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ABSTRACT. We investigate the rate of convergence of so-called n-point Gauss
type quadrature formulas to integrals of the form [ f(z)da(z) where a is
a general distribution function on [0,00) and where f is analytic and admits
a Laurent expansion in C\ {0}. The general results are then applied in the
special case where do(z) = 2% exp{—(z” + 27 7)}dz, a € R and v € (1/2, c0).

1. Introduction

Let a be a general distribution function on [0,00). We consider quadrature
formulas of the form 2?21 Ajnf(zjn) with positive weights Aj, > 0 and with real
knots z;, > 0. If these quadrature formulas are exact for all integrals I,(f) =
[ f(z)do(z) where f is an arbitrary Laurent polynomial of the form Z;:ﬂ) ajz’
where p = p(n) and ¢ = q(n) are nonnegative integers such that p+¢ = 2n—1, then
these are called n-point Gauss type quadrature formulas. If we want to investigate
the behavior of these quadrature formulas as n — oo with both p(n) and g(n)
tending to oo, then it is natural to consider integrals fooo f(z)da(z) where f(z) =
S frz® such that "7 frz® and > p- | f_rz" represent entire functions. This
class generalizes in a natural way the Laurent polynomials.

In this paper we shall give rates of convergence for these n-point Gauss-type
quadrature formulas. In Section 2 we introduce the necessary notation and defini-
tions. The main results are introduced in Section 3 and in Section 4 we apply these
general results to the special case when da(z) = z%exp{—(z7 + z77)}dz, a € R
and v € (1/2,00).
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2. Notation and definitions

Let a(z) be a distribution function on [0, 00), i.e. a real valued, nondecreasing
function with infinitely many points of increase such that the moment function

(2.1) m(t) = /000 z'da(z), teR

exists and is finite in the Lebesgue-Stieltjes sense. Define the moments

cr = m(k) =/ z*da(z), keL.
0

For simplicity, we assume that ¢y = 1. Denote

-/ " f@)da(z)

whenever the Lebesgue-Stieltjes integral is defined and finite. Let {p(n)},.en be a
sequence of nonnegative integers such that 0 < p(n) < 2n — 1 for any n. Now,
because of (2.1), all the moments ¢, k € Z are finite and a polynomial Q,, of exact
degree n (unique up to a multiplicative factor) can be constructed satisfying

/ ' Qu(z)z P™da(z) =0, j=0,1,...,n—1.
0

Let {z;n}7_; be the zeros of @, then there exist positive weights {4;,}7_; such
that

(2.2) / P(z)z P da(z ZAJHP Tin), VP €Ty,

where I (k > 0) denotes the space of polynomials of degree k at most. For p and
¢ nonnegative integers, we write for subspaces of Laurent polynomials

A pq={Lz) =TI, a507} C A

where A is the space of all Laurent polynomials. Take L € A_,(n) 4(n) (P(n)+q(n) =
2n — 1), then, since L(z) = z P(") P(z) with P € II,_;, one has

/ / P(z)z~ "™ da(z Z AjnP(@jn) =Y AjnL(xjn),
0 =t

where A;, = xp(n)AJn >0,j5=1,...,n. The expression

(2-3) In(f) = Z Ajnf("rjn)

will be called the n-point Gauss-type quadrature formula for da(z) in A_,p) 4(n)-
Observe that I, (L) = I,,(L) for any L € A_p(p) q(n)- For further details about these
quadrature formulas see [ BDMGVO097a],[BDMGVO97b],[BDMGVO098].

In this paper we shall be concerned with the convergence of these quadrature
formulas for functions admitting a Laurent expansion valid in C\ {0}. That is we
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study the convergence of I,,(f) when f is a Lebesgue-Stieltjes integrable function
with respect to da(z) on [0,00) which is of the form

(24)  f(2) = fH(2)+ f7(2), with fT(2) =) ff27 and f7(2) =) fy 27,

Jj=0 J=1

f*(z) and f~(1/z) being entire functions. This class of functions f is clearly the
most natural generalization of the Laurent polynomials.

