as.  

Thus, in the questionnaire the respondents were requested to evaluate 

1) the current use of each of the listed agile related methods in the project, and 
2) the usefullness of the method (in their opinion) (in the projects already using the 

method, the respondent was asked to consider how useful the method was in the 
project and, if the method had not been applied, to consider how useful it would be if 
employed in the project). 

 
A five degree ordinal scale (Table 7) was used to evaluate the level of both the current use and 
usefulness aspects. The underlying assumption was that the respondents were somewhat familiar 
with the agile methods and practices. However, to avoid a situation of where respondent was not 
aware of the methods in question an option of “I do not know” was available. Also “not applicable” 
opinion was available.  

Table 7. Scales for identifying the level of current use and usefulness of a specified method 

Current use (the method/practice has 
been...) 

Usefulness (the method is/would be... in my 
opinion) 

1 = Systematically used throughout the 
project 

1 = Extremely useful 

2 = Mostly used throughout the project 2 = Very useful 
3 = Sometimes used in the project 3 = Useful 
4 = Rarely used during the project 4 = Not useful 
5 = Never used during the project 5 = Harmful 
    
6 = Not applicable 6 = Not applicable 
7 = I do not know 7 = I do not know 
 
In the sub-sections of this chapter, some of the most central and common methods, practices and 
issues are taken for further evaluation. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :52 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

6.3.1 Agile Process Model 
One of the central aspects and principles (http://www.agilemanifesto.org/principles.html) of agile 
software development is the iterative and incremental process model.  

6.3.1.1 Iterative software development 
Currently, 15.6 % of the respondent projects (5/32 projects) reported on systematically using short 
development iterations in their software development. In addition, 31.3 % (10/32) of the projects 
mostly used iterative development throughout the project. Thus, it can be said that close to one half 
(46.9 %) of the projects already applied iterative software development regularly. One fourth of the 
projects (8/32) reported applying software development iterations sometimes, 18.8 % (6/32) rarely 
and 6.3% (2/32) never. Only one of the projects (1/32) reported that iterative process model would 
not be applicable.  

Table 8 illustrates the number of software development projects in crosstabulation of reported project 
and iteration lengths. The shortest projects (i.e., 2-4 weeks and 1-2 months) understandably 
consisted usually of only one development iteration. The iterativeness, however, is more visible in 
the longer projects, where only one project in categories of both “2-6 months” and “>6 months” 
reported only one iteration. For example, as much as 54.2 % (13/24) of the “>6 months” projects 
reported applying iterations maximum of two months that is in line with the suggestion of agile 
manifesto and its principles (http://www.agilemanifesto.org/principles.html).  

 

Table 8. Crosstabulation of project and iteration lengths 

Average iteration length of the project 
Estimated/total 
duration of the project <2 weeks 2-4 weeks between 1-2 months between 2-6 months >6 months 
2-4 weeks 0 1 0 0 0
between 1-2 months 0 2 0 0 0
between 2-6 months 1 2 4 1 0
>6 months 2 6 5 10 1

 

In 87.5 % of the questionnaires where the data was available (29/32) the usefulness of short 
software development iterations was regarded at least useful (i.e., 12.5. % useful, 46.9 % very 
useful, and 28.1 extremely useful). This reveals, that besides the projects that already regularly use 
incremental software development model (15/32), also a large number of the projects that currently 
only sometimes, rarely or never use iterative approach would regard it as useful to apply. 

6.3.1.2 Incremental software development 
Incremental software development aims at producing working software iteratively. In agile principles 
(http://www.agilemanifesto.org/principles.html) it is identified that “working software is the primary 
measure of progress”.  

The respondents were asked three aspects on incremental software development:  
 

1) current use of incremental software development, 
2) usefulness of iterative development,  
3) current use of “working software as a primary measure of progress”, and  
4) usefulness of “working software as a primary measure of progress”. 
 

http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html


   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :53 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

                                                     

The current use of incremental software development was reported as “systematically used” in one-
fourth (25.8 %) of the 31/35 projects that provided data on this question. As much as 48.4 % of the 
projects (15/31) mostly used it throughout the project. Thus, the proportion of projects regularly 
working in incremental mode of software development was as high as 74.2 % (23/31 projects). 16.1 
% (5/31) projects reported applying software development iterations sometimes, 9.7 % (3/31) rarely 
and 0 % never. None of the projects reported that iterative process model would not be applicable. 

In 93.5 % of the questionnaires where the data on usefulness of incremental development was 
available (29/31) the incremental development was regarded atleast useful (i.e., 16.1 % useful, 35.5 
% very useful, and 41.9 extremely useful). This, again reveals, that even the current level of applying 
incremental development mode is already high (74.2 %) in the respondent projects there is will 
among the project managers and software developers to use it increasingly in the future. Only 3.2 % 
(1/31) of the respondents regarded incremental development not useful and the same 3.2 % (1/31) 
as even harmul. This data was missing from 4 questionnaires.  

“Working software as a primary measure of progress” ideology was systematically used in 34.4 % 
(11/32) of the projects and mostly used in 18.8% (6/32). Thus, over a half (53.1 %) of the projects of 
which this data was available (32/35) regularly use a working product increment as a measure of 
their progress. However, also one fourth (25.0 %) of the projects reported sometimes applying 
working software as a measure of progress. Only 15.7 % of the projects reported that they either 
rerely (6.3 %) or never (9.4 %) use such a measure. Also, one respondent (3.1 %) reported that this 
was not applicable in their project and one respondent (3.1 %) of not knowing the situation 
concerning this matter. This data was missing from three questionnaires.  

In the questionnaires it was clearly visible that the respondents valued the ideology “working 
software as a primary measure of progress” and would like to apply it more in their projects. In 
numbers, this means that as much as 96.8 % of the respondents that answered this question (31/35) 
regarded this issue as, at least, useful (i.e., 19.4 % useful, 41.9 % very useful, and 35.5 % extremely 
useful). It should be noted that none of the respondents saw this issue as not useful or harmful. One 
of the respondents did not have opinion (i.e. “I do not know”) on this issue.  

