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ABSTRACT

The wavelet transform is well suited for approximation obtdimensional functions with certain smoothness character
istics. Also point singularities, e.g. texture-like stiures, can be compactly represented by wavelet methodsevéow
when representing line singularities following a smoothveun the domain — and should therefore be characterizes by
a few parameters — the number of needed wavelet coefficisets dramatically since fine scale tensor product wavelets,
catching these steep transitions, have small local supNortetheless, for images consisting of smoothly colorgebres
separated by smooth contours most of the information is cseghin line singularities (e.g. sketches). For this clafss
images, wavelet methods have a suboptimal approximatierdie to their inability to take advantage of the way those
point singularities are placed to form up the smooth lingslarity. To compensate for the shortcomings of tensor pecbd
wavelets there have already been developed several sclikenasrvelets? ridgelets! bandelet¥’ and so on. This paper
proposes a nonlineaormal offsetdecomposition method which partitions the domain suchlthatsingularities are ap-
proximated by piecewise curves made up of borders of themuhihs resulting from the domain partitioning. Although
more general domain partitions are possible, we chose fiaurggulation of the domain which approximates the contours
by polylines formed by triangle edges. The nonlinearitg lie the fact that the normal offset method searches from the
midpoint of the edges of a coarse mesh along the normal direghtil it pierces the image. These piercing points have
the property of being attracted towards steep color vaaresttions. As a consequence triangular edges are atttadted

up against the contours.
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1. INTRODUCTION

The goal of this paper is to compactly represent the classiafies consisting of smoothly gray colored areas separated
by smooth contours. These images can also be seen as a gpesmooth surface lying in the three dimensional space.
This surface will be approximated by a mesh. Mostly the locations of the verticag which define the geometry of
the mesh- are represented by a list of indexed triplesy;, z;). Everyz; coordinate has to be accompanied by its domain
location(z;,y;) . However, one can also start from a coarse meshand construct a new meshl;; by adding new
verticesV; 1 expressed in terms of old vertices. Normal meshes accdmthisby expressing a vertex as lying on distance
from the midpoint of two old mesh poinig; in a normal direction. So, only one scalar value is needecta fiertex’s
position. The meshes that can be built with such a methodadiedanormal meshes. Normal meshes can be represented
by a sequence of scalar values and as a consequence nedihibedess input data than the vector representation. Norma
approximations of curves have already extensively beetiediin [Daubechies et af.] In [Guskov et al.] normal meshes

are constructed for compact representation of three dimeaissurfaces and in [Jansen etahprmal offsets are used for
piecewise smooth surface approximation in the functioetiirgy. This paper investigates the suitability of nornfédets

Ward Van Aerschot is a doctoral student of the Flemish Fund&ientific Research (FWO - Vlaanderen). This work was stipddby the FWO
project G.0431.05.

TIn what follows we assume that a mestt is defined by the tripl¢V, £, F)



as a tool for image compression. Some specific adjustmetitsaninade to meet this objective. The paper is organized as
follows. Section 2 briefly describes the concept of normédaif. Section 3 puts forward some problems that arise when
extending the concept as described in Section 2 toward&abigiages. Section 4 discusses the approximation pregerti
considering the class of images at interest, while Sectiexeinines compression properties.

2. NORMAL OFFSETS
2.1. Concept

In the one dimensional setting the normal offset method e Ibe explained when compared to a linear prediction step
of the lifting schemé? a tool used for wavelet decompositions. Both construct glip@ interpolating several sample
points. Between each two subsequent sample points, botiodewill predict a new point as lying at the midpoint of a
line connecting the two sample points. In most cases thduration value will differ from this prediction.

As for wavelets, the prediction stef
stores a detail coefficient being the diff
ference between the predicted function valu&
and the real function value on the same
location. This detail coefficient can be
seen as a vertical offset with respect o
the ordinate-axis (Figure 1(a)). In conr
trast, the normal offset method will search
for a piercing point along a ray normal td
the line segment until it pierces the fung X
tion (Figure 1(b)). The signed distance (a) Wavelets (b) Normal offsets

1)

