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ABSTRACT

The wavelet transform is well suited for approximation of two dimensional functions with certain smoothness character-
istics. Also point singularities, e.g. texture-like structures, can be compactly represented by wavelet methods. However,
when representing line singularities following a smooth curve in the domain – and should therefore be characterizes by
a few parameters – the number of needed wavelet coefficients rises dramatically since fine scale tensor product wavelets,
catching these steep transitions, have small local support. Nonetheless, for images consisting of smoothly colored regions
separated by smooth contours most of the information is comprised in line singularities (e.g. sketches). For this classof
images, wavelet methods have a suboptimal approximation rate due to their inability to take advantage of the way those
point singularities are placed to form up the smooth line singularity. To compensate for the shortcomings of tensor product
wavelets there have already been developed several schemeslike curvelets,2 ridgelets,4 bandelets10 and so on. This paper
proposes a nonlinearnormal offsetdecomposition method which partitions the domain such thatline singularities are ap-
proximated by piecewise curves made up of borders of the subdomains resulting from the domain partitioning. Although
more general domain partitions are possible, we chose for a triangulation of the domain which approximates the contours
by polylines formed by triangle edges. The nonlinearity lies in the fact that the normal offset method searches from the
midpoint of the edges of a coarse mesh along the normal direction until it pierces the image. These piercing points have
the property of being attracted towards steep color value transitions. As a consequence triangular edges are attractedto line
up against the contours.
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1. INTRODUCTION

The goal of this paper is to compactly represent the class of images consisting of smoothly gray colored areas separated
by smooth contours. These images can also be seen as a piecewise smooth surface lying in the three dimensional space.
This surface will be approximated by a mesĥM†. Mostly the locations of the verticesV- which define the geometry of
the mesh- are represented by a list of indexed triples(xi, yi, zi). Everyzi coordinate has to be accompanied by its domain
location(xi, yi) . However, one can also start from a coarse meshMj and construct a new meshMj+1 by adding new
verticesVj+1 expressed in terms of old vertices. Normal meshes accomplish this by expressing a vertex as lying on distance
from the midpoint of two old mesh pointsVj in a normal direction. So, only one scalar value is needed to fix a vertex’s
position. The meshes that can be built with such a method are called normal meshes. Normal meshes can be represented
by a sequence of scalar values and as a consequence need threetimes less input data than the vector representation. Normal
approximations of curves have already extensively been studied in [Daubechies et al.]8 . In [Guskov et al.]7 normal meshes
are constructed for compact representation of three dimensional surfaces and in [Jansen et al.]9 normal offsets are used for
piecewise smooth surface approximation in the functional setting. This paper investigates the suitability of normal offsets
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project G.0431.05.

†In what follows we assume that a meshM is defined by the triple(V, E ,F)



as a tool for image compression. Some specific adjustments will be made to meet this objective. The paper is organized as
follows. Section 2 briefly describes the concept of normal offsets. Section 3 puts forward some problems that arise when
extending the concept as described in Section 2 towards digital images. Section 4 discusses the approximation properties
considering the class of images at interest, while Section 5examines compression properties.

2. NORMAL OFFSETS

2.1. Concept

In the one dimensional setting the normal offset method can best be explained when compared to a linear prediction step
of the lifting scheme,12 a tool used for wavelet decompositions. Both construct a polyline interpolating several sample
points. Between each two subsequent sample points, both methods will predict a new point as lying at the midpoint of a
line connecting the two sample points. In most cases the realfunction value will differ from this prediction.
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Figure 1. Conceptual comparison between wavelets and normal offsets

As for wavelets, the prediction step
stores a detail coefficient being the dif-
ference between the predicted function value
and the real function value on the same
location. This detail coefficient can be
seen as a vertical offset with respect to
the ordinate-axis (Figure 1(a)). In con-
trast, the normal offset method will search
for a piercing point along a ray normal to
the line segment until it pierces the func-
tion (Figure 1(b)). The signed distance
between the prediction point and the pierc-
ing point is kept. The old sample points
are connected with the new points, form-
ing an interpolating polyline approximation of the function. Note that the lifting step acts on functionsy = f(x) while
the normal offset method considers every point as lying on a curvec(x, y) = 0 in the plane. Working with a geometric
construction like normal offsets on a discrete function introduces its own peculiarities. A one dimensional discrete function
is defined by a sequence of couples(xi, yi), i = 0 . . .M on the basis of which we can construct a piecewise constant func-
tion on [x0, xM ] asf =

