
NORTH- HOLLAND

WHY UNTYPED NONGROUND
METAPROGRAMMING IS NOT
(MUCH OF) A PROBLEM

BERN MARTENS* and DANNY DE SCHREYE+

D We study a semantics for untyped, vanilla metaprograms, using the non-
ground representation for object level variables. We introduce the notion
of language independence, which generalizes range restriction. We show
that the vanilla metaprogram associated with a stratified normal oljjctct
program is weakly stratified. For language independent, stratified normal
object programs, we prove that there is a natural one-to-one correspon-
dence between atoms p(tl, . , tr) in the perfect Herbrand model of t,he
object program and solve(p(tl, , tT)) atoms in the weakly perfect Her\)
and model of the associated vanilla metaprogram. Thus, for this class
of programs, the weakly perfect, Herbrand model provides a sensible SC
mantics for the metaprogram. We show that this result generalizes to
nonlanguage independent programs in the context of an extended Hcr-
brand semantics, designed to closely mirror the operational behavior of
logic programs. Moreover, we also consider a number of interesting exterl-
sions and/or variants of the basic vanilla metainterpreter. For instance. WC
demonstrate how our approach provides a sensible semantics for a limit4
form of amalgamation. a

“Partly supported by the Belgian National Fund for Scientific Research, partly by ESPRlT
BRA COMPULOG II, Contract 6810, and partly by GOA “Non-Standard Applications of Ab-
stract Interpretation,” Belgium.

TResearch Associate of the Belgian National Fund for Scientific Research
Address correspondence to Bern Martens and Danny De Schreye, Department of Computer

Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A. B-3001 Hevrrlee Belgium E-mail-
{bern, dannyd}@cs.kuleuven.ac.be.

Received December 1992; accepted January 1994.

THE JOURNAL OF LOGIC PROGRAMMING

@Elsevier Science Inc., 1995
655 Avenue of the Americas, New York, NY 10010

074%1066/95/$9.50
SSDI 0743.1Oti6(94)00015-X

48 B. MARTENS AND D. DE SCHREYE

1. INTRODUCTION

Since the appearance of [5] and [19], metaprogramming has become increasingly
important in logic programming and deductive databases. Applications in knowl-
edge representation and reasoning, program transformation, synthesis and analysis,
debugging and expert systems, the modeling of evaluation strategies, the specifica-
tion and implementation of sophisticated optimization techniques, the description
of integrity constraint checking, etc., constitute a significantly large part of the
recent work in the field (see, e.g., [4, 27, 42, 17, 40, 39, 7, 81). A biennial, spe-
cialized workshop is dedicated to the subject, and its proceedings ([l, 6 and 321)
provide excellent reading material on foundations, implementational issues, and
various applications.

[23] and [41] were the first to seriously investigate theoretical foundations for
metaprogramming in logic programming. Particularly the ideas and results in
[23] formed the starting point for the development of the novel logic programming
language Gijdel [21], which now constitutes a full-fledged declarative successor to
Prolog, providing extensive support for the sound development of further metapro-
gramming applications.

It should be clear however, that it cannot have been the sound semantics for
metaprogramming, nor the existence of Godel, that attracted so much interest into
metaprogramming in logic programming to start with. (Although they have clearly
accelerated the activity in the area.) One attraction certainly is the desire to ex-
tend the expressiveness of Horn clause logic augmented with negation as failure.
Metaprogramming adds extra knowledge representation and reasoning facilities [27].
A second attraction is related to practicality. In applicative languages (both pure
functional and pure logical), data and programs are syntactically indistinguishable.
This is an open invitation to writing programs that take other programs as in-
put. We believe that the practical success of, in particular, untyped vanilla-type
metaprogramming has resulted from this. However, in spite of this success, little or
no effort was made to provide it with a sensible semantics in the usual framework
of untyped Herbrand interpretations. Doing just this is the main motivation for
the work reported in this paper.

In [23], the possibility of providing such a declarative semantics is rejected im-
mediately on the basis that the intended interpretations of vanilla metaprograms
can never be models in such a framework. Now, this statement seems somewhat
inaccurate. The intended meaning of a vanilla-type metatheory (in which different
variables range over different domains) can simply not be captured within the for-
mal notion of an interpretation, as it is defined for untyped, first order logic. So, a
more precise statement would be that the intended meaning cannot be formalized as
an untyped interpretation. However, this problem is not typical for untyped vanilla
programs; it generally appears in the semantics of most untyped logic programs.
Indeed, any such program in which a functor is used to represent a partial function
suffers from the same semantical problem and, in practice, total functions seldom
occur in real applications. (See [13] for a thorough discussion of this issue.)

Whether this (and other) argument(s) in favor of typed logic programs should
convince us to abandon the notational simplicity of untyped logic programs alto-
gether is an issue we do not want to address in this paper.

From here on, we will assume that the semantics of an (untyped) program is
captured by the alternative notion of its (least/perfect/well-founded/. . .) Herbrand

NONGROUND METAPROGRAMMING SEMANTICS 39

model, avoiding the problems with intended interpretations. Even in t,his more
restricted context, there remain problems with t,he semantics of untyped vanilla
metaprograms.