6.3.2 Close communication 
Close communication is emphasized in agile principles 
(http://www.agilemanifesto.org/principles.html): 

“Business people and developers must work together daily throughout the 
project.” 

“The most efficient and effective method of conveying information to and 
within a development team is face-to-face conversation.” 

Extreme Programming (XP), for example, emphasized co-located software development teams and 
on-site customer. These two issues were enquired from the respondents of this study from the 
viewpoint of current usage and (potential) usefulness. 

6.3.2.1 Co-Location of Project Teams 
The location of the project teams was, at first, enquired in the project & application profile (in section 
2. of the questionnaire (http://cgi.vtt.fi/html/kyselyt/agile/)). As much as 40.6 % (13/326) of the project 
teams reported to work in the same open office space and 25.0 % (8/32) still in the same building. 
This, for one, supports the possibility of adopting agile software development methods, practices, 
and tools. 34.4 % (11) of the reported project teams were distributed either across the country or 

 
6 Please, note that in three of the questionnaires this data was not available. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :54 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

globally. The current use of open-office space was also enquired in the practices and methods in 
organization (section 3 of the questionnaire in http://cgi.vtt.fi/html/kyselyt/agile/). This section 
provides slightly different viewpoint of this issue. It was found out that as much as 65.6 % of the 
projects use open-office space mostly (25.0 %) or systematically (40.6 %) in their software 
development. The open-office space was “sometimes used in the project” in 3.1 % (1/32) of the 
projects and rarely in 12.5 % (4/32). One of the respondents (3.1 %) found open-office space non-
applicable in his project, and two (6.3 %) respondents did not have knowledge on this issue. 

The usefulness of developing software in an open-office space highly regarded in the respondent 
projects. As much as 80.6 % of the projects which this data was available on (i.e., 31/35) regarded 
open-office space at least useful (25.8 % useful, 54.8 % very useful, and 16.1 extremely useful). One 
respondent regarded this kind of working environment not useful and one as eve harmful. Two of the 
respondents reported that open-office space would not be applicable in their project and two of the 
respondents did not have an opinion on this matter. Thus, when comparing the percentages of 
teams currently working in the same office space (40.6 %) and the projects that would regard it as 
useful (80.6 %) it can be said that there are, among the respondents, both willingness and 
possibilities to increase this kind of communication during software development.  

6.3.2.2 On-Site Customer 
Kent Beck suggests that in XP “a real customer must sit with the team, available to answer 
questions, resolve disputes, and set small-scale priorities “ [72]. According to Beck, a real customer 
is someone who will really use the system when it is in production.  

In “real life” of the respondent projects an on-site customer was systematically available of 9.1 % 
(i.e., three projects) of the 33/35 respondents. As much as 15.2 % of the projects (i.e., 5 cases) 
reported that an on-site customer was mostly available throughout the project. Thus, one fourth (24.2 
%) of the respondent projects (i.e., 8) can argue on using an on-site customer. Using on-site 
customer “sometimes” or “rarely” in a project may be interpreted as using off-site customer: 
communicating with the customer that, however, is not present most of the time. This was the 
situation in 33.3 % of the projects (i.e., 21.2 % sometimes and 12.1 % rarely). On-site customer was 
not applied in 30.3 % of the projects and not applicable in 12.1 % of the cases. A total of 33 
responses out of 35 were available on this topic.  

Five respondents (15.2 %) regarded on-site customer as being extremely useful. One of these 
responses were based on systematical usage of on-site customer in the project. Two respondents 
had been using on-site customer mostly in the project, and one mostly. Also, one of the respondents 
who reported an on-site customer as “extremely useful” had not had one available at least on the 
current project. As much as 69.7 % of the responses were favourable on the usefulness of on-site 
customer (i.e., 30.3 % useful, 24.2 % very useful, and 15.2 % extremely useful). However, there 
were also four projects that reported on-site customer as not useful (12.1 %) and one as harmful (3.0 
%). In the latter, the on-site customer was used “sometimes” during the project. Only one of the 
respondent projects which reported the on-site customer as “not useful” had been using on-site 
customer systematically where as the other four had never had one present. It is, however, 
impossible to evaluate if it is earlier bad experiences or some other issues causing the negative 
responses on on-site customer. Two respondents found on-site customer non applicable and three 
out of 33 available responses (9.1%) did not have knowledge on this issue. 

6.3.3 Agile software engineering practices 

6.3.3.1 Pair Programming 
A controversial practice of XP is pair-programming [72]. Its effects on software quality [74] and 
productivity [75] has been widely studied. In this study it was found out that the regular usage of pair-
programming practice is currently fairly low in industrial organizations (i.e., 3.0 % systematically, and 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :55 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

                                                     

12.1 % mostly used throughout the project). As much as 27.3 % of the projects reported sometimes 
using pair-programming, 18.2 % rarely, and 33.3 % never. One respondent (3.0 %) regarded pair-
programming as non-applicable and one as not knowing the situation of this matter. The respondent 
rate for this question was 33/35. 

Very interestingly, also pair programming was credited as very potential practice in the future 
projects. As much as 75.0 % of the respondents (32/35) regarded that, if used, this practice would be 
at least useful (i.e., 40.6 % useful, 28.1 % very useful, and 6.3 % as extremely useful). As reported 
earlier, the projects of this study reported as much as 40.6 % (13/327) of the project teams working 
in the same open office space and 25.0 % (8/32) still in the same building that supports adopting this 
kind of practice in their software development.  

Only one of the respondents reported that pair programming would have been not applicable and 
three respondents (9.4 %) were unsure of its usefulness (i.e., “I don’t know”). As much as 9.4 % of 
the respondents (3/32) regarded pair programming as not useful and 3.1 % as harmful (1/32). The 
situation of pair programming being harmful was being reported by a project manager on a project 
where pair-programming had been used mostly throughout a project. In all the projects where pair 
programming was reported as “not useful” it had not been applied “rarely”. The findings were 
reported by project managers or members of upper-management. 

6.3.3.2 Continuous Integration 
Continuous integration, also, is one of the practices of XP. Its central idea is that the program code is 
integrated and tested very frequently – after few hours and at least daily [72].  