∑M
i=0

yiΠ(x − xi), with Π the rectangle function. This function has a staircase-likeshape with
discontinuities at almost every knot. Therefore, the use ofvertical offsets is favored since one easily finds a piercingpoint
as the corresponding function value. When using a normal search direction one cannot expect to always pierce through
the ceiling of at least one of the rectangle functions. To provide a solution, the graph of the function will be completed by
vertical lines at the discontinuities similar to the dashedline in Figure 1(b). The normal line will now be searched until
it pierces this connected curvec, the piercing point will beplacedon this line above the previously visitedxl. An extra
vertical offset will be introduced to encode the distance between the piercing point and(xl, f(xl)).

3. FROM CONTINUOUS SURFACES TO DISCRETE IMAGES

For applications such as image compression, the previous scheme has to be extended to work on two dimensional functions.
These functions defined on domainΩ can also be seen as surfaces lying in a three dimensional space. The surface is now
being approximated by an interpolating triangular mesh. When extending normal polylines to normal meshes extra degrees
of freedom have to be filled in. A normal direction can be defined in several ways, with respect to different hyperplanes.
Another problem arises from the use of adiscreteset of domain points making up the regular grid, where special care
should be taken in edge-refinement methods (rasterization). The next paragraphs are devoted to matters concerning the
definition of the normal direction in the two dimensional setting and aspects related to discrete edge refinement.



3.1. Normal direction

First of all we assume a base meshM0 already at our disposal. From this mesh we want to build a meshcontaining more
detail about the image surface. The projection of the straight line graph induced by the edges and vertices(E ,V) of M,
defines a partition∆ = {T } onΩ. Jansen et al. defined the normal direction as going through the midpoint of an edge and
standing normal to a surface fitting its four neighbor vertices. Another approach could be shooting a ray normal to mesh
triangular faceF while going through its center. The main drawback of such methods is that the projection on the domain
of the piercing points is not constrained to be local, herebydestroying previous existing topologies. By local we mean that
the piercing points lie in the same subdomainT as the vertices they depend on.
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Figure 2. (Left) Piercing points are found outside the triangles domain. (Right)
Piercing points are found with their location on the domain boundary

Instead of global topological refinements
we opt for a local refinement strategy. As
such, the different subdomains keep their in-
dependence during further decomposition. Hav-
ing a local refinement scheme subsequent par-
titions will be nested, i.e.∆j ⊂ ∆j+1 . . ..
This assures that, when shrinking (or thresh-
olding) some normal offsets – thereby chang-
ing the location of the mesh pointsV and
their projection– the topology will be unaf-
fected. This makes the method topologically
more stable. The locality of such method
could be forced by letting the search for a
piercing point not exceed the boundary of its
originating domain triangleT . Or, it could
be developed such that piercing points are al-
ways found within the subdomain the normal
ray was shooted by restricting the ray to lie in
a plane perpendicular to thexy-plane. This
results in an edge refinement procedure and
a quad-tree structured subdivision scheme. It is this definition of a normal direction that we will use from now on.

3.2. Discrete edge refinement

The restriction of the normal direction to lie in a vertical plane results in an edge refinement method. The edges of each
T ∈ Ω are recursively subdivided. All works fine when applied to a continuous domainΩ = [0, 1]2 on whichf(x, y) is
defined. The prediction point lies exactly above the midpoint of the edge. In the digital setting, the point lying exactlyin
between two end points of a triangle edge will almost never coincide with some pixel center. A roundoff to the nearest
pixel center and a connection with both end points will result in a penetration of other triangles or in pixel locations being
missed out. To overcome these problems domain edges are being defined as a set of pixel locations. And its subdivided
parts are forced to use a subset of this set. The midpoint (i.e. the location of the prediction point) is simply expressed as an
index halfway between begin and end point of the edge. These pixel locations are the result of a rasterization process. In
this paper we used the Bresenham algorithm1 which efficiently implements such a rasterization.

4. APPROXIMATION WITH NORMAL OFFSETS

4.1. Comparison with wavelets

The strength of the compression characteristics of a methodis mostly measured by itsn-term approximation rate with
respect to a certain space of functions. In approximation theory, it is well known that certain function norms (like Besov
norms) are equivalent to a sequence norm applied to the wavelet coefficients. It is also known that functions, which can be
approximated by a nonlinearwaveletapproximation method with a certain rate, are characterized as lying in an interpola-
tion space between anLp space and a Besov space (we refer to Devore3 for a deeper study of nonlinear approximation).