Consider the (definite) object program P:

P(X) *

4(a) -

Let M denote the standard (definite) solve interpreter:

solwe(empty) +

solve(.r & y) + solue(:c), solve(y)

solve(r) + clause(n:. y): solve(y).

In addition. let Mp denote the program M augmented with t,he facts

Although the least Herbrand model of our object program is {p(a), q(n)}, the least
Herbrand model of the metaprogram Mp contains completely unrelated atoms.
such as solwe(p(empty)), solue(p(q(a))): etc.

This is certainly undesirable, since we, iu general, would like at, least, that the
atoms of the form solve@(t)) in the least Herbrand model of Mp correspond in a
one-to-one way with the atoms of the form p(t) in the least Herbrand model of P.

In this paper, we therefore introduce the notion of lan.guuge Cndependence and
show t,hat it generalizes range restriction. Iiext, we show that a stratified object pro-
gram gives rise to a weakly stratified metaprogram. As one of our main results, WC
prove that the perfect Herbrand model of a stratified. language independent object
program corresponds in a one-to-one way with a natural subset of its metatheory’s
weakly perfect Herbrand model. In addition, we show how this approach can be cx-
tended to provide a semantics for various related mctaprograms, including a limit,ed
form of amalgamation. Finally, we demonstrat,e that, the language independence
condition can often be skipped in a semantics t,hat reflects closer the program’s
operational behavior.

The paper is organized as follows. In the next. two sections, we introduce and
discuss the notion of language independence and weak stratification. respectively.
Section 4 contains our basic results for stratified object programs and their st,raight-
forward untyped vanilla metaversion. Some related (more “useful”) metaprograms
are considered in Section 5. We justify overloadin g logical symbols and address
various (limited) forms of amalgamation in Section 6. Section 7 contains our I‘+
s&s in the context of S-semantics. We discuss and compare some related work
in Section 8, and, of course, some concluding remarks and suggestions for further
research round off the paper.

Throughout the rest of this paper, we assume the reader to be familiar wit,11
the basic concepts of predicate logic (see, e.g., [14]) and logic programming (see,
e.g., [29]). We also suppose familiarity with the notions of (local) stratification and

perfect model (see, e.g., [2, 361).
Finally, we would like to point out that two earlier texts report on part, of this

work:

50 B. MARTENS AND D. DE SCHREYE

1. [lo] addresses least Herbrand model semantics of definite object and metapro-
grams.

2. [30] is a preliminary and considerably abridged presentation of our results
for (weakly) stratified object and metaprograms and their (weakly) perfect
Herbrand models.

2. LANGUAGE INDEPENDENCE

The intuition behind language independence is simple. In the logic programming
community, there seems to be broad agreement that the declarative semantics of
most or all logic programs can be described by a particular Herbrand model of the
program. Two well-known classes of programs whose semantics is the subject of
little or no controversy’ are definite programs with their least Herbrand model and
stratified programs with their perfect model.

In general, however, these models depend on the language in which we are con-
sidering the Herbrand models. A simple example suffices to show this. Consider
the program consisting of the single clause p(z) +-. Its least Herbrand model (in
fact, its only Herbrand model) in a language with one constant symbol a and no
function symbols is {p(a)}. If we, however: add the constant symbol b, we obtain
{p(a),p(b)}. Basically, we will call a program language independent when its char-
acteristic Herbrand model does not depend on the particular choice of language.

A formal introduction and characterization of the notion for stratified programs
follows. Some comments and results on language independence for other classes of
programs are included at the end of the section.

2.1. Language Independent Stratified Programs

Suppose P is a logic program. Let Rp, Fp, and Cp denote the sets of predicate,
function, and constant symbols occurring in the program. We can then consider a
first order language Cp, which has exactly Rp and 3~ as its sets of predicate and
function symbols, respectively. As its set of constant symbols, we take Cp if it is
nonempty and {*}, a set with a single arbitrary element *, if it is. Cp is called the
language underlying the program P. Although this is not imposed as a limitation
in, e.g., [29], Herbrand interpretations of the program are usually constructed with
this underlying language in mind. For our purposes in this paper, however, we need
more flexibility. We therefore introduce the following two definitions.

Definition 2.1. Let P be a normal program with underlying language 13~. We call
a language L’, determined by R’, 3’, and C’, an extension of .Lp iff Rp C R’,
3p C 3’, and Cp C C’ # 8.

Notice that if Cp is empty, C’ may be any nonempty set of constant symbols. In
particular, it does not have to contain *. The following definition makes explicit
the language in which Herbrand interpretations are constructed.

Definition 2.2. Let P be a normal program with underlying language Lp. A

ISee, however, Section 7 of this paper

NONGKOUND METAPROGRAMMING SEMANTICS 51

Herbrand interpretation of P in a language C’, extension of Cp, is called m

C’-Herbrand interpretation of P.

In the sequel, we will often refer to Herbrand interpretations and models of
a program P with underlying language Ccp, when in fact we mean Cp-Herbrand
interpretations by models.

We are now in a position to introduce the notion of language indepen,dersc:r.