In the respondent projects 43.7 % of the projects reported regular use of continuous integration (28.1 
% systematically and 15.6 % mostly). However, nearly twice as many respondents (81.3 %) 
evaluated this practice as at least useful (34.4 % useful, 9.4 % very useful, and 37.5 % extremely 
useful). Clearly, also continuous integration is one of the agile practices that are evaluated as highly 
potential yet not used as much as might be required.  

In addition, 18.8 % of the projects stated using continuous integration sometimes, 9.4 % rarely, and 
21.9 % never. Two (6.3 %) of the respondents did not know the current usage of continuous 
integration practice in the project. Also, controversial opinions were found on usefulness of applying 
continuous integration. One respondent (3.1. %) regarded it as not useful, and one as harmful. 
However, either one of these projects had never applied the practice during this particular project, 
atleast. One of the respondents found continuous integration as not applicable in the project. Three 
of the respondents could not evaluate the usefulness of continuous integration (i.e., 9.4 % on “I do 
not know”). Three data points were missing on both the current use and usefulness of continuous 
integration. 

6.3.3.3 Collective Code Ownership 
“Anybody who sees an opportunity to add value to any portion of the code is required to do so at any 
time” is the definition of collective code ownership of Kent Beck [72]. It includes the basic idea that 
everyone is responsible for the whole of the system.  

In the questionnaire study, the regular use of collective code ownership was reported in 42.4 % of 
the cases (18.2 % systematically, and 24.2 % mostly throughout the project). One project (3.0 %) 
reported sometimes using this practice and nearly one-third (30.3 %) of the respondents had never 
used it during the project. One respondent also regarded collective code ownership as not applicable 
and one did not have knowledge on this issue. 33 data points out of 35 were available on this topic.  

 
7 Please, note that in three of the questionnaires this data was not available. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :56 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

The rating of usefulness was high in also this agile practice. As much as 78.1 % of the respondents 
reported that they consider collective code ownership at least useful (31.3 & useful, 28.1 % very 
useful, and 18.8 % extremely useful). As much as 12.5 % of the respondents could not evaluate how 
useful this practice would be in use (“I do not know”) whereas only one respondent (3.1 %) regarded 
it as not useful, one as harmful and one as not applicable.  

6.3.4 Quality Assurance Techniques 
 

6.3.4.1 Test Driven Development (TDD) 
Test-driven development focuses on writing and automating unit tests before the actual program 
code is written. It aims for verifying the functionality of the code for one, but also aims for guiding the 
development to a cleaner design and for giving developers confidence that the software works [76]. It 
is one of the practices adopted by XP [72].  

In this questionnaire study, 18.8 % of the respondent projects (32/35) reported a regular use of TDD 
(i.e., 9.4 % systematically and 9.4 % mostly). As much as 40.6 % of the projects claimed of never 
using the approach during the project (i.e., 13/32). Two of the respondents (6.3 %) reported that TDD 
is not applicable in the project.  

Due to the low current usage of TDD it can be said that the usefulness rate is largely based on the 
evaluated potential of TDD. As much as 71.9 % of the respondents evaluated TDD as at least useful 
to adopt in their project (i.e., 12.5 % useful, 31.3 % very useful, and 28.1 % very useful). There were 
also respondents with different opinions. Two respondents regarded TDD as harmful. Other one of 
these projects had sometimes applied TDD where as the other project had never applied it. Two 
respondents also reported TDD as not applicable and two of the respondents did not have an 
opinion (i.e., “I do not know”). Three data points were missing on this issue. 

6.3.4.2 Refactoring 
Refactoring is one of the XP practices. Its main idea to make the code as simple as possible while 
still running all the test cases. The programmer should work in two ways: 1) to enquire if the existing 
program could be changed to make adding the feature simple and 2) to enquire - after adding a new 
feature – if the existing program could be made more simple [72].  

In the questionnaire study, it was revealed that nearly one third (30.3 %) of the respondent projects 
claimed having used refactoring either mostly (15.2 %) or systematically (15.2 %). Also, one third 
(33.3 %) of the projects (11/33) reported using refactoring sometimes in the project. Four of the 
respondents did not know the situation of using refactoring (12.1) and two claimed it to be not 
applicable (6.1 %). 18.2 % of the projects applied refactoring rarely (3/33) or never (3/33). Two of the 
respondents did not provide any information on this topic. 

Also the (potential) usefulness of using refactoring was ranked high in the questionnaire study. As 
much as 75.0 % of the respondents (24/32) regarded using refactoring at least useful (15.6 % useful, 
40.6 % very useful, and 18.8 % extremely useful). Again, these numbers exceed the reported level of 
use of refactoring currently. Thus, it can be argued that refactoring is seen as very potential practice 
that is not, currently, used as much as the software developers and project managers would be 
willing to. However, as much as 6.3 % (2/32) of the respondents found refactoring not useful. In 
Other one of these resopondents reported rare current use of refactoring in a project and another 
respondent did not know the current use refactoring in the project at hand. A total of 32 data points 
were available on the 35 questionnaires. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :57 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

6.4 Future Research Needs and Limitations of the Study 
One of the restrictions of the study was the convenience sampling that was used. In other words, the 
questionnaire was focused on a limited group of European software development organizations that 
are, assumably, active and interested in adopting agile practices (i.e., participants of Agile ITEA 
project). However, the target groups of this study were the project managers and software 
developers of these organizations. Assumably, the respondents are not directly involved in the Agile 
ITEA project and its goals in their daily work. However, it could be assumed that the results of this 
study may be favorable to agile practices compared to an “average” software development context. 
Thus, a future research may include an extended enquiry directed to a wider and independent 
variety of software engineering companies. It would be interesting to compare the results of these 
two questionnaire studies for finding out the differences in attitudes in different contexts but also to 
reveal how the adopting of agile practices will alter in few years time. 