We now introduce two functions R, and 7, which we shall use to control the
size of respectively the largest and smallest node z;, as n — oo. These R, and
T, are two arbitrary functions defined on [1,00) which satisfy the following condi-
tions: R; > 0 and r, > 0, R, is monotonically increasing and r, is monotonically
decreasing, and

(2.5) lim R, = oo and max{z;n:1<j<n}<R,,
Tr—>00
(2.6) lim 7, =0 and min{z;, : 1 < j <n} >r,.
Tr—00

Thus z, € [rn, Rn], j=1,...,n,n €N
In the rest of this paper we also assume that the sequences p(n) and g(n) are
both monotonically increasing and that they satisfy
li = i = oo.
A5 Pln) = i gln) =0

Next, we introduce two monotonically increasing functions which will measure
the degree of exactness of the formulas I,(f). Set

(2.7) v(z) =min{n: q(n) >z}, = >q(1)
and
(2.8) v*(z) = min{n : p(n) >z}, = > p(1).

This gives the degree of exactness since
I(z?) = Lj)(@?) and I,(z77) =L.;(z7), VjeN
Assume that

(2.9) lim 2 _g e (0,1).

n—oco 2m

By (2.7) it immediately follows that

q(v(n) — 1) < n < q(v(n)).

Hence

gv(n) 1) _n _ q(v(n)
)

2v(n) 2v(n) = 2w

Since lim,, o v(n) = oo (recall that lim,,, g(n) = ), we get
n

2.10 lim ——=1-6.

(2.10) A Sy

Similarly, by (2.8) and (2.9), one obtains
n

(2.11) lim

n—oo 20* (n)

=4.
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The functions which we introduce next, will enable us to formulate convergence
results to be given in Section 3 in a more elegant form. These functions are

— Bym)
(212) v =R
2(1-9)
and
(2.13) ¥*(0) = lim )
n—oo Tzn_é
Furthermore we introduce
A an)
2.14 6) = lim —~
(2.14) w(0) = lim o
3(1—0)
where
(2.15) = [ Qu@f'a M da(a)
0

and @, the nth monic orthogonal polynomial for m_p(")da(w). We also need the so
called Christoffel function of degree m for the distribution day, (z) = 2~ @™+t da(z)
as given by

P 2
(2.16) K,.(z,a,) = sup | (Z)2| ,
pen,, [Pl13

where [|P||3 = [° |P(z)|?da,(z). This allows us to define

Tp(n)

— Tim 20
(2.17) w(0) = lim [Kn(0, )] /7™

For any entire function f(z) = E;io f;#, we define its order by

— logn™"
2.18 p(f) = lim
(2.18) (f) = lim Tog | .|
and if 0 < p(f) < oo, its type is
— n|fn |/
2.19 7(f) = lim ——————, e =-exp(1l).
(2.19) (N = M )

Finally, for s > 0, the indices or and o, are defined by

(2:20) or(f;s) = Tm |ful'/"Rin
(2.21) or(fys) = T |fal'/"/ren.

For more information and properties on several of the notions that were in-
troduced, we refer to [Mha96]. There one can also find in greater detail several
(polynomial) results that are related to some of the problems we discuss in this
paper for the case of Laurent polynomials.
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3. Rates of convergence

In this section we give the main results about the convergence of the quadrature
formulas I,(f), n = 1,2,... as defined in Section 2. To understand better the
technical aspects, we start with two lemmas which give the relation between the
parameters p, 7 and o. They are basically contained in [Lub83].

LEMMA 3.1. Let f*(z) = Z;io fj'{'zJ be an entire function.

a) Suppose that for some q* > 0 and ¢t > 0, R, < (c"'nv)q+ for sufficiently
large z. Then
i) p(ft)<1/qt = or(f*;s)=0,Vs>0
+
q

i) p(f1) = 1/g* = or(f+is) < (cFs e r(FH)/q") L Vs >0

b) Suppose that for some ¢ > 0 and ¢ > 0, R, > (ci"z)qr for sufficiently
large x. Then
i) p(ft)>1/qf = or(f*;s) =00, Vs >0

—+
q
i) p(f+) =1/af = or(f*;5) > (cfser(FH)/af )", Vs >0
REMARK 3.1. If R, = (Kw)q+, then equality holds in a)ii) and in b)ii), so that
or(fT;s) can be estimated exactly in terms of 7(f1).
The following lemma gives the analog for entire functions in 1/z.
LEMMA 3.2. Let f~(2) =", fj_zfj be an entire function.