Definition 2.3. A stratified program P with underlying language Cp is called lan-
~7lagc independent iff for any extension C’ of Cp, its perfect, C’-Herhrand model
is equal to its perfect C’-Herbrand model.

Notice that this definition immediately entails that no atom in any perfect Her-
brand model can contain any predicate, function, and/or constant, symbols not
occurring in P. In particular, when Cp is empty, any perfect Herbrand model cm

only contain propositions. (This observation will be used implicitly in the sequel.
It, ensures that the infamous * constant does not cause too much trouble. See also
the remark following Proposition 4.2.)

We illustrate Definition 2.3 with some simple examples.

Example 2.1. Of the following programs. PI. P2, and PC are not language inde-
pendent, while the others are:

Pl

p2

p3

p4

p5

p6

p(x) +.

p(z) + not q(a)

4(a) +?

P(Z) + r(z), not q(x)

r(a) +?

P(T Y) + r(z), not q(z)

q(x) + h(x)

h(u) t

r(a) +,

p(x) + q(x), not r(z, y)

4(a) +>

p(x) + q(x), not r(x) Y)

q(a) +
r(a,u) t

It is clear that language independence, introduced here as a concept tuned toward
the semantics of logic programs, is strongly related to domain in,depen,dence. The
latter concept was defined for any formula in the context of full first order logic
(see, e.g., [ll] and further references given there). The following example shows
that the two notions do not coincide.

52 B. MARTENS AND D. DE SCHREYE

Example 2.2.

P(Z) +- s(z), not r(x, y)
4(a) +
r(a,a) +
s(b) +

Indeed, this program is language independent. However, there are (non-
Herbrand) models, having only one element in their domain of interpretation
on which both a and b are mapped, in which p(a) is not true. It therefore is not
domain independent.

However, obviously, any stratified program which is domain independent is also
language independent, and, indeed, language independent (stratified) programs
generalize the concept of domain independent databases (function-free) as intro-
duced in [43] (see Lemma 3 on page 229 in [43]). We feel, however, that the above
introduced terminology better reflects the underlying intuition. We should point
out that [43] contains an extensive discussion on the relation between domain in-
dependence and allowedness, a notion identical (at the clause level) to the notion of
range restriction, introduced below. Finally! it is shown that for function-free, strat-
ified, normal programs, domain independence (or, rather, language independence)
is decidable.

In general, however, it is clear that, like domain independence for full first or-
der logic (see, e.g., Theorem 2 on page 224 in [43] and further references given
there), language independence is an undecidable property. To see this, observe
that checking language independence boils down to checking refutability of goals.’
It is therefore important to investigate the existence of syntactically recognizable)
and thus decidable, subclasses of the class of language independent programs. It
turns out that the well-known concept of range restriction determines such a class.

Let us first repeat its definition, specialized to the context of normal logic pro-
grams.

Definition 2.4. A clause in a program P is called range restricted iff every variable
in the clause appears in a positive body literal. A program P is called range

restricted iff all its clauses are range restricted.

It is obvious that range restriction is a syntactic property. It has been defined
for more general formulas and/or programs and was used in other contexts. Two
related notions are safety, used by Ullman [45], and allowedness, defined in [29] and
important for avoiding floundering of negative goals. The following proposition
states that this important class of logic programs is a subclass of the language
independent ones.

Proposition 2.1. Let P be a stratified program. If P is range restricted, then P is
language independent.

PROOF. The proof proceeds through induction on the strata of P. 0

2This observation was first made by an anonymous referee of [30]

NONGROUND METAPROGRAMMING SEMANTICS 53

Example 2.3. It can be noted that of the programs in Example 2.1, only & is
range restricted.

2.2. Language Independence for Other Classes of Programs

Above, we have introduced the notion of language independence of stratified pro-
grams. It is obvious that this generalizes the concept of language independence
for de,finite programs, based on the invariance of t,he least Herbrand model. 2~s it
was defined in [lo]. It is also obvious that on the class of definite programs. i)ot,h
definitions coincide.

However 1 for definite
and range restriction is
shovV+~

programs, the difference between language independ(~nce
more easily characterizable. as the following proposition

l+opoSitio71 2.2. Let P be a dr>finite program. Then P is lan.guage In,dependent h&f
all, ground (Cp) -instances of every non-range-restricted clause in P (‘or) taw at
least one body atom, not true in its least Herbrnnd model.

PROOF. First suppose there is a non-range-restricted clause that does not sat,isf\
t,he stated condition. It immediately follows that P is not language intltyentlent.
This proves the only-if part.

The proof of the if part is completely analogous to t,he reasoning on t,hr bott,om
layr in the proof of Proposition 2.1. 0

Sotice that this result still le<tves language independence as an undecidable prop
rrty.