In the study, it was enquired how a specific project – either finished or ongoing – had been used a 
certain agile related method or practice. Also, it was acquired how useful the same method is/would 
be regarded. Based on the questionnaire, it was not possible to evaluate if the reported usefulness 
level was based on a real experience of the method (e.g., in some earlier project) or was merely an 
assumption. Only the responses where a certain method had been used mostly or systematically in 
the reported project it was clear that the usefulness was based on this knowledge. Also, it should be 
noted that the “usefulness” of a certain practice or method was merely a subjective matter of each 
respondent. The questionnaire did not provide any guidance on if the usefulness should have been 
evaluated, e.g., from the viewpoint of efficiency, product quality, or convenience. Rather, it should 
give some indication on how willing the respondent is in applying and adopting the practice. 

Currently the agile practices, for example in XP, are designed to smallish teams working in co-
located environment. One of the future research needs is to explore the potential and usage of agile 
practices in multi-site software development of embedded software. 

6.5 Summary and Conclusions 
In conclusion, it can be said that all the analyzed agile practices seem to be more appreciated than 
used currently in software development organizations. Based on this study, however, it is hard to 
evaluate a reason for this situation. One of the reasons might be the high publicity of agile software 
development yet also lack of guidance, expertise and effort on applying the new methods and 
techniques in more traditional context of software development. However, this study reveals that 
there is willingness on increasingly adopt new agile practices in software development organization 
and high expectations for their usefulness. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :58 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

7. REFERENCES 
 
[1] B. Boehm and R. Turner, "Using risk to balance agile and plan-driven methods," IEEE 

Computer, vol. 36, pp. 57-66, 2003. 
[2] S. Ambler, Agile Modeling: Effective Practices for Extreme Programming and the Unified 

Process. New York: John Wiley & Sons, Inc. New York, 2002. 
[3] K. Beck, Extreme Programming Explained: Embrace Change: Addison-Wesley, 1999. 
[4] K. Schwaber, "Scrum Development Process," presented at OOPSLA'95 Workshop on 

Business Object Design and Implementation, 1995. 
[5] K. Schwaber and M. Beedle, Agile Software Development With Scrum. Upper Saddle River, 

NJ: Prentice-Hall, 2002. 
[6] S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven Development, 2002. 
[7] J. A. Highsmith, Adaptive Software Development: A Collaborative Approach to Managing 

Complex Systems. New York, NY: Dorset House Publishing, 2000. 
[8] M. Poppendieck and T. Poppendieck, Lean Software Development: An Agile Toolkit: 

Addison-Wesley, 2003. 
[9] A. Cockburn, Agile Software Development. Boston: Addison-Wesley, 2002. 
[10] J. Stapleton, Dynamic systems development method - The method in practice: Addison 

Wesley, 1997. 
[11] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, "Agile Software Development 

Methods: Review and Analysis," VTT, Espoo 478, 2002. 
[12] D. Cohen, M. Lindvall, and P. Costa, "Agile Software Development," 2003. 
[13] S. Hayes, "Why Use Agile Methods?." Melbourne, Australia: Khatovar Technology, 2003. 
[14] "Agile Methodologies Survey Results," Shine Technologies, 2003. 
[15] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process. 

Reading, MA: Addison-Wesley, 1999. 
[16] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B. 

Paech, J. Wust, and J. Zettel, Component-based Product Line Engineering with UML. New 
York: Addison-Wesley, 2001. 

[17] "Component Oriented Software Manufacturing (COSM) methodology." 
[18] D. D'Souza and A. Wills, Objects, Components, and Frameworks with UML: The Catalysis 

Approach. Reading, Massachusetts: Addison Wesley, 1999. 
[19] M. Awad, J. Kuusela, and J. Ziegler, Object-Oriented Technology for Real-Time Systems: A 

Practical Approach Using OMT and FUSION. New Jersey: Prentice-Hall Inc., 1996. 
[20] B. Selic, G. Gullekson, and P. Ward, Real-Time Object-Oriented Modeling. New York: John 

Wiley & Sons, 1994. 
[21] "Developing Real-time Software With Rational Rose RealTime - version 6.0," Rational 

University 1999. 
[22] A. Moore and N. Cooling, Developing Real-time Systems using Object Technology: Artisan 

White Paper, 2000. 
[23] B. P. Douglass, Doing Hard Time: Developing Real-Time Systems with UML, Objects, 

Frameworks, and Patterns. New York: Addison-Wesley, 1999. 
[24] "Telelogic Tau methodology web pages," 2005. 
[25] "Object Management Group." 
[26] J. Stankovic, "Strategic directions in real-time and embedded systems," ACM Computing 

Surveys (CSUR), vol. 28, pp. 751 - 763, 1996. 
[27] S. Van Baelen, J. Gorinsek, and A. Wils, "The DESS Methodology," 2001, pp. ITEA Project 

Report,  DESS Deliverable D1. 
[28] P. Kaiser and S. Van Baelen, "The EMPRESS Process," ITEA, ITEA Project Report 

December 2003 2003. 
[29] "Model Driven Architecture (MDA)," Object Management Group July 9, 2001 2001. 
[30] D. S. Frankel, Model Driven Architecture, Applying MDA to Enterprise Computing: OMG 

Press, 2003. 
[31] A. e. a. Kleppe, MDA Explained: Addison-Wesley, 2003. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :59 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

[32] L. Vandormael, "Common Characteristics with Attributes and Metrics," ITEA, ITEA Project 
Report February 2001 2001. 

[33] J. Grenning, "Extreme Programming and Embedded Software Development," presented at 
Embedded Systems Conference 2002, Chicago, 2002. 

[34] A. Pnueli, "Embedded Systems: Challenges in Specification and Verification (An extended 
abstract)," presented at Second International Conference on Embedded Software EMSOFT 
2002, 2002. 

[35] J. Ronkainen and P. Abrahamsson, "Software Development Under Stringent Hardware 
Constraints: Do Agile Methods Have a Chance," presented at XP 2003, Genova, Italy, 2003. 

[36] IEEE, Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-1990): 
Institute of Electrical and Electronics Engineers, Inc., 1990. 

[37] J. Taramaa, Practical development of software configuration management for embedded 
systems: Technical Research Centre of Finland, VTT Publications, 1998. 