Piercing point

Prediction Prediction

between the prediction point and the piefc-
ing point is kept. The old sample points Figure 1. Conceptual comparison between wavelets and normal offsets

are connected with the new points, form-

ing an interpolating polyline approximation of the functioNote that the lifting step acts on functiops= f(x) while
the normal offset method considers every point as lying oaraex:(z,y) = 0 in the plane. Working with a geometric
construction like normal offsets on a discrete functionddtices its own peculiarities. A one dimensional discretefion

is defined by a sequence of couples, y;), « = 0... M on the basis of which we can construct a piecewise constant fu
tion on[xg, zp] @SS = Zﬁo y: I (x — x;), with II the rectangle function. This function has a staircasedh@pe with
discontinuities at almost every knot. Therefore, the useedical offsets is favored since one easily finds a pierpioigt
as the corresponding function value. When using a normatkatirection one cannot expect to always pierce through
the ceiling of at least one of the rectangle functions. Tos@®a solution, the graph of the function will be completed b
vertical lines at the discontinuities similar to the dashed in Figure 1(b). The normal line will now be searched Lnti
it pierces this connected cureethe piercing point will beplacedon this line above the previously visitag. An extra
vertical offset will be introduced to encode the distanceveen the piercing point and;, f(x;)).

3. FROM CONTINUOUS SURFACES TO DISCRETE IMAGES

For applications such as image compression, the previtiesrse has to be extended to work on two dimensional functions.
These functions defined on domdincan also be seen as surfaces lying in a three dimensiona.sphe surface is now
being approximated by an interpolating triangular mesheWxtending normal polylines to normal meshes extra degree
of freedom have to be filled in. A normal direction can be defimeseveral ways, with respect to different hyperplanes.
Another problem arises from the use oflscreteset of domain points making up the regular grid, where speeiae
should be taken in edge-refinement methods (rasterizatibim® next paragraphs are devoted to matters concerning the
definition of the normal direction in the two dimensionakisef and aspects related to discrete edge refinement.



3.1. Normal direction

First of all we assume a base mesty already at our disposal. From this mesh we want to build a mmestaining more
detail about the image surface. The projection of the ditdige graph induced by the edges and verti@s)) of M,
defines a partitiodd = {7} on(2. Jansen et al. defined the normal direction as going thrdu@midpoint of an edge and
standing normal to a surface fitting its four neighbor veicAnother approach could be shooting a ray normal to mesh
triangular faceF while going through its center. The main drawback of suchhmes is that the projection on the domain
of the piercing points is not constrained to be local, hemdstroying previous existing topologies. By local we méwsat t
the piercing points lie in the same subdom@ims the vertices they depend on.

Instead of global topological refinements
we opt for a local refinement strategy. As
such, the different subdomains keep their in-
dependence during further decomposition. Hav-
ing a local refinement scheme subsequent par-
titions will be nested, i.eA; C Ajyg.. ..
This assures that, when shrinking (or thresh-
olding) some normal offsets — thereby chang-
ing the location of the mesh poinlg and
their projection— the topology will be unaf

fected. This makes the method topologically 2 \ " e : e I 7
more stable. The locality of such methog e 1 D .
could be forced by letting the search for a o . - L0
piercing point not exceed the boundary of its P e

(a) Search direction normal {b) Search direction normal to
F and starting from its center &, starting from its midpoint and
lying in a vertical plane

originating domain triangl€ . Or, it could
be developed such that piercing points are al-
ways found within the subdomain the normil
ray was shooted by restricting the ray to lie iffigure 2. (Left) Piercing points are found outside the triangles dama(Right)
a plane perpendicular to they-plane. This Piercing points are found with their location on the domaoubdary

results in an edge refinement procedure and

a quad-tree structured subdivision scheme. It is this difimof a normal direction that we will use from now on.

3.2. Discrete edge refinement

The restriction of the normal direction to lie in a verticdhpe results in an edge refinement method. The edges of each
T € Q are recursively subdivided. All works fine when applied tooatmuous domaif2 = [0, 1]2 on which f(z,y) is
defined. The prediction point lies exactly above the midpofrthe edge. In the digital setting, the point lying exadtly
between two end points of a triangle edge will almost nevanaide with some pixel center. A roundoff to the nearest
pixel center and a connection with both end points will reBul penetration of other triangles or in pixel locationgige
missed out. To overcome these problems domain edges amg defined as a set of pixel locations. And its subdivided
parts are forced to use a subset of this set. The midpointlfiedocation of the prediction point) is simply expresse@a
index halfway between begin and end point of the edge. Thiestlpcations are the result of a rasterization process. In
this paper we used the Bresenham algorithvhich efficiently implements such a rasterization.