Thc~ notion of language independence can also be considered for classes hroadel
than t,hc one of satisfied programs. A generalization to locally stratified programs
is straightforward. Also? 7uealclq stratified programs with t,heir weakly perfect, Her-
brand model (introduced in the next section) allow an obvious adaptation of De&
nition 2.3 and Proposition 2.1. A complete analysis of its usefulness in the c,ont,ext
of different classes of logic programs and their semantics is outside the scopc~ of’ the>
prc>sent paper. Notice, however, that in those semantics in which the “prclferretl”
Herbrand model is three-valued (e.g.: well-founded semantics [46]), one n-ill demand
only the positive information in the model to be invariant under language ext,cJll-
sions. Indeed, it is obvious that, the negative information will be affected for &nost,
all reasonable programs and semantics. \Ve return briefly to this issue in Scc.t-ion 9

3. WEAK STRATIFICATION

In Section 1: we pointed out that,, in general, there is a problem with the least Hcr-
brand model of vanilla metaprograms. Much of the rest of this Papa is devoted t,o
showing that for language independent, programs, this problem disappears. HOW
ever. we do not wish to restrict our development to definite programs. In particular.
we would like to consider stratified object and metaprograrns, and compare their
perfect Herbrand models.

S7’his observation is due to an anonymous referee of [IO]

54 0. MARTENS AND D. DE SCHREYE

In this context, another difficulty has to be addressed first. We illustrate it
through the following example.

Consider the stratified, language independent object program P.

P(X) + T(X), not q(x)
r(u) +

Let M denote the standard (normal) solve interpreter:

solve(empty) +

solve(z&y) + solve(z), solve(y)

solve(Trc) + notsolve

solve(z) + clause(x, y), solve(y).

In addition, let AJp denote the program A4 augmented with the facts

(i)
(ii)

clause@(s), r(z)&q(z)) +

cluuse(r(a), empty) + .

Obviously, Mp is not stratified. Moreover, it is not even locally stratified. To see
this, consider clause (ii) of Mp. For any two round atoms, solve(tl) and solve(ts)
in the Herbrand base for the language underlying AJp, we have that both

solve(ti) +- clause(ti, tz), solve(tz)

and
solve(ts) + clazlse(tz, tl), solve(tl)

are ground instances of (ii). Therefore, in any local stratification of A4p, all the
ground atoms of the form solve(t) must be in the same stratum. On the other
hand, by clause (i), any ground atom solve(+) must be placed in a higher stratum
than the corresponding atom solve(t). So no local stratification can be possible.

However, there is a simple way to overcome this problem. Consider the new
theory, A4b, obtained from Mp by performing one unfolding step of the atom
clause(z, y) in clause (ii), using every available clause fact of Mp. Clause (ii) is
replaced by the resultants:

solve@(z)) t solve(r(z)&7q(z))

solwe(r(u)) + solve(empty).

This new theory Mb is completely equivalent with Mp in the sense that they have
identical models, but one can easily verify that Mb is locally stratified. It can
be shown that for any stratified object program P, the program obtained from
its associated vanilla metaprogram through a similar unfolding transformation is
locally stratified. In 1331 and [35], Przymusinska and Przymusinski introduced
weakly stratified logic programs and their unique weakly perfect Herbrand model.
Now, from their definitions, it follows that programs which can be unfolded into
a locally stratified one are weakly stratified. It can, therefore, be shown that a
stratified object program gives rise to a weakly stratified vanilla metaprogram.
This allows us to consider the weakly perfect Herbrand model of the latter as the
description of its semantics.

UONGROUND METAPROGRAMMING SEMANTICS
--zz

.,>

So. before we actually embark on a study of metjaprogram semantics. WC clc~votc~
the next, subsection to a formal introduction of ti~37,kly stratzfied progrnrrl.5 and c~oX:ly
~~,r:f~t models. Moreover, it turns out that WC do not need the fully general c~nc~yts
iu our restricted context. We will, therefore, derive a more easily verifialjlc .s~l,fii’r./~t~t
condition for weak stratification, to be used throughout t,he rest of this p~~1~r.

Weakly stratified programs and weakly perfec,t models were first introducctl iu j :X3].
Howevc~r. that paper is restricted to the case of ,filrlcticjn-fr‘ee (so-c~alled tlatalo~j
l)rograrrls. Obviously, our needs surpass that limitat,ion: the examplr mctapro-
grams above clearly contain functors. Since the necessary generalizat,ions i\rc iiotj
c.ompletely st,raightforward. we turn to the fully general treat,ment in [%I. and sinc,c>
l)oth wttak stratification and weakly perfect, models are not (yet?) fully st;rutlard
c~oricept;s in logic programming. we include the relcvaut parts of their &finit,iou.
Finally. it can be pointed out that, t,he overview paper i&l] also has a sc,c.tioll ou
\vc,;tk stratific&ion and weakly perfect models. The presentation there is c:ssc~ntinll>
the saiw. in spite of the fact that some of its basic definitions are chosen tliffcrc~ritly.
The following development is abridged (and slightly iada.pted) from [:%I. For fllrtli+xl
details and clxamples, we refer to that paper.

Defi7ini,tbon 3.1. Let P be a normal program. We denote by G?,o~nrl (P) the> (Pas-
sibly infinite) set of ground instances of c~lausrs in P and WC call it th(x yo~,/~d
p7~og*~~~,nl associated with P.

In ttle sequel, we will often apply notions defined for finite programs in t,licl
context of infinite ground programs. The generalization of the “classical” dc+init~ions
is straightforward. As usual, we use the notat,ion BP t,o denote the Hrlhrtrnn’ btr.sr-
for the language underlying a program P.