a) Suppose that for some ¢~ > 0 and ¢~ > 0, 1/r, < (c"z)? for sufficiently
large z. Then
i) p(f7)<1/q” = 0,(f755)=0,Vs>0
=
i) p(f7)=1/g = 0,(f ;) < (c_s e 'r(f_)/q_) ,Vs>0

b) Suppose that for some q > 0 and ¢ > 0, 1/r, > (cy )1 for sufficiently
large x. Then
i) p(f7)>1/q; = or(f7;8) =00, Vs>0

i) p(f7)=1/q; = 0,(f7;8) > (c;s e T(f_)/qf)ql_, Vs >0

Now, taking into account that g(n) > 0, we have Z;;l Ajn = ¢o = 1. Thus,
from the definition of R, and r;, the following lemma can de deduced.

LeEmMMA 3.3. Let I,(f) = E?:I Ajnf(zjn) denote the n-point Gauss-type quad-
rature formula for In(f) in A_pm),qn), (P(n) +q(n) =2n —1). Then

sign(j)+1 1—sign(j)
2 2

|51
a) I,(z7) < |R, /Tn ] ,meN, j€Z, where

. . 1, forxz >0
sign(z) = { -1, forz <O.

b) Ln(@?) = I,;(@’) < R}y, jEN.
¢) In(z77) = Le(jy(z7) <r, 3, €N

We prove one more lemma.
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LEMMA 3.4. Assume that f = ft + f~ is given as in (2.4). Furthermore
suppose that ¥(0) and 1/¢*(8) as given by (2.12) and (2.13) are both finite. Assume

also that or(f;; ﬁ)d)(g) <1 and o,(f7;55)/1%*(0) <1. Then

L(f) =) fTa(2) + ) £ Ta(z7).

Jj=0 Jj=1

PrOOF. We have to prove that

if;’zj :if;’[a(zj) and I, ifj—z*j :ifj‘la(z’
3=0 7=0 7=1 7=t

We shall only prove the second equality since the first one is proved in a completely
similar way. By the dominated convergence theorem [Rud74, Theorem 1.34], it
is sufficient to prove that Z]Oil |f;$_j| is a Lebesgue-Stieltjes integrable function
vAVith respect toA da(z) on [0,00). Since f~(z) = Z;’;l fj_z_j is holomorphic in
C\ {0} where C = CU {0} is the extended complex plane, we can write

/0 Zlf 277 da(z —hm/ Z|f |z~ da(e —hmZIf |/ “ida(z

Because [, z /da(z) < [;° 2 Ida(z), b > 0, it results that

|1l date) < Y It
0 7=1 J=1

Thus we have to check that the series ) 77, fj_Ia(m_j) is absolutely convergent.
Now by ¢) in Lemma 3.3, one has

5 a(@™)] = £ ey @) < 15102
which gives
—1/5 —4\|1/3 1/
|f]‘ | J|Ia( ])l ’ < |f | ]T v*(4)"
Therefore

fm |f [ a(a DY < Tm £t :(f)]
Jj—oo 7 [ ]

< on(f7599) /44 (0).

To simplify the notation we set s = s(6) = o,(f7;5)/1%*(0). (Recall that by
assumption s < 1.) Thus, there exists some ng such that for all n > ng

sup | [M7|la(2 ) < s e<1, >0,
Jjzn

Choose p > 0 such that n = n(6) = ps = s+ € < 1. Then

& > n+1
_ . . . n n
Z |f; "I Lo (=) < gt Zﬂk =1
j=n+1 k=0 n

Thus the series Z] L fi Ta(2™ 7) converges absolutely and the lemma is proved. [
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We are now in a position to state the first result concerning the estimate of the
rate of convergence of the sequence I,,(f), n = 1,2,... of Gauss-type quadrature
formulas.

THEOREM 3.5. Let f(z) be a function satisfying (2.4) and suppose that ()
and 1/¢*(0) as given by (2.12) and (2.13) are both finite. Assume also that

oR(f}'s 3y )00) < 1 and o,(f=; 5)/4*(6) < 1. Then
Jim |La(f) = L(HI'*" < max{n*, 7"}
where
nt = [or(f5 5atgy)v@)]' 0 and nm = [0 (f7555) /¢ (0))°.