[38] J. Stankovic, "Real-time and embedded systems," ACM Computing Surveys (CSUR), vol. 
28, pp. 205-208, 1996. 

[39] M. Mäkäräinen, Software change management processes in the development of embedded 
software: Technical Research Centre of Finland, VTT Publications 416, 2000. 

[40] D. Dahlby, "Applying Agile Methods to Embedded Systems Development," 2004. 
[41] B. Greene, "Using Agile Methods to Validate Firmware," Agile Times, vol. 4, pp. 79 - 81, 

2004. 
[42] A. Sangiovanni-Vincentelli and G. Martin, "Platform-based Design and Software Design 

Methodology for Embedded Systems," IEEE Design & Test of Computers, vol. 18, pp. 23-33, 
2001. 

[43] M. Vierimaa, T. Kaikkonen, M. Oivo, and M. Moberg, "Experiences of practical process 
improvement," Embedded Systems Programming Europe, vol. 2, pp. 10 - 20, 1998. 

[44] M. Borger, T. Baier, F. Wienberg, and W. Lamersdorf, Extreme Modeling, Extreme 
Programming Examined: Addison Wesley, 2001. 

[45] J. Smith, "A Comparison of RUP and XP," Rational Software White Paper, 2001. 
[46] G. Pollice, "Using the Rational Unified Process for Small Projects: Expanding Upon eXtreme 

Programming," Rational Software White Paper, 2001. 
[47] P. Letelier, J. H. Canos, and E. A. Sanchez, An Experiment Working With RUP and XP, 

Extreme Programming and Agile Processes in Software Engineering: Springer, 2003. 
[48] G. Booch, R. C. Martin, and J. Newkirk, "The Process," 1998. 
[49] S. W. Ambler, "Are You Ready for MDA?," in Software Development's Agile Modeling 

Newsletter, 2004. 
[50] S. W. Ambler, The Object Primer: Agile Model-Driven Development with UML 2.0: 

Cambridge University Press, 2004. 
[51] Z. Stojanovic, A. Dahanayake, and H. Sol, Component-Oriented Agile Software 

Development, Extreme Programming and Agile Processes in Software Engineering: 
Springer, 2003. 

[52] J. Martinsson, Maturing XP through the CMM, Extreme Programming and Agile Processes in 
Software Engineering: Springer, 2003. 

[53] C. Larman, Agile & Iterative Development: A Manager's Guide: Addison-Wesley, 2004. 
[54] C. Gelowitz, I. Sloman, L. Benedicenti, and R. Paranjape, Real-Time Extreme Programming, 

Extreme Programming and Agile Processes in Software Engineering: Springer, 2003. 
[55] P. Kettunen and M. Laanti, "How to steer an embedded software project: tactics for selecting 

the software process model," Information and Software Technology, pp. 1-22, 2004. 
[56] N. Shehabuddeen, F. Hunt, and D. Probert, "Insights into embedded software sourcing 

decisions: practical concerns and business perspectives," presented at IEEE International 
Engineering Management Conference IEMC'02, 2002. 

[57] B. Greene, "Agile Methods Applied to Embedded Firmware Development," presented at 
Agile Development Conference, Salt Lake City, USA, 2004. 

[58] K. Beck, M. Beedle, A. Bennekum van, A. Cockburn, W. Cunningham, M. Fowler, J. 
Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. Martin, S. Mellor, K. 
Schwaber, J. Sutherland, and D. Thomas, "Manifesto for Agile Software Development," vol. 
2004, 2001. 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :60 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

[59] N. Van Schooenderwoert and R. Morsicato, "Taming the Embedded Tiger - Agile Test 
Techniques for Embedded Software," presented at Agile Development Conference, Salt 
Lake City, USA, 2004. 

[60] R. Morsicato and M. Poppendieck, "XP in a Safety-Critical Environment," Cutter IT Journal, 
vol. 15, 2002. 

[61] N. Van Schooenderwoert and R. Morsicato, "Freeing the Slave with Two Masters: An 
Embedded Programming Team's Transition to XP," Cutter IT Journal, vol. 15, pp. 34 - 41, 
2002. 

[62] D. Smigelschi, "Combining Predictability with Extreme Programming in Embedded 
Multimedia Project," presented at XP 2002, Sardinia, Italy, 2002. 

[63] G. Mueller and J. Borzuchowski, "Extreme Embedded a Report from the Front Line," 
presented at 17th Annual ACM Conference on Object Oriented Programming Systems 
Languages and Applications (OOPSLA'02), Seattle, USA, 2002. 

[64] J. Bowers, J. May, E. Melander, M. Baarman, and A. Ayoob, "Tailoring XP for Large System 
Mission Critical Software Development," presented at XP/Agile Universe, Chicago, USA, 
2002. 

[65] D. Pierce, "Extreme Programming without Fear," Embedded Systems Programming, vol. 17, 
2004. 

[66] D. Turk, R. France, and B. Rumpe, "Limitations of Agile Software Processes," presented at 
3rd International Conference on eXtreme Programming and Agile Processes in Software 
Engineering (XP2002), Sardinia, Italy, 2002. 

[67] N. Van Schooenderwoert, "Embedded Extreme Programming: An Experience Report," 
presented at Embedded Systems Conference, Boston, MA, 2004. 

[68] J. E. Hewson, "Cross-Functional Pair Programming," Embedded Systems Programming, vol. 
17, 2004. 

[69] D. Pierce, "Agile Embedded: The Ground Floor," Agile Times, vol. 4, pp. 69 - 72, 2004. 
[70] P. Manhart and K. Schneider, "Breaking the Ice for Agile Development of Embedded 

Software: An Industry Experience Report," presented at 26th International Conference on 
Software Engineering, Scotland, UK, 2004. 