Definitzon 3.2. The ground dependency graph Drpg(P) of a program P is drfinetl
ilS follows:

?? Its vertices are the atoms in Bp.
?? There is a positive directed edge from A to B if GKJW~(~(P) contains a cluase

B +...,A ;..
?? There is a negative directed edge from A to B if Gmu~74P) cout,ains a clause

13 + ” , not A,.

Then we define the following relations between at,orns in Bp:

Defkitiorr 3.3.

?? A 5 B iff there is a directed path from A to B in Depg(P).
?? A < B iff there is a directed path from A to B in Depg(P) passing through it

negative edge.
?? 11 - B iff (A = B) V (A < B A B < A).

- is an equivalence relation on Bp, the equivalence classes of which we will call

56 B. MARTENS AND D. DE SCHREYE

components of Bp. We can define a partial order between these components.

Definition 3.4. Suppose Ci and Cz are two components of Bp. We define

Ci 4 (2’2 iff Cr # Cz A 3A1 E Cl, 3Az E Cz(A1 < AZ).

A component Ci is called minimal iff there is no component C’s such that Cz 3

Ci.

Definition 3.5. By the bottom stratum S(P) of a ground program P: we mean the
union of all minimal components of P, i.e.,

S(P) = u{C 1 c is a minimal component of BP}.

By the bottom layer L(P) of a ground program P, we mean the corresponding
subprogram of P, i.e.,

L(P) = the set of all clauses from P, whose heads belong to S(P).

In the context of the ensuing construction, (possibly partial, three-valued) in-
terpretations and models that explicitly register negative information will be used.
They contain not only positive, but also negative ground literals. Pas(I) will denote
the positive subset of such an interpretation. It is, of course, itself a standard (two-
valued) interpretation. In the next definition, as usual, we assume not(not L) = L
for any ground literal.

Definition 3.6. Let P be a ground program of which I is a partial interpretation.
By a reduction of P modulo I, we mean a new (ground) program p obtained
from P by performing the following two reductions:

?? Removing from P all clauses which contain a premise L such that not L E I
or whose head E 1 (i.e., clauses true in I).

?? Removing from the remaining clauses all premises L E I.

Finally, remove all nonunit clauses whose heads appear as unit clauses.
We can now describe the (transfinite) iteration process that leads to the con-

struction of a weakly perfect model. (The union of three-valued interpretations,
used in Definition 3.7, is defined as straightforward set union. Since the S, sets are
disjunct, the corresponding H, models cannot contain contradictory information
and their union is well-defined.)

Definition 3.7. Suppose that P is a logic program and let PO = Ground(P), Ho =
0. Suppose that cy > 0 is a countable ordinal such that programs PJ and partial
interpretations Ha have been already defined for all 6 < o. Let

Na= (_jKc Pa=;, S, = S(Pcy), L, = L(P,).
6<CX a

?? If the program P, is empty, then the construction stops and Hp = Pos(N,)
is the weakly perfect Herbrand model of P.

NONGROUND METAPROGRAMMING SEMANTICS 57

?? Otherwise, if S, = 0 or if L, has no least Herbrand model, then the con-
struction also stops. (P has no weakly perfect Herbrand model.)

?? Otherwise, H, is defined as the least Herbrand model of L, and the construc-
tion continues.

Finally, we define weakly stratified programs

DefinLtion 3.8. We say that a program P is weakly stratified if it has a weakly
perfect model and all L, are definite.

The following result is immediate.

Proposikion 3.1. Every (localh/) stratified progam is weakly stratified an.d its per-
&t and weakly perfect Herbrand models coincide.

PROOF. Immediate from Theorem 4.1 and Corollary 4.5 in [35]. 0

Thus we see that weak stratification is a conservative extension of (local) strat-
ification. It can even be argued that weak stratification is in many ways a more
suitable extension of stratification than local stratification is. Indeed, the latter
propertry is not invariant under some elementary program transformations, as was
shown above.

Below: we show that metaprograms associated with stratified object programs
are indeed weakly stratified. However. a number of details in the above general
construction are rather inconvenient in that restricted context.

?? We want to avoid the use of three-valued interpretations, even during con-
struction of the (two-valued) weakly perfect model.

?? We will not need transfinite induction.
?? We are only interested in weakly prefect models for programs that are actually

weakly stratified.
?? Definition 3.7 takes S, always equal to the entire union of minimal compo

nents of BP_. In other words, the weak stratification built is as “tight” as
possible. Following this practice would considerably demage the elegance of
the proofs in the subsequent sections. We need the ability to only consider
“safe” subsets of that union.

?? Finally, we will not remove nonunit clauses whose heads appear as unit
clauses, as stipulated in Definition 3.6.

For all these reasons, we present a modified construction procedure in Proposition
3.2. Successful application of this procedure guarantees weak stratification and
constructs the weakly perfect model. In other words, we show that Proposition 3.2
provides a suficient condition for weak stratification-a condition which will then
actually be used throughout the rest of this paper. Some simple programs, not
satisfying it, but nevertheless weakly stratified according to Definitions 3.7 and 3.8
are included among the examples below. Before we can state Proposition 3.2, we
need one more auxiliary concept.