PROOF. By (24), set f = ft + f~ with f¥(2) = E;io ffzj and f(z) =
E;’il fj_zfj. Thus, with E,, = I, — I,

E.(f) = Eu(f*)—Eu(f7)

= L(f")- Z filn(@7) + In(f7) - Zf;f

By the previous lemma, we know that

if;z'j = if;’]a(xj) and I, ifj_z‘_j = if;[
7=0 7=0 Jj=1 Jj=1

Thus, since I,(f) = Io(f), Vf € A_p(n),q(n), We can write
E.(f)= ). [fEu(’) Z £ En(
j=gq(n)+1 j=p(n)+1
We study the convergence of both series in the right-hand side separately. First
we consider the series Z;iq(n)-l-l fjfl'En(wj). From the definition of v(z) in (2.7),
Lemma 3.3, and the monotonicity of R,, it follows that

S 51 Ma) = @ = s 1 @) = )
i>q(n i>q(n
< sup |f+|1/J( ()+RJ)1/]
Ji>q(n)
< 290 sup [FFIVIR, ).
7>q(n)
Then

lim sup |fFV7|Ea(e))'7 < lim sup |ffY7 Ry

O j>q(n) O j>q(n)

R,
_ +11/5 _ v(7)
- ’}%Jg&)lf Y

(3.1) < or(f* ;m)i/’(g)-

Observe that since lim, g(n) = 0o and sup ;s 4, |fj+|1/J'R i is monotonically
3(1—0)

2(1—9)

decreasing, it holds that
lim sup |f+|1/JR i = lim sup|f+|1/JR

R0 s 4(n) 3(1—0) N0 g 3(1—6)

=0R(f+§ﬁ)-
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We now proceed as in the proof of the previous lemma. By hypothesis, we know that
or(ft; ﬁ)w(e) < 1. Take p > 1 such that n = n(#) := por(fT; ﬁ)lﬁ(@) <
1, then there exists an ng = ng(p) € N so that for any n > ng by (3.1)

sup |f 1By (a?)|"7 <m <1
Jj>q(n)

and consequently

IFHEL(a)) <77, 5 > q(n).

Therefore
S OB < Y o
j=q(n)+1 Jj=q(n)+1
_ 77q(n)+1 k= Uq(n)+1‘
1-m

k=0

Thus, one sees that the series E;iq(n)+1 |f]7|'||Ia (29) — I,(z7)| is convergent and it
follows that

1/2n
- + j 1-0
Tm [ Y B ] <
j=q(n)+1

As the left-hand side in the last inequality does not depend on the parameter p, we
can replace p by 1 so that

1/2n
32)  Hm | > B < lor(fT gy @)]
Jj=q(n)+1

On the other hand, by assuming that o,.(f~; 55)/¢*(f) < 1, and proceeding as
above, it can be shown that

1/2n
63 Fm [ Y 5 IEE] <l e
j=p(n)+1
Finally, by (3.2) and (3.3) and the fact that
IEDI< D 1B+ Y 1 1Bl ),
j=gq(n)+1 j=p(n)+1
the proof follows. O

Next, a lower bound for the rate of convergence of the sequence {I,(f)} will be
given (compare with Lemma 3.8 in [Lub83]).

LEMMA 3.6. Let f be a function given by (2.4) with nonnegative coefficients,
i.e., f]+ >0 and f; > 0. Then
a) Io(f) < oo if and only if E;io ffcj + 2;11 fie—j <oo
b) If Ln(f) < 00, then Bu(f) = Lu(f) = Iu(f) > aFibny s + Bafiiuy 1 where
Tn = fooo Qn(a:)Qr):_p(")da(x) and B3, = Qn(o)_Z fooo Qn(x)Zx_(p(n)-l—l)da(x)-
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PROOF. a) Since the partial sums in E;‘io fj'wj and Z;’;l Iy z 77 increase
monotonically for z € (0,00), the proof follows from Lebesgue’s monotone
convergence theorem [Rud74, Theorem 1.26].

b) By part a) in this lemma, we can write

En(f) = Z fjii—p(n)+1E"(x_(j+p(n)+l)) + Z f;—q(n)ﬂEn(xHq(n)H)-
§=0 =

On the other hand, from the error expansion for I,,(f) (see  BDMGVO098])
E,(z*) >0, VkeZ.