4. APPROXIMATION WITH NORMAL OFFSETS
4.1. Comparison with wavelets

The strength of the compression characteristics of a mathatbstly measured by its-term approximation rate with
respect to a certain space of functions. In approximatienm it is well known that certain function norms (like Beso
norms) are equivalent to a sequence norm applied to the etax@fficients. It is also known that functions, which can be
approximated by a nonlinearaveletapproximation method with a certain rate, are charactéi@adying in an interpola-
tion space between ah, space and a Besov space (we refer to DeVéoea deeper study of nonlinear approximation).



In what follows we call the Horizon clasf the class of images consisting of uniformly colored regiepasated by a
smooth contour. Since the Horizon cldg<onsists of imageg(z, y) that also belong t3./2  normal offseapproxima-

2,00
tion outperforms the besi-termwaveletapproximation rate which i©(n~1/2).6 The reason for this is that only a small
subset of images belonging to certain smoothness spaceseap realistic images. Furthermore only a small subset of
the images belonging to certain smoothness spaces alsogeldl. From the connection between wavelet coefficients
and Besov norms it can be seen that the order in which the cieeft$ in each resolution level appear does not matter. In
each resolution level, swapping the position of the wavedefficients —and thus destroying artifacts like edges-s dae
change the smoothness characteristics of the image aftstuction. Also sign reversal of wavelet coefficienesduse
wavelets form unconditional bases for Besov spaces— ddeaffieot the Besov norm. However, the reconstructed image
is unlikely to resemble a realistic image. Although smoathes could be represented (or at least approximated) by few
parameters, wavelets do not take advantage of this redapdanhe domain. Where wavelets are well suited to catch
point singularities they fail when it comes to line singitias. It should be clear that most likely there exist methtivat
exploit the inherent properties of imageg+ to achieve a better approximation rate.

(a) (Top left) Three piercing points together with the old mesh (b) Piercing points are always situated between the dis-
point V; are shown. No edges are yet be defined. (Bottom continuity and the midpoint of the edge. The gray area
right) Four possible interconnections between the set eifcpi represents) wheref(z,y)o = 1. The dotted line must

ing points and vertice¥;. be part of the chosen interconnection since they subdi-

vide with the maximum number of perfect approximated
subtriangles.

Figure 3.

Normal offsetdry to approximate the line singularities by approximatthg contourc (z,y) = 0 by a polyline,
consisting of triangle edges. When constructing a hightaildel mesh the new piercing points have to be connected by
edges and a new partitiah;; C A; is defined. If one refines all triangles as the first one showineabottom of Figure
3(a) no additional information about the mesh topology bdsetstored. The compressed data only consists of geonietrica
information of which the topology is fixed in advance. Untorately, with this scheme we cannot expect that triangle
edges, making up the polyline, take on a smooth path alongathiur, but rather a tooth-shaped one with many segments
crossing the contour. We therefore introduce some extralagical parameters — with an increase of the storage cost fo
the reconstruction of intermediate normal meshes — as Isriigpays off at the level of compression when those meshes
are truncated. The four possible interconnections of pigngoints and previous vertices are depicted in Figure 3(a)

For images of{ we propose to take the interconnection that has at leastadgesparallel to they—plane (and there
should be at least one such interconnection). If there areralepossibilities left, choose the one which minimizes th
L, error. In case of more minima, we choose the one which pamttits parent triangle such that the smallest angle is
maximal (regularization). Algorithm 1 gives an overviewtbé full normal offset method for images . Since testing
if there exist some edges that have equal function valuessis domputational demanding than calculating_grerror,



line 13 is tailor made for images of the Horizon class, whiahses a speedup in execution time.

Algorithm 1 Normal Offset algorithm for Images H
Require: a base mesiM, consisting of verticey’ and edges.
1: Express eaclf € M,y by the sequencdl;},i = 0717—1,27,—2737—3,...% li € N x N, as the output of the

Br esenham(L L] JE) algorithm.

2 2

2: forj=1...Jdo
3:  for each triangleF;, in M; do
4: for each&,, ,, € 0F: do
5: calculate the normal line(z, y) = z.
6: do = n(li(o)) — f(li(o)).
7 repeat
8: k=k+1
9: dy = n(li(k)) — f(li(k))
10: until d; changes sign
11: Pk = (lig_1,n(liy_,))
12: end for
13: G := {g}, the set of interconnections as depicted in Figure 3(a).
14: Deleteg of which the number of edges parallel to thg—plane is not maximal
15: if #G # 1then
16: Deleteg of whicher,,, is not minimal
17: if #G # 1then
18: Deleteg of which the minimal angle is not maximal
19: end if
20: end if
21: gt =g
22: for all edges™ € g™ do
23: if both end points are newly found piercing poittien
24: Assign to edge the set of pixels by running the BresenHgarithm.
25: else
26: Assign locations in accordance with there parents setations. (this can be done by an index).
27: end if
28: end for
29:  end for
30: end for