Definition 3.9. If P is a ground program, then we denote by CH(P) the set of all

58 B. MARTENS AND D.DE SCHREYE

heads of clauses in P.

Proposition 3.2. Let P be a normal program. Then we define:

PI = Ground(P)

If P, # 0 is defined and Bp$ has one or more minimal components, we define:

0 s, = S(P,).
?? V,: a nonempty subset of S, such that if B E Vi and A 5 B (and hence

A E S,), then A E V,.
?? L,: the set of clauses in P, whose head is in Vi.
?? Hi: the least Herbrand model of L, if L, is definite.

If Hi is defined, we define the following:

?? Pz’+l : the set of all clauses in P,\L, for which the following hold:

-For every positive body literal B, B E V, + B E H,.
-For every negative body literal not B, B E V, + B +Z H,.

?? P,+l : Pl+l with the V, body literals deleted from the clauses.

If there is an i such that Pi = 0, then take Hp = u,<,H,.
Else if Hj is defined for all j < w and n,,,CH(P,) = 8, then take Hp =

U 3<wHJ. In both cases, P is weakly stratified and HP is it weaklys perfect Her-
brand model.

PROOF. First, it can be verified that our use of two-valued interpretations is a
correct recasting of Definition 3.6 and its use in Definition 3.7. Not removing
nonunit clauses in the presence of corresponding unit clauses might lead to failure
(see also Example 3.8), but does not influence Hp upon success. A detailed formal
proof of this point can proceed in a similar way to the proof for Lemma 3.1 below.
Furthermore, the definition of the H, now incorporates the condition that each L,
be definite, and P therefore weakly stratified. Next, note that nj<wCH(P,) = 0
means that all clauses in Ground(P) are consumed during the iteration process, and
therefore halting successfully is correct. It remeans to be shown that constructing
a nontight stratification is safe. In other words, that any choice of the V,, leading
to a successful halt, returns the same Hp. (The fact that some choices might lead
to success, while others might not, is not a problem, since we are only claiming a
sufficient condition.) This follows from Lemma 3.1 below. 0

Lemma 3.1. Let P be a normal program such that a series VI, leads to successful
termination of the construction in Proposition 3.2 with resulting model HF. Then
the (maximal choice) series S1, . also terminates successfully with H: = Hg.

PROOF. The proof of this lemma can be found in the Appendix. 0

Let us now briefly turn to some examples. The first one is taken from [35].

Example 3.1. Let P be the following program:

P(l, 2) +

NONGROUND METAPROGRAMMING SEMANTICS 59

q(z) + PC? Y)I not 4(Y).

P is neither stratified, nor locally stratified. It is however weakly stratified:

PI : P(l, 2) +-

Y(l) + I$, 1): not Y(l)

Y(1) + p(l, 2)Jlot q(2)

y(2) + p(2, l), not q(l)

Y(2) + IQ, 2)! not Y(2):

Sl = -ML l),P(1,2),P(2.l).P(2.2)).

v, = s1.

Ll = {24l>2) -1,

ffl = {P(1>2)}.

P; = {q(l) + p(l,2). not q(2)},

PZ = {q(1) + not q(2)},

572 = {4(2)),

v, = {4(2)),

L2 = 0,
H2 = 0,

p; = {q(l) + not 4(q),
p3 = {4(l) -1:

s3 = {q(l)),

v, = {q(l)),

L3 = {q(l) --I,

H3 = {d1)),

Pi = 0=P,.

P’s weakly perfect Herbrand model HP = U,<dH, = {p(l,2),Y(l)}.

The following well-known example is often presented as a motivation for PX-
tending the concept of stratification ot local stratification (see, c.g., [XI). LVe
demonstrate that it is also we&y stratified.

Example 3.2. Let P name the following program:

euen(0) +

even(s(z)) +- ,not even(z),

Pl = {even(O) -} U {even(s”+l(O)) + not even(sn(0)) 1 ?z > 0},

S, = {even(O)},

V, = s1,

Ll = {even(O) +--}>

HI = {even(O)},

I?; = {even(s”+‘(O)) +- not even(s”(0)) j II ‘2 l}.

B. MARTENS AND D. DE SCHREYE 60

Pz = P;,

s2 = {even(s(o))>,

v2 = s2,

L2 = 0,
H2 = 0,
P; = P2,

P3 = (even(s(s(0))) t

S3 = {euen(s(s(O)))},

v, = s3,

I n > a>, -} U {ewen(s"+l(O)) + not even(s”(0))

L3 = {euen(s(s(o))) ->,

H3 = {even(s(s(o))!},

f-) CH(P,) = 0.
J<W

Example 3.3. The Mp example program at the beginning of Section 3 is also
weakly stratified. Indeed, Ground(Mp) contains a (countably) infinite amount
of layers, each of which is composed of an infinite amount of ground clause
instances. For more details, we refer to Theorem 4.1 and its proof.

The program in the next example has no weakly perfect Herbrand model.

Example 3.4.

p + not q

q + not p.