Hence

(3.4) En(f) 2 fomypr Bn(a™ @) 4l B (M),
Let us denote by L,(¢;z) the Hermite interpolant from A_,(n) q(n) for
the function ¢, at the nodes x1,,... ,Z,, of the quadrature formula. By

[BDMGVO97b], it follows that
Bo(a) = L(a* — La(s*2)).
Taking k = g(n) + 1, then
M _ L (29 ) = g7 PMQ, (1),
Therefore,
(35) I, (.’L‘q(n)+1 . Ln(xq(n)-l—l;x)) — / Qn(‘,l:)2l.—P(")da(.’L‘) = Yn-
0
Now, for k = —(p(n) + 1), we have
L (=P ) = =)Dk Q, (2)?]

with k, = @,(0)~2 > 0 as it can be easily checked. Hence

1 1\ [@u@]* 1
zp(n)+1 _L”<mp(n)+1’$) N [Qn(O)] zP(n)+1

and this yields

1 1 1 o0 da(z)
(3.6) I, (W — Ln<W;l‘)) = W/(; Qn(x)QW = Bn.

The proof now follows from (3.4), (3.5) and (3.6).
(|

We conclude this section with a number of corollaries of the previous results.

COROLLARY 3.7. Let 9(0) and 1/¢*(0) be finite. Under the same conditions
as in Lemma 3.1 and Lemma 3.2 and Theorem 3.5, the following holds.

a) If p(f*) <1/g* and p(f~) <1/q~, then
T |L(f) = I.(H)"/*" = 0.
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b) If p(f*) =1/q" and p(f~) <1/q~, then

S et e r(f\T
B (L) - LD/ <nt, b = [(ﬁgqﬁ) ¢(9)]

1-6
provided that or(f™; 2(11—_6))1#(9) < 1.
o) If p(f*) <1/q* and p(f~) =1/q", then

i [L(f) — L(f)[ /" <n, n~ = [(M) /w*w)]

n—oo 29(17

[4

provided that o, (f~; 25)/¢*(6) < 1.
d) If p(f*) =1/q" and p(f~) =1/q", then
lim [Ia(f) = I(HI*" < max{n*,n~}, @%,n" as above)

provided that or(ft; 2(11—_0))111(0) <1ando,(f 525)/¥*(0) < 1.

REMARK 3.2. In the above corollary we have assumed that there exist positive
constants ct, ¢, g7 and g~ such that for sufficiently large z: R, < (c+x)‘1+ and

r;1 < (¢ z)? . When in both of these relations equality occurs, then it can be
checked that the estimates of the rate of convergence are less than 1.

Now, making use of Lemma 3.6 and definitions (2.14) and (2.17), it follows that

COROLLARY 3.8. Let f be a function as given in (2.4) with nonnegative coef-
ficients such that I,(f) < co. Then

B 11(7) = T (D1 2 max { (o1 sl )u®) (o773 5)e(0) |

n—00
Finally, we can state

COROLLARY 3.9. Under the same hypothesis as in Lemma 3.1, Lemma 3.2,
and Corollary 3.8, we have

a) If p(f+) > 1/qf or p(f7) > 1/q; , then
Tim [La(f) = In(HI'/*" = co.

b) If p(f*) =1/qi and p(f~) =1/q; , then
nli)_rgo o (f) = L ()™ > max{n, ny },

1-6 [4

= (7cl+87(f+))ql+u(e> = (e ”(f_))q;n(m

2(1 - 6)qf 20q;

4. An application to a family of distributions

The general results of Section 3 will now be applied to a family of weight func-
tions introduced in [LLMF95] and also studied in [BHMF96]. Such weight func-
tions were also considered in our previous papers BDMGV097a, BDMGVO97b,
BDMGVO98]. Throughout this section, the distribution will be given by

(4.1) da(z) = wy(z)dz = 2% exp{—(2" + 27 7)}dz, z € (0,00)
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where the parameter a € R is not relevant for our results. The important parameter
is v € (1/2,00). Let {A,} be a sequence of nonnegative integers such that 0 <
An < 2n and satisfying (2.9). Let us denote by hpm(z,w,) the mth orthonormal

polynomial with respect to z~*»w.,(x)dz and by o (2, wy) the corresponding mth
monic orthogonal polynomial, i.e.,

(4.2) hi (2,05) = R (2, 05) [ s ()

where Rpm (2, wy) = Knm(wy)z™ + lower degree terms.