In what follows we call the Horizon classH the class of images consisting of uniformly colored region separated by a
smooth contour. Since the Horizon classH consists of imagesf(x, y) that also belong toB1/2

2,∞, normal offsetapproxima-
tion outperforms the bestn-termwaveletapproximation rate which isO(n−1/2).6 The reason for this is that only a small
subset of images belonging to certain smoothness spaces represent realistic images. Furthermore only a small subset of
the images belonging to certain smoothness spaces also belong toH. From the connection between wavelet coefficients
and Besov norms it can be seen that the order in which the coefficients in each resolution level appear does not matter. In
each resolution level, swapping the position of the waveletcoefficients –and thus destroying artifacts like edges– does not
change the smoothness characteristics of the image after reconstruction. Also sign reversal of wavelet coefficients–because
wavelets form unconditional bases for Besov spaces– does not affect the Besov norm. However, the reconstructed image
is unlikely to resemble a realistic image. Although smooth edges could be represented (or at least approximated) by few
parameters, wavelets do not take advantage of this redundancy in the domain. Where wavelets are well suited to catch
point singularities they fail when it comes to line singularities. It should be clear that most likely there exist methods that
exploit the inherent properties of images∈ H to achieve a better approximation rate.
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(a) (Top left) Three piercing points together with the old mesh
point Vj are shown. No edges are yet be defined. (Bottom
right) Four possible interconnections between the set of pierc-
ing points and verticesVj .
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be part of the chosen interconnection since they subdi-
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Figure 3.

Normal offsetstry to approximate the line singularities by approximatingthe contourc (x, y) = 0 by a polyline,
consisting of triangle edges. When constructing a higher detailed mesh the new piercing points have to be connected by
edges and a new partition∆j+1 ⊂ ∆j is defined. If one refines all triangles as the first one shown atthe bottom of Figure
3(a) no additional information about the mesh topology has to be stored. The compressed data only consists of geometrical
information of which the topology is fixed in advance. Unfortunately, with this scheme we cannot expect that triangle
edges, making up the polyline, take on a smooth path along thecontour, but rather a tooth-shaped one with many segments
crossing the contour. We therefore introduce some extra topological parameters – with an increase of the storage cost for
the reconstruction of intermediate normal meshes – as long as it pays off at the level of compression when those meshes
are truncated. The four possible interconnections of piercing points and previous vertices are depicted in Figure 3(a).

For images ofH we propose to take the interconnection that has at least one edge parallel to thexy−plane (and there
should be at least one such interconnection). If there are several possibilities left, choose the one which minimizes the
Lp error. In case of more minima, we choose the one which partitions its parent triangle such that the smallest angle is
maximal (regularization). Algorithm 1 gives an overview ofthe full normal offset method for images∈ H. Since testing
if there exist some edges that have equal function values is less computational demanding than calculating anLp-error,



line 13 is tailor made for images of the Horizon class, which causes a speedup in execution time.

Algorithm 1 Normal Offset algorithm for Images∈ H

Require: a base meshM0 consisting of verticesV and edgesE .
1: Express eachE ∈ M0 by the sequence{li} , i = 0, 1,−1, 2, ,−2, 3,−3, . . . |E|

2
li ∈ N × N, as the output of the

Bresenham
�
l
−

|E|
2

, l |E|
2

�
algorithm.

2: for j=1 . . . J do
3: for each triangleFk in Mj do
4: for eachEm,k ∈ ∂Fk: do
5: calculate the normal linen(x, y) = z.
6: d0 := n(li(0)) − f(li(0)).
7: repeat
8: k := k + 1
9: dk := n(li(k)) − f(li(k))

10: until di changes sign
11: pm,k :=

�
lik−1

, n(lik−1
)
�

12: end for
13: G := {g}, the set of interconnections as depicted in Figure 3(a).
14: Deleteg of which the number of edges parallel to thexy−plane is not maximal
15: if #G 6= 1 then
16: Deleteg of which εLp is not minimal
17: if #G 6= 1 then
18: Deleteg of which the minimal angle is not maximal
19: end if
20: end if
21: g∗ := g
22: for all edgesE∗ ∈ g∗ do
23: if both end points are newly found piercing pointsthen
24: Assign to edge the set of pixels by running the Bresenham algorithm.
25: else
26: Assign locations in accordance with there parents set oflocations. (this can be done by an index).
27: end if
28: end for
29: end for
30: end for

After this decomposition we have a tree structured hierarchical triangulation at our disposal. From this tree we select
those normal offsets which produce a triangular meshM̂ with the smallest difference with respect tof(x, y). This is
done by a pruning algorithm which prunes all descendants of aleaf’s parent such that the introduced error is as small as
possible. It can be proven that the normal offset method as described in Algorithm 1 has ann-term approximation rate
of εL1

= O(n−1). Figure 4 shows the output of Algorithm 1 followed by ann-terms a pruning algorithm applied to the
digital image of Figure 4(a).