Indeed, the complete program is contained in its single layer, which has two
distinct minimal Herbrand models, and therefore no least.

Also, the following program P has no weakly perfect Herbrand model.

Example 3.5.

even(O) +
even(x) t not euen(s(z))

The bottom stratum of Ground(P) is empty.

A small change to Example 3.4 gives us a program that does have a weakly
perfect Herbrand model, even though it is still not weakly stratified.

Example 3.6.

P-q

q +- not p.

UONGROUND METAPROGRAMMING SEMANTICS 61

The modified program still consists of a single (nondefinite) layer. which now:
however, has a least Herbrand model: {p}.

Finally, we include two weakly stratified programs that do n,ot satisfy the COII-

dition in Proposition 3.2.

Example .3.%

P: p(a) +

p(f(z)) + not p(z)

q(5) + not p(2)

r(f2) + p(z). q(x)

?-(f(x)) + not 7.(.X).

Clearly, nj,,CH(P,) # 0 and yet P 1s weakly stratified. However, establishing
the latter fact requires transfinite induction.

Example 3.8.

p + not q

p+7

q + Ilot p

rt.

Here, the removal of clauses (with a nonempty body) having a head for which
also a fact is present (see the bottom line in Definition 3.6), makes a crucial
difference. For our applications, this practice is not needed. We therefore did
not incorporate it in the construction presented in Proposition 3.2.

Finally? we point out that in [38], the closely related notion of modular stmtijku-
hon. has been defined for datalog programs. Essentially, it builds a componentwise
dynamic local stratification. Since every modularly stratified (datalog) program is
weakly stratified (Theorem 3.1 in [38]), the latter is the more general property.

4. VANILLA METAPROGRAMS

4.1. Definitions

We a.re now finally in a position where we can address the proper topic of this
paper: the semantics of metaprograms. In this section, we present the two key
results that lie at the heart of our work.

We set out with the following definitions, formally introducing the concept of a
vanilla metaprogram.

Definition 4.1. Suppose C is a first order language and 72. its finite (or countable)
set of predicate symbols. Then we define 3~ to be a functorization of R iff 3~ is
a set of function symbols such that there is a one-to-one correspondence between
elements of R and 3~ and the arity of corresponding elements is equal.

62 B. MARTENS AND D. DE SCHREYE

We introduce the following notation: Whenever A is an atom in a first order
language L: with predicate symbol set R and a functorization 3~ of R is given,
A’ denotes the term produced by replacing in A the predicate symbol by its corre-
sponding element in 3~.

Definition 4.2. The following normal program M is called vanilla metainterpreter.

solve(empty) +

solve(z&y) +- solve(z), solve(y)

solve(x) t not solve(z)

solve(z) t clause(z, y), solve(y).

Notice M is neither language independent nor stratified (nor locally stratified),
and these properties carry over to Mp-programs, defined as follows:

Definition 4.3. Let P be a normal program. Then Mp, the vanilla metaprogram
associated with P, is the normal program consisting of M together with a fact
of the form

clause(A’, . . , &B’& . St+?&. .) t

for every clause A +- . . . , B, . . . , not C, . . in P and a fact of the form

clause(A’, empty) c

for every fact A +- in P.

A number of remarks are in order:

?? If Cp, the language underlying P, is determined by Rp,3p, and Cp, then
Ln/r,, the language underlying Mp, is determined by:

- RMp = {solve, clause}.
- 3A4P = 3p U .&, U {&, -}, where 3~, is a functorisation of Rp, pre-

supposed in Definition 4.3.
- CMp = Cp U {empty}.

?? For clarity, except when explicitly stated otherwise, we will demand:
- 3p n {solve, clause} = 0,
- Rp n {solve,clause} = 0,
- 3pn3Rp =0,
- empty 4 CP

for all object programs P throughout the rest of this paper.
?? In the sequel, when we refer to Herbrand interpretations and/or models (of

a program P or Mp) and related concepts, this will be in the context of the
languages Lp and LMp, as defined above, unless stated explicitly otherwise.

?? Finally, we introduce the following notation:

- Up: the Herbrand universe of a program P.
- UF=UpX...xUp (ncopies).
- p/r: a predicate symbol with arity r in Rp.

UONGROUND METAPROGRAMMING SEMANTICS 63

]I’/?-: its associated function symbol in &J,.

The following proposition, which will implicitly he used in the sequel. is imme-
diate.

Proposztion 4.1. Let P be a normal program with Cp # 8 a& .21,~ Its vanilla
m&program. Then Up c C,II,,

PROOF. Obvious from the definitions. 3

Sotice, however, that the property does not hold when CP = @. Indeed, in that
case. up contains terms with *: while u&J,, does not,

4.2. Weak Stratijication of Mp

Tve are now ready to formulate and prove the first of our two main results. It shows
that, the concept of weak stratzfication has a very natural application in th.e realm
of rnetaprogramming.

Theorem. 4.1. Let P be a stratafied normal program. Then Mp, the vanilla nretapro-
gro,m associated with P. is weakly struti,fied.

PROOF’. lt1e can choose:

VI = {clause(tl, tz) / clause(tl, t2) is a ground

instance of a cla7Lse(t, s)-fact in Mp}.