For our further development, and to make the paper more self-contained, we
recall several results contained in [LLMF95],[BHMF96], concerning the zeros of
hunm(z,w,) which are needed to estimate the rate of convergence.

THEOREM 4.1. i) Let {zjn}?_, be the zeros of hnn(z,wy). Then, there

exist positive constants Rn, Tn and K > 1 such that z;, € [Fn/K, KRH]
where

R, = [2:(;7(;)0)] " +o(n')  and % = [%(i)] n + o(nl/)

with B(y) = ﬁ%, and T'(z) being the Euler Gamma function.

il) If0 <0 < 1, then

smry 11/70 e 1/7
s w5 = o (5257

Furthermore, if ;‘—:L =6+ of loén) as n — oo, then

1-6

1-6
1—6 e 7B(v) Al .
hm [Hnn(wfy)]l/n n 1 = (4 [ 2(1—0) ] ) 0 S 9 < 1
n— oo

1; =1
Set A, = [fn, R,] and (compare with (2.16)

(4.3) Ku(z,z *w,) = sup 3
pem, [Pl
where [|P||3 = [ |Pa(z)]?z™ " w, (z)dz.
Let ®a,(2) be the conformal transformation mapping the exterior of the unit
circle onto C \ A, preserving the point at infinity:

2 R,+7,
DA, (2) = o z 5 + VTn(2)

with T, (z) = (z — R,)(z — 7n). Moreover ga_ (z;00) and ga, (2;0) are the Green
functions of A, with pole at infinity and at zero respectively. Note ga, (z;00) =
log [®a,,(2)]-

For a given Borel measure p welet V,,(z) = [log|z—t| *du(t) be its logarithmic
potential.

With this notation, we can formulate:

THEOREM 4.2. Let d(z,A,) denote the distance from z to A,,. Then
wd(z, Ap)Kn(2,wy) < |®a, (2)| exp{wn, — 2V, (2)}
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where W, 1s the solution of the following equilibrium potential problem

o — =wp; TE Supp(ﬂ'n)
2V, (@) +a” +a77 + Ay Ing{ > wn; x € RT \ supp(pn)

with wy, the corresponding equilibrium constant.
Furthermore, it holds Vz € C that

On(2; fy) + 2V, (2) + [2n — An]ga, (2500) + A log|z| + ga, (2;0)] = wa,

where 0,(z; f) is the solution of the Dirichlet problem for the function f,(z) =
¥ +x 7 on A, which is given by

0,z f,) = ReVTn(2) /R”Re{ LU —
—— :

2 (R = t)(t = )

These two theorems enable us to state the following

THEOREM 4.3. Let {p(n)}n.en be a sequence of nonnegative integers with 0 <
p(n) < 2n — 1. Assume that (2.9) holds. Let I,(f) be the n-point Gauss-type
quadrature formula in A_p(n) o(n) with ¢(n) = 2n — 1 — p(n) for the distribution
da(z) = wy(z)dz, = € [0,00) with w,(z) given by (4.1). Then, for any function f
satisfying (2.4) it holds that

nli_)_rgo|fa(f)—fn(f)|1/2nSmax{(gR(f+;2(11__0)))197((%(](_;%))9}

Proor. By Part i) of Theorem 4.1, the functions R, and 7, as defined in
Section 2 can here be taken to be (K > 1)

Thus

_ = Bum) 7 (v(n) v
vO =l g . = T (Sr20-0) =1

by (2.10). On the other hand

The proof now follows by Theorem 3.5. [l

THEOREM 4.4. Let f be a function as given by (2.4) with nonnegative coef-
ficients. Assume that I,(f) < oo. Then, under the same conditions as in The-
orem 4.3, it holds that

im |1, (f) — L(f)["*" > max{n*, 5~}

n— oo
with
]

1-6
T LS ARkl IR | A€t )
n= 4K el T =\ TiKel/

with K given by (4.4).
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Proor. By Corollary 3.9, we only need lower bounds for u(6) and for ()
which were defined in (2.14) and (2.17) respectively. We have