5. COMPRESSION

5.1. Lossless Compression
To reduce the amount of data, all coefficients should be stored with the smallest possible number of bits. This can be reached
when we know something about the probability of coefficient values in terms of a PDF (probability density function) in
advance. Entropy encoders , like Huffman encoders, map eachvalue of a finite alphabetA to a string of bits (codeword),
(C : A → {0, 1}

r) , such that the expected number of bits is minimized.

Because digital images are represented as2 1

2
D surfaces (surfaces lying in a 3 dimensional space represented by a 2

dimensional function) one can use thexy−plane as projection plane. The trick is not to store the signed length of the
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Figure 4. Subfigure (a) depicts the original image∈ H with c(x, y) = x2 + y2 − R2 ≡ 0. Subfigure (b) shows the approximation rate
of the normal offset method applied to Figure 4(a).

normal offsetnj,k but rather the signed lengthi(nj,k) of its projection on thexy-plane. The absolute value of the latter
can be seen as the number of cubes to be traversed along the rasterized line starting from the midpoint of the edge till the
piercing point is reached. The sign denotes in which direction to travel.
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Figure 5. Crosscut of an image∈ H containing a contour.

It can easily be seen thati(nj,k) is bounded by
half the rasterized edge length, and that these bounds
will monotonically decrease as the resolution levelj

rises. However the magnitude of the normal indices
themselves need not to decrease. These normal in-
dices can be seen asrandomvariablesX with values
coming from an alphabetA of sizeN .

A = {0, . . . , N − 1}, with N =

⌈

|EXY
j−1,k|
2

⌉

. As-

sume we can model this source of information by
means of a Markov process. Then, every symbol
Xi has a probabilitypi. The amount of information
contained in a symbol sequence is measured by the
entropyS:

S = −

N
∑

i=1

pi log2(pi)

For a comprehensive reading about information theory we refer to the paper of C.E. Shannon.11 This entropy represents
the minimal number of bits per symbol, under the assumption that the sequence of symbols is very large. If we would not
reckon with the statistical properties of the information source and represent allN possibilities withlog2 N bits and an
equal probability,S will reach its maximum valueSmax = log2 N .

We will now give an a priori PDF of these normal indices when given two edge points, consideringfΩ(x, y) ∈ H,
whereΩ = [0, 1] × [0, 1] ⊂ R × R . If the distanced as depicted in Figure 5 is uniformly distributed on the interval [0, L]



andH < L then the distribution ofinj,k
– the orthogonal projection of the normal offsets on thexy-plane – will be:
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Figure 7. S ∈ [0, 1]. For some values ofL the entropyS reaches values
larger thanlog2 L. This is because we used a continuous set of values in-
stead of finite setA. For larger L, this continuous expression approximates
the discrete one. WhenH/L = 1 the PDF is a uniform distribution over
[−L, L] andS takes on its maximal value.

In Figure 7 the value ofS is plotted for different
values ofL. The Figure also illustrates that whenL

rises the profit due to the a priori known distribution
gets larger for a larger part ofH-values.

The entropy encoder generates a reduction of data
without loss of information. In view of rate distor-
tion theory, this agrees with a reduction of the dis-
tortion even at the very beginning of the R/D-curve.
This lossless compression is a full gain to the bit
rate. Table 8(a) shows results for several test im-
ages. Figure 8(b) schematically represents on which
data the decoder and encoder can lay their hands on
to produce a table which contains a codeword for
each possible value (and visa versa).

As a last step, all symbols can then be processed
by an arithmetic encoder. This encoder maps all the
data –considering the frequency of the codewords
– into one string of bits (representing a fractional
value between0 and 1) uniquely representing the
original data.5



Figuref(x, y) f(x, y) ∈ H? compression ratio

circle (Figure 4(a)) yes 1:2
block (Figure 9(a)) yes 1:2

Lena no 5:7
(a) This table shows some compression ratios on the normal indices
for several test images.
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(b) Schematic illustration of the entropy encoder and decoder.
On the basis of the data of the edge , the normal indices can be
mapped to codewords and visa versa.