[71] "AGILE-ITEA web pages," 2004. 
[72] K. Beck, Extreme Programming Explained: Embrace Change: Addison Wesley Longman, 

Inc., 2000. 
[73] J. Highsmith, Agile Project Management: Addison-Wesley, 2004. 
[74] H. Hulkko, "Pair Programming and its Impact on Software Quality," in Department of 

Electrical and Information Engineering: Unversity of Oulu, 2004, pp. 96. 
[75] S. Heiberg, U. Puus, P. Salumaa, and A. Seeba, "Pair-Programming Effect on Developers 

Productivity," presented at XP2003, Genova, Italy, 2003. 
[76] K. Beck, Test-Driven Development By Example, 1st ed: Addison-Wesley, 2003. 
[77] N. Van Schooenderwoert, "Transition to XP in an Embedded Environment," Agile Times, vol. 

4, pp. 72 - 74, 2004. 
 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :61 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

 

APPENDIX A: SUMMARY OF EMPIRICAL STUDIES 

This appendix contains a summary of experiences on adopting agile practices in projects developing 
embedded software.  
 

Reference Application context Motivation Adopted agile 
practices 

Experiences/findings 

[70] - Automotive 
industry (bus 
software) 

- Constant changes in 
requirements 

- Critical time pressure 
- Need for high quality 
- Need for custom-

made solutions 

- Unit testing 
- Test first 

TDD: 
- Previously used manual checking made it easy to 

separate typos from actual bugs 
- Automated testing requires more accurate syntax use 

and timing 
- Test cases need to be written more accurately and at a 

detailed level than before 
Agile methods: 
- No method can be adopted as-is 
- Step-by-step adoption required to minimize risk and 

gain acceptance 
- Effects of changes should be measured with a 

traditional measurement framework 
[41, 57] - Processor firmware 

dev. 
- 7 developer team 
- Code: 300 KLOC 

Itanium assembly 
and 30 KLOC C 

- Many defects went 
undetected through 
testing 

- Constantly changing 
HW design in early 
stages of the project, 
because SW changes 
are cheaper 

- System fixing and 
tuning made with 
firmware after HW 
ready 

- Schedules could not 
be followed 

- Poor maintainability 
due to HW fixes and 
use of assembly 

- Too specialized team 
members, i.e. need 
for cross-training 

Scrum: 
- Sprints 
- Sprint planning 

meeting 
- Daily Scrum 
- Sprint review 
XP: 
- Simple design 
- Unit testing 
- Refactoring 
- Pair programming 
- Collective 

ownership 
- Continuous 

integration 
- On-site customer 
- Sustainable pace 
- Coding standards 

Challenges for agile development: 
- Firmware developers not keen on testing, because 

firmware changes are easier to make than HW changes 
- Parallel development of SW and HW -> critical 

firmware sections need to be tested regularly 
- Assembly code is more error-prone and needs low-level 

code implementation testing more 
Simple design: 
- Non-critical assembly code should not be optimized 

(causes poor maintainability) 
TDD: 
- Team had to develop their own unit test tool for 

assembler language 
- Positive results: increased quality, ease of coding, more 

focused planning and design, and timely feedback 
Unit tests: 
- Most useful practice 
- Enabled testing components at a low level (which is 

needed especially in assembly) 
Refactoring: 
- Reduced the amount of “kludginess” in the code 
- Improved the quality of the legacy code 
Pair programming: 
- Most controversial practice 
- In assembly coding, PP has value only in initial 

stages(detailed design, initial coding) 
- Cross-training benefits not as extensive as hoped, 

because the need for specialized domain knowledge in 
embedded system development too vast for anyone to 
have 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :62 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

Reference Application context Motivation Adopted agile 
practices 

Experiences/findings 

[59, 61, 67, 
77] 

- Embedded real-
time project 

- Product: mobile 
spectrometer 

- 3-year project, XP 
started after 1.5 
years 

- 4 experienced team 
members 

- Code: 30 KLOC C 
and some 
assembly 

- Dual target RTOS 

- Constant changes in 
algorithm design as 
it was in preliminary 
state 

- New project, no 
existing problems 
-Spiral development 
model, already some 
XP practices used: 
-- Collective 

ownership 
-- Coding standards 
-- Metaphor 
-- Continuous 

integration 

- Planning Game 
- Pair programming 
- Test first 
- Simple design 
- Refactoring 
- 40-hour week 
- “Embedded TDD” 

(= TDD, trouble 
log, dual 
targeting, HW-
related unit tests, 
domain-level 
tests, domain data 
tests) 

Planning game: 
- Simplified the team’s interface with multiple 

stakeholders (partner company, internal management, 
internal and external customers, mechanical and HW 
engineers) 

Team meetings: 
- half hour team meetings twice per week 
- additional meetings for longer topics as needed 
Pair programming: 
- Very beneficial 
- Also code reviews performed, which became more 

valuable and active, as everyone new the code they 
were reviewing 

Simple design: 
-An  initial overall architecture, developed prior to the 

adoption of XP,  remained useful 
-Up-front designing: 
--in the beginning of each iteration, the design was 

revised due to the features that were added 
-- designing  for the current iteration and making some 

provisions for the one after that 
-- detailed designing in order to have valid estimates 
--designs were analyzed using several use case scenarios. 
- HW-related issues were planned as far as possible 
- Time period between releases narrowed towards the end 

of the project because system-level problems were 
fixed with software changes 

Refactoring: 
- Before XP, root cause of most bugs was code reviews, 

and after, insufficient refactoring 
- Checklists were created and used as needed 
- Code reviews for code that wasn’t pair programmed 
Documentation: 
- the first half (before XP): a software design document at 

the start of each planned “spiral” 
- the second half: 
-- XP prompted to ask the following questions about the 

software design document at the start of each iteration: 
“Is this necessary now” or “What is the simplest thing 
that could possibly work” 

- Brief developer-level documents, “Mini-docs”, were 
created as needed, and maintained by the project team. 