1/q(n) oo
u(0) = lim i with 7 :/ B2 (z)z P™w,(z)dz
n nm v .
0

n—oo q(n)
2(1—19)

Thus 7, = [knn(wy)] 2 with K, (w,) given by (4.2). Now, by (4.4) and Part ii) in
Theorem 3.5, it can be easily deduced that
1
)= —+.
On the other hand, by (2.17) and (4.3), one has
Tpn Tp(n)

)= m — 2 — = lim —— 2
~6) = im0 e A, [K (0,00, )]1/7()

Here K, (z,w,) denotes the Christoffel function associated with z=(P(")+1w, (z),
while K,,(z,w,) represents the one corresponding to z~?(Mw. (). For our purposes,
we can use I?n(z,ww) instead of K, (z,w,).

Now recall that A, = [y, Rn], hence d(0,A,) = 7,. Thus, by Theorem 4.2, it
follows

Kn(0,0,) < |Pa, (0)I2~"“”’(") P () 1im. o (10g |2 494, (29)) 462 (0.7,
Ty

Therefore

(45) g MR exp{ 25024, (0)
' Ko (0,007 7 135 (0)| 707 exp{lim. o (log 2| + ga, (2,0))}

It is known that

b—a

lim {g(q,4(2;00) —log|z|} = —log Cap [a,b] = —log

|z] =00
(log Cap is the logarithmic capacity) and since ga,(2;0) = g-1(1/2;00), (we de-
note Al ={z:1/2€ A,})

lim {g71(1/z500) +log 2]} = —log Cap A7

which gives

. Rn —Tn
(4.6) ll_r)%{gAn (2;0) +log |z|} = —log ahr

By the definition of 6,(z; fy), we have

0a:7) =~ Faro { P00 P

where
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Therefore
lim 22OH) __ ZBO) B,
n—00 R;YL llmn_)oo(Rn'Fn)Fy 1-9
or equivalently
(4.7) li_>m 6..(0, f)7, = —B(7).

Thus, by (4.5) and (4.7), we find after some calculations that

T p(n) 1
lim — 28

> .
n—oo K, (0,w,)t/p(n) — 4Kellv

This proves the theorem. O

To end this section, we apply the results for the family of distributions (4.1) to
certain integrands f. We consider integrands which can be described as follows.

Let

oo

fl(z)=chzk and fa(z Zbkz

k=0
be given, with fi(z) and f2(1/z) entire functions. Then consider integrands f(z) =

f1(2)f2(z), so that
f( ) f+( Zf+z]+2f—zfj

where
(o ¢} o0

fr=chsbi 320, and f7 =3 cbigs, G2 1.

k=0 k=0
In order to fix the ideas, let us take

A = =Y (Z_’:k aeR
= k!
o g2k
f2(2) = cos(B/z) :kgo gk)' Y272k BeR
Thus
_ 2k (aB)” !
fon = (-1)'B Zzz O
~ B . . [e%) (Oéﬁ)2l+1 .
Fatar = (1A ; RSV Ew A
and

k l
1)
-« IZ; 21)! 21+k (=D

Now by (4.4), we can write

R, = (K'z)'/7, with K'= gr2L=9)

, K>1
vB(v)
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and
1 26

— =(K"z)'7, with K'=K'——, K>1,
Ta vB(v)

where B(7) is given in Theorem 4.1. We can deduce (s > 0)

00, v<1
O-R(f-l—as) = |Ot|K’s, Y= 1
0, v>1
while
0, 7<1
O-T(f_ﬂs) = |/B|K”S7 ’y = ]‘
0, v>1

So, by Theorem 4.3, we have for any o, 3 € R and v > 1,
lim [Ta(f) — Tu(£)[/2" = 0.

n— oo

If v = 1, then one has:

1)~ o1 < e { (24 (1287
JDim [Io(f) = L.(f)]7™" < (2(1_9)) "\ 26

When considering the so-called balanced situation where p(n) = n for all n (see

[JNT83]), then obviously § = 1/2 and we then have

lim | L (f) = L(f)]"/*" < max {/[a]K", /IBIK" } = VE max{+/lal, VIA]},

n— 00

where the last equality holds because of the relation between K, K’ and K".
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