Figure 8.

6. RESULTS AND CONCLUSIONS

We have tested our normal offset algorithm (Algorithm 1) on different kinds of test images, i.e. an Horizon class image,
an image with smoothly colored regions separated by smooth contours and a realistic picture better known as ‘Lena’. Note
that the Horizon class is a subset of the class of images with smoothly colored regions and smooth contours which in its
turn is a subset of the more general class of realistic pictures. For all images, the algorithm started with a base meshM0

consisting of two triangles built from the four corners of the domain. In Figure 9 the normal offset decomposition of the
top image∈ H is subjected to an n-terms selection algorithm. We see that the triangulation needs few coefficients to align
along the straight line discontinuity. In Figure 10 an Horizon class image with a curved contour is shown together with
severaln-terms approximations. If we compare this result with Figure 11 where the same image is approximated by a
biorthogonal(2, 2) wavelet method with the same number of terms, we see that the contours are far more blocky. At last,
the output for the ‘Lena’ picture is shown in Figure 13. In Figure 13(a) a pruned domain triangulation is shown. Even
without color information we can distinguish Lena’s shoulder, face contours, border of the mirror and parts of her hat.
These are typically areas which own the properties suited for out normal offset algorithm. Figures 13(b)-13(d) represent
an intermediate mesh at resolution levelj = 6. From Figure 13(d) we notice that particular areas are well approximated
while sharp curved areas, like Lena’s nose and eyes, show deviations from the original image.

Instead of using such a simple base meshM0 as used in our experiments, further research will involve base meshes
which already represent the basic geometry of the image. This will demand more data to store the initial mesh –as it will
be represented by a vector representation rather than a scalar one – but will lead to better quality approximations afterward.
In the hope artifacts as seen in Figure 10 will disappear.

As we see in Figure 12, once the pruning algorithm prunes a triangle that had a leaf along the contour in the vertical
direction, a greatL2 error is introduced. The overall rate is the same as for the Horizon class images.

For images with smoothly colored areas and images like ‘Lena’, algorithm 1 will be expanded to use other norms for
interconnection rather than solely anL2 distance norm. Curvature norms will be combined with distance norms – like the
L2 norm– which construct interconnections that resemble a similar shape as the above surface. If the shapes matches the
surface for some parts of an intermediate mesh, next refinements will have it easier to adapt towards the image surface. As
a consequence we could expect a better approximation rate towards these images similar to that of images of the Horizon
class.
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Figure 9. Picture (b)-(d) consist of onlyn (normal + vertical offsets). They are produced by an implementation of Algorithm1 followed
by a pruning scheme on Picture(a).
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(c) n=400

Figure 10.Compressed images of the original image in Figure 4(a) consisting of onlyn (normal + vertical offsets). They are produced
by an implementation of Algorithm1 followed by a pruning scheme.

(a) n=144 (b) n=200 (c) n=400

Figure 11. Compressed images of Figure 4(a) where only then most significant wavelet coefficients are kept. We used a biorthogonal
(2,2) wavelet decomposition scheme, which uses a linear prediction step corresponding to the prediction used in the normal offset
algorithm.
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Figure 12. Figure 12(a) shows the original image. Figure 12(b) shows the domain partitioning after the normal offset decomposition.
Figure 12(c) and Figure 12(d) show the approximations of thesurface by a mesh containing a certain number of normal offsets,n = 240.
As we see in Figure 12(e), once the pruning algorithm prunes atriangle that had a leaf along the edge in the vertical direction, a greatL2

error is introduced. This results in some transition phenomenons in then-terms approximation curve and sudden fast drop downs of the
approximation error. But we see from Figure 12(e) that the output after loosing track comes back to the theoretical approximation line.
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(a) A pruned domain triangulation ofLena. (b) Mesh representation ofM6 from which one can see the
dense triangulation near contours.

(c) The image surface is well approximated when it behaves smooth
and has discontinuities along smooth curves, which is clearly the case
for Lena’s shoulder and the border of the mirror.

(d) A colored version of Figure 13(b), where the area
around shoulder, hat, mirror border and face have a
sharp representation.

Figure 13.Lena
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6. C. Sinan Güntürk. How much should we rely on besov spacesas a framework for the mathematical study of images?

In Wavelet and Applications Workshop (WAW’98), 1998.
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