After this decomposition we have a tree structured hieiaathriangulation at our disposal. From this tree we select
those normal offsets which produce a triangular maghwith the smallest difference with respect fozx,y). This is
done by a pruning algorithm which prunes all descendantsledifés parent such that the introduced error is as small as
possible. It can be proven that the normal offset method asrited in Algorithm 1 has an-term approximation rate
of e, = O(n™1). Figure 4 shows the output of Algorithm 1 followed by afterms a pruning algorithm applied to the
digital image of Figure 4(a).

5. COMPRESSION
5.1. Lossless Compression

To reduce the amount of data, all coefficients should be diwith the smallest possible number of bits. This can be redich
when we know something about the probability of coefficieaities in terms of a PDF (probability density function) in
advance. Entropy encoders, like Huffman encoders, map\edah of a finite alphabetl to a string of bits (codeword),
(C: A—{0,1}"), such that the expected number of bits is minimized.

Because digital images are represented]—z:ﬁ surfaces (surfaces lying in a 3 dimensional space repredgdyta 2
dimensional function) one can use thg—plane as projection plane. The trick is not to store the sigeagth of the
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Figure 4. Subfigure (a) depicts the original image™ with c¢(x,y) = z? 4+ y* — R? = 0. Subfigure (b) shows the approximation rate
of the normal offset method applied to Figure 4(a).

normal offsetr; ,, but rather the signed lengtt{n; ;) of its projection on thery-plane. The absolute value of the latter
can be seen as the number of cubes to be traversed alongtérizeasline starting from the midpoint of the edge till the
piercing point is reached. The sign denotes in which dioectd travel.

It can easily be seen thafn; ;) is bounded by
half the rasterized edge length, and that these bounds
will monotonically decrease as the resolution leve )
rises. However the magnitude of the normal indices —]
themselves need not to decrease. These normal in- \ \ 7
dices can be seen endomvariablesX with values HI2 \ -
coming from an alphabed of size V. L <

A= {0 N — 1}, with N = A As- -1~
ey , |

sume we can model this source of information by A
means of a Markov process. Then, every symhol
X; has a probability;. The amount of information d
contained in a symbol sequence is measured by the

entropys:

N Figure 5. Crosscut of an image H containing a contour.
S=- pilog,(pi)
i=1

For a comprehensive reading about information theory wer tefthe paper of C.E. Shannéh. This entropy represents
the minimal number of bits per symbol, under the assumptiahthe sequence of symbols is very large. If we would not
reckon with the statistical properties of the informati@uce and represent aN possibilities withlog, N bits and an
equal probabilityS will reach its maximum valué&,,,.x = log, N.

We will now give an a priori PDF of these normal indices whewegitwo edge points, considerinfg(z,y) € H,
whereQ2 = [0,1] x [0,1] € R x R.. If the distancel as depicted in Figure 5 is uniformly distributed on the ia&f0, L]



andH < L then the distribution of,, , — the orthogonal projection of the normal offsets on:theplane — will be:

1
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Figure 6. The above picture represents the PDF if the distafttas a uniform distribution o), L]. The smaller the heighfif compared
to L, the larger the probability at = +H *22< (large probability to pierce through the one of the horizbnégions) and the lower the

uniform distributed probability betweep- H 202 | { t2na]

In Figure 7 the value of is plotted for different
values ofL. The Figure also illustrates that whén
rises the profit due to the a priori known distribution
gets larger for a larger part éf-values.

The entropy encoder generates a reduction of data
without loss of information. In view of rate distor-
tion theory, this agrees with a reduction of the dis-
tortion even at the very beginning of the R/D-curve.
This lossless compression is a full gain to the bit
rate. Table 8(a) shows results for several test im-
ages. Figure 8(b) schematically represents on which
data the decoder and encoder can lay their hands on
to produce a table which contains a codeword for
each possible value (and visa versa).

As a last step, all symbols can then be processed
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by an arithmetic encoder. This encoder maps all trgure 7. S < [0, 1]. For some values of the entropyS reaches values
data —considering the frequency of the codewortisger thanlog, L. This is because we used a continuous set of values in-
— into one string of bits (representing a fractiongtead of finite setl. For larger L, this continuous expression approximates
value betweerd and 1) uniquely representing thethe discrete one. WheH /L = 1 the PDF is a uniform distribution over
original data® [—L, L] andS takes on its maximal value.
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Figure f(z,y) | f(z,y) € H? compression ratio T
circle (Figure 4(a)) yes 1:2 g =
block (Figure 9(a)) yes 1:2 ‘
Lena no 5:7 corevere
(a) This table shows some compression ratios on the normaleadic (b) Schematic illustration of the entropy encoder and decoder.
for several test images. On the basis of the data of the edge , the normal indices can be

mapped to codewords and visa versa.