Test first: 
- Easy to adopt 
- Each module’s test program was compiled and ran 

every night 
Unit tests: 
- Trouble log which used little memory and was fast to 

execute was used to obtain error descriptions 
- Dual targeting (i.e. ability to run the SW on both target 

HW and PC) used to separate SW and HW bugs, and 
to enable automation of unit tests 

- HW-related unit tests used to test HW controllers and 
drivers independently during development, and by HW 
vendor as final test suite before shipping 

System level tests: 
- Domain tests were used to test separate domains, when 

unit testing was too fine-grained and system testing too 
high-level. One domain was built and loaded to HW, 
and I/O from rest of the system replaced by mock 
objects. This was used e.g. for tracing timing problems 

- Domain data tests, i.e. testing the SW with design data, 
used to keep up with constantly changing requirements 
and verify the new code against them 

Overall TDD results: 
- Low bug rate 
- System bugs not instantly blamed on SW, because it 

was easily testable 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :63 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

Reference Application context Motivation Adopted agile 
practices 

Experiences/findings 

- Better communication between HW and SW engineers 
Overall software process 
- the first half: “generic agile”, spiral development model 
- the second half: “Embedded XP” 
“Generic agile” 
- unit tests foe every module but no automatic unit tests 
- collective ownership of code 
- iterative releases 
- no pair programming but  code reviews 
- no planning game 
 
Adoption of XP: “Embedded XP” 
-: Dual targeting and trouble log perceived as helpful 

practices which supported the adoption of XP practices 
- Successful transition to XP enabled by the fact that 

already a subset of XP practices was used in the project 
- Testability of the system is a key issue when 

transitioning to XP 
- “Now we really understand how interdependent the XP 

practices are – if you’re going to use it, you should use 
all of the practices.” 

[62] - Automotive 
multimedia 
project 

- Low staff motivation 
- Unclear requirements 
- Bad customer 

communication 
- Inefficient QA and 

documentation 

Agile-like 
practices: 

- Team co-location 
based on similar 
activity types 

- Defining clear 
roles for everyone 

- Bi-weekly status 
meetings with 
customer 

- Appointing project 
members 
responsible for 
customer 
communication 

Customer communication: 
- Improved visibility, enhanced attitude 
- Clear definition of expectations 
Planning: 
- Estimations were done together with team members to 

increase commitment 
- Stable and volatile parts of SW were identified, and 

long term planning was made to the stable ones, but 
the volatile parts were planned only one iteration ahead 

[63] - Embedded legacy 
product 
development 

- 10 years old 
product 

- 9 programmers 
with >10 years of 
experience 

- 100 KLOC C code 

Waterfall process used 
- Vague or missing 

requirements 
- Over 2000 page 

design document 
- Bad intelligibility and 

maintainability of 
the SW 

- No separate SW 
testing was used 

- Complex and time-
taking integration 

- Pair Programming 
- Stories 
- Unit testing  
- Refactoring 
- Metaphor 
- Continuous 

integration 

Pair  programming: 
- Experienced paired with inexperienced to propagate 

product knowledge 
- Same pairs used to complete a task 
- Pairs worked on design and complex coding tasks, 

simple and repetitive tasks were done solo in a co-
located office space 

- Co-ordination was needed to match pair member’s 
working times 

Continuous integration: 
- The used tool built new code base slowly and locked 

the code until the integration was ready, so developers 
did not integrate frequently 

Unit testing 
- Not mandatory, so many pairs did not write them 
- Existing tests were not updated according to code 

changes, so there was nothing to test refactorings 
against 

Customer: 
- End user not interested from software or a part of 

software, but from the whole embedded product, and 
thus getting priorities from the end customer is not 
feasible 

- Hardware team used as customer to define and 
prioritize requirements 

Coding standards: 
- In the legacy product’s code, many different coding 

styles were used. 
- Not feasible to impose one coding standard to be 

followed. 
- Agreed, that changes to a module would be done in the 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :64 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

Reference Application context Motivation Adopted agile 
practices 

Experiences/findings 

same style as the rest of the module 
- For a new module, one of existing styles were chosen 
Adoption of agile methods: 
- Embedded SW developers are more sceptic and 

resistant to changes because of their HW backgrounds 
- XP coach and upper management commitment needed 

to succeed 
[64] - Re-implementation 

of a part of a 
legacy SW 
product 

- Mission-critical 
SW 

- Soft real-time 
requirements 

- Over million LOC 
of C code 

- Aim to mitigate risks 
with early, frequent 
feedback 

- One of several pilot 
projects at a large 
company 

Several XP 
practices: 

- Small releases 
- Continuous 

integration 
- Pair programming 
- Simple design 
- Planning Game 
- Refactoring 
- Testing 
 

Small releases: 
- 3-month release cycle chosen so that one feature could 

be done in one iteration 
- Release schedule was integrated to system integration 

and testing schedules 
- Because development was focused at one feature at a 

time, feature’s interaction was not considered enough 
and thus the most complex tasks were faced at the end 
of the project 

Continuous integration: 
- Integration to mainline controlled by a bi-weekly 

change control board (CCB) 
- CCB accepted changes and assured that the change 

requests had been fulfilled 
- Longer integration enabled to think about the effects of 

a change in detail, but made the integration harder and 
more time taking 

Pair programming: 
- High initial adoption, which decreased during the 

project, and finally, only risky changes were made in 
pairs 

- Formal reviews omitted at first, but then brought back 
due to low usage of PP, missed defects and 
organizational pressure 

- In mission-critical environment, PP should be 
accompanied by formal code and test case reviews 

- In complex environments, experts and feature owners 
are needed over common knowledge (knowledge 
transfer benefits of PP not as extensive or even 
important) 

Simple design: 
- In mission-critical environment, requirements rarely 

change because they have been diligently defined in a 
contract between the customer and business team prior 
to the project’s inception -> 80-90% of all 
requirements should be completely defined prior to the 
first iteration 

- If more time had been spent on design, high-risk areas 
of the code and interaction of the features might have 
been identified better 

Planning Game: 
- No access to end customer, but expert from system 

design group worked as the customer, which created a 
conflict of interest 

- Only 80-90% of the requirements were captured at 
planning game, rest were discovered during 
implementation (due to lack of end customer) 

- If dedicated customer is not an option, majority of 
requirements should be established before the first 
iteration 

Refactoring: 
- Permission for refactoring had to be asked from the 

CCB (due to mission-criticality) 
- Large refactorings created significant defects (too much 

reliance on test suite to detect possible defects caused 
by refactoring) 