Figure 8.

6. RESULTS AND CONCLUSIONS

We have tested our normal offset algorithm (Algorithm 1) difedent kinds of test images, i.e. an Horizon class image,
an image with smoothly colored regions separated by smawttoars and a realistic picture better known as ‘Lena’. Note
that the Horizon class is a subset of the class of images withothly colored regions and smooth contours which in its
turn is a subset of the more general class of realistic pstulFor all images, the algorithm started with a base megh
consisting of two triangles built from the four corners oé tthomain. In Figure 9 the normal offset decomposition of the
top imagec H is subjected to an n-terms selection algorithm. We seehleatiangulation needs few coefficients to align
along the straight line discontinuity. In Figure 10 an Horzlass image with a curved contour is shown together with
severaln-terms approximations. If we compare this result with Fegti where the same image is approximated by a
biorthogonal 2, 2) wavelet method with the same number of terms, we see thabtitewrs are far more blocky. At last,
the output for the ‘Lena’ picture is shown in Figure 13. In tiig 13(a) a pruned domain triangulation is shown. Even
without color information we can distinguish Lena’s sharidface contours, border of the mirror and parts of her hat.
These are typically areas which own the properties suiteddbnormal offset algorithm. Figures 13(b)-13(d) représe
an intermediate mesh at resolution leyet 6. From Figure 13(d) we notice that particular areas are wadraximated
while sharp curved areas, like Lena’s nose and eyes, shoatibes from the original image.

Instead of using such a simple base madh as used in our experiments, further research will involveehaeshes
which already represent the basic geometry of the images Wilidemand more data to store the initial mesh —as it will
be represented by a vector representation rather thanax so& — but will lead to better quality approximations afiaird.

In the hope artifacts as seen in Figure 10 will disappeatr.

As we see in Figure 12, once the pruning algorithm prunesaagdté that had a leaf along the contour in the vertical
direction, a greal, error is introduced. The overall rate is the same as for thézbio class images.

For images with smoothly colored areas and images like ‘Lehgorithm 1 will be expanded to use other norms for
interconnection rather than solely &n distance norm. Curvature norms will be combined with distamorms — like the
Lo norm— which construct interconnections that resemble #dagishape as the above surface. If the shapes matches the
surface for some parts of an intermediate mesh, next refinesnagll have it easier to adapt towards the image surface. As
a consequence we could expect a better approximation ragede these images similar to that of images of the Horizon
class.
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Figure 9. Picture (b)-(d) consist of only (normal + vertical offsets). They are produced by an implesaigion of Algorithm1 followed
by a pruning scheme on Picture(a).
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Figure 10. Compressed images of the original image in Figure 4(a) stingiof onlyn (normal + vertical offsets). They are produced
by an implementation of Algorithm1 followed by a pruning eate.

(a) n=144 (b) n=200 (c) n=400

Figure 11. Compressed images of Figure 4(a) where onlyrthreost significant wavelet coefficients are kept. We used ahagonal
(2,2) wavelet decomposition scheme, which uses a lineatigiren step corresponding to the prediction used in thenabroffset

algorithm.
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Figure 12. Figure 12(a) shows the original image. Figure 12(b) showsditmain partitioning after the normal offset decompositio
Figure 12(c) and Figure 12(d) show the approximations o$thréace by a mesh containing a certain number of normaltsfise= 240.

As we see in Figure 12(e), once the pruning algorithm prurigargle that had a leaf along the edge in the vertical divact great’,

error is introduced. This results in some transition phegrwons in the:-terms approximation curve and sudden fast drop downs of the
approximation error. But we see from Figure 12(e) that thpwafter loosing track comes back to the theoretical appration line.
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(a) A pruned domain triangulation aena (b) Mesh representation 0¥1¢ from which one can see the
dense triangulation near contours.

(c) The image surface is well approximated when it behavextm (d) A colored version of Figure 13(b), where the area
and has discontinuities along smooth curves, which islgl¢iae case around shoulder, hat, mirror border and face have a
for Lena’s shoulder and the border of the mirror. sharp representation.

Figure 13.Lena
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