TDD: 
- 1500 unit test written and merged into a test suite 
- Testing perceived very useful and critical to refactoring 
- Too much reliance on the test suite, a balance between 

code reviews, automated regression tests and 



   
 
 

Agile in embedded software development: State-of-
the review in literature and practice  

Deliverable ID: D1 
 

Page    :65 of 65 
 

1.0 
Date     :  08.04.05 
 
 

Status : Final
Confid : Public

 

 
© Copyright AGILE Consortium 

Reference Application context Motivation Adopted agile 
practices 

Experiences/findings 

acceptance tests should be used 
- Large test suite takes a lot of effort to maintain 

according to changes -> Sometimes design decisions 
were affected by unwillingness to make major changes 
to the test suite 

- Also a test suite for testing interfaces with legacy code 
would have been necessary 

Overall results: 
- Positive overall experiences 
- Product quality well within expectations 

[60] - Pharmaceutical 
instrument  

- Safety-critical 

- Aim was to find an 
effective approach to 
help to identify as 
much failure 
scenarios as possible 
throughout the 
project, enable their 
prevention and yet 
be able to control 
and trace the effects 
of new changes and 
corrections 

- Refactoring 
- Unit testing 
- Stories 

Stories: 
- Requirements traceability which is important in safety-
critical development, results from XP, since no code is 
written if there’s no user story requiring it 
Refactoring: 
- Refactoring a design is good for discovering failure 

scenarios and finding design flaws 
- Root-cause analysis of bugs revealed, that the team 

should have done refactoring when they felt like it 
Testing: 
- Perceived as the most important discipline of XP 
- Emphasis should be put on rigorous unit testing to 

produce better and safer code 
- XP’s testing practices help to assure, that the safety 

controls are not violated when the system is changed 
Overall results: 
- XP practices are adopted more voluntarily than 

“traditional” processes, because XP contributes and 
improves the developers work directly, and does not 
feel like an extra burden forced by the process 
improvement instances 

- XP process did not pass an audit, although it was 
regarded beneficial and efficient 

 
 
 
 
 
 


	INTRODUCTION
	AGILE SOFTWARE DEVELOPMENT
	Overview
	Home ground
	Approaches
	Business rationale for using Agile method
	Improved return on investment
	Early cancellation of failing projects
	Reduced delivery schedules
	Higher quality
	Improved control
	Reduced dependence on individuals and increased flexibility
	Statistics


	DEFINITION OF AGILE SOFTWARE DEVELOPMENT
	REAL-TIME EMBEDDED SOFTWARE DEVELOPMENT
	Overview
	Methodologies for High-Level Embedded Software Development
	Overview
	Unified Process
	Dess
	Empress
	MDA

	Characteristics of Real-time Embedded Software
	Embedded system
	Common characteristics
	Generic definition

	Embedded software
	Common characteristics
	Generic definition

	Real-Time System
	Common characteristics
	Generic definition
	Metrics

	Memory Constraints
	Common characteristics
	Generic definition
	Metrics

	CPU constraints
	Common characteristics
	Generic definition
	Metrics

	Bandwidth Constraints
	Common characteristics
	Generic definition
	Metrics

	Power Consumption Constraints
	Common characteristics
	Generic definition
	Metrics

	Functional characteristics
	Communication
	Common characteristics
	Generic definition

	User interface
	Common characteristics
	Generic definition

	Command and control
	Common characteristics
	Generic definition

	Operational characteristics

	Quality Attributes of Embedded Software
	Quality of Service
	Common characteristics

	Dependability
	Common characteristics
	Generic definition

	Availability
	Common characteristics
	Generic definition
	Metrics

	Reliability
	Common characteristics
	Generic definition
	Metrics

	Safety
	Common characteristics
	Generic definition
	Metrics

	Robustness
	Common characteristics
	Generic definition

	Testability
	Common characteristics
	Metrics

	Maintainability/Serviceability
	Common characteristics
	Metrics

	Security
	Common characteristics
	Generic definition

	Field loadable Software
	Common characteristics
	Metrics

	Configurable software
	Common characteristics
	Metrics

	Flexible Software
	Common characteristics
	Metrics


	Software architecture characteristics
	Software Architecture
	Common characteristics

	Scheduling Type
	Common characteristics

	Interrupt handling
	Common characteristics

	Tasking and Exception Handling
	Common characteristics

	Processor privilege usage
	Common characteristics

	Languages used
	Common characteristics

	Modularity
	Common characteristics

	Portability
	Common characteristics

	Configurability
	Common characteristics

	Operating Systems and Kernels used
	Common characteristics

	Hardware architecture characteristics
	Development tools
	Common characteristics


	Embedded Agile Software Development
	Unifying Embedded and Agile Software Development


	EMPIRICAL BODY OF EVIDENCE: STATE-OF-THE-ART
	Introduction
	Challenges facing the development of embedded software
	Changing hardware requirements
	Unavailability of target hardware
	Presence of large, heterogeneous teams

	Motivation for using agile methods in embedded software deve
	The experiences of adopting agile practices in embedded soft

	Project management and planning
	Planning Game (iteration planning)
	Short Iterations / Small releases

	Design
	Simple Design
	Light Documentation

	Implementation
	Continuous Integration
	Pair Programming
	Refactoring

	Testing
	Unit testing
	Acceptance testing

	Summary of experiences from different agile practices
	FUTURE RESEARCH NEEDS
	Shortcomings of existing studies
	Future research needs


	CURRENT STATUS ON AGILE METHDOS IN EUROPEAN �SOFTWARE DEVELO
	Introduction
	Background of the Study
	Results of the Study
	Agile Process Model
	Iterative software development
	Incremental software development

	Close communication
	Co-Location of Project Teams
	On-Site Customer

	Agile software engineering practices
	Pair Programming
	Continuous Integration
	Collective Code Ownership

	Quality Assurance Techniques
	Test Driven Development (TDD)
	Refactoring


	Future Research Needs and Limitations of the Study
	Summary and Conclusions

	REFERENCES
	APPENDIX A: SUMMARY OF EMPIRICAL STUDIES