It immediately follows that L1 is definite and HI = VI. It also follows t,hat,

P2 = {solwe(empt~)}

U {C 1 C is a ground instance of solve(z&y) + solve(z). sol7:e(y)}

U {C 1 C is a ground instance of solve(lz) + not solve(x)}

U {solve(tl) + solue(ta) 1 clause(t~, ts) E VI}.

Now suppose that P’, . ~ P” is it stratification of P. Then we can choose

Vz = {solve(t) / t E 7’)

with

r1 = {p’(Z) j p/n t P’.? E qf,,}

u {t&tz 1 t1, tz E T’}
u {f(t) I f/n E 3P>i E q&J

u CM,,

It follows immediately that L2 is a definite program. Moreover: for 3 < I < k t
we CM choose

V, = {solve(t) / t E 7--l}

64 B. MARTENS AND D. DE SCHREYE

with

7 i-1 = {p’(E) 1 p/n E Pt-l,t E Uh,,}

4 t1&t2 I t1,ta E u + and tl or t2 E Y--’
j<Z-1

u{+ / t E F2)

and for i > Ic + 1,

with

V, = {solve(t) 1 t E F1)

r i-1-i - tl&tz I t1,ta E u r3 and tl or t2 E 72-l
j<Z-1

It follows that for all 3 5 i,

{solve(+) +- not solve(t) / t E UA~,,\T”-~}

is the set of clauses with a negative literal in P,. From this, we can conclude that
every Li(i 2 3) is definite. Moreover, n,,,CH(Pj) = 0. 0

This result shows that the metaprogram at the beginning of Section 3 is indeed
weakly stratified, since its object program is stratified. In fact, we can infer from
the proof above that our observation at the beginning of Section 3 about the lo-
cal stratification of the program Mf, can also be generalized. Indeed, once P2 is
obtained, the rest of the stratification process is essentially static: P2 is locally
stratified. It can, therefore, be argued that the concept of weak stratification is
perhaps a bit too strong for our purposes. However, we conjecture that all results
in this paper formulated for stratified object programs, can be shown to hold for
weakly stratified object programs. We will not explicitly address this topic in the
rest of this paper, but it is clear that in the latter context, metaprograms will, in
general, no longer be “almost” locally stratified.

4.3. A Sensible Semantics for Mp

Now follows our basic result:

Theorem 4.2. Let P be a stratified, language independent normal program and
Mp its vanilla metaprogram. Let Hp denote the perfect Herbrand model of P
and HM,, the weakly perfect Herbrand model of Mp. Then the following holds
for every p/r E Rp :

vz E Uh,, : solve(p’(t)) E H.w,, ej t E U&&p(t) E Hp.

PROOF. Suppose P’, . . , P” is a stratification of P. The proof is through induc-
tion the P-stratum to which p belongs. Suppose first that p E PI. Let PI name the

NONGROUND METAPROGRAMMING SEMANTICS 65

collect,ion of clauses in P corresponding to P’. (PI is a definite. language indepen-
dent program.) Let Tpl name its immediate consequence operator. We learn from
t,he proof of Theorem 4.1 that atoms of the form sol~~e(p’(f)) are in the VL layer of
Bnl,, However, this means:

solve(p’(t)) e Hnl,, w solvr(p’(i)) E Hz. i*)

Let TL~ name the immediate consequence operat,or corresponding to the (infinite)
definite ground program Lx. (Throughout the rest of this proof. names such as
I<?. Hx, and Lz refer to the construction showing the weak st,ratification of :11/J.)

IYe first prove

V/i 1;: U;; , ‘dn E W : p(t) t T,, T ‘n * 3m E w : ,soh’P(p’(2)) ; T[& 1 /Ii. (1)

The proof proceeds through induction on II. The base case (7~ = 0: 71, . 0 01)
is trivially satisfied. Now suppose that p(i) E Tp, r r~. II > 0. ‘lb11 tllrJrc> nlust
br at least one clause C in PI such that l,(t) + Cl, Ck(k 2 0) is il ~ro~md
instance> of C and Cl, , Ci; E Tp, T (71 - 1). Consider first the cxw that we
llavo one with k = 0. In other words. p(t) + is a ground instance of a fi\ct in P.
In that case, L2 contains the clause sol7le(p’(t)) + so/~~(ernpty). It follo~vs that
.solrse(p’(?)) E TL~ T 2.

Srlppose now k > Then L’ contains t,he clause

The induction hypothesis guarantees for every c’, the existence of an ~II, ,r S silcli
that solve(C:) E TL~ t ~1,. Let mm denote the maximum of these m,. It takes
only a straightforward proof by induction on 1 t,o show

Vl 5 1 < k : solvc(C~& &CL) t II,? i (mm + X: ~ I)

From this. it follows that. in particular,

and therefore
.soIue(l,‘(t)) E TL~ j’ (nl,m + k)

This completes the proof of (1). (Notice that in this part of the proof t,hr> lang~~agr
independence of P is only implicitly used to deal with the case that Cl1 = 1~9. SVC,
also the remark following Proposition 4.2.)

Next. we prove

VT E U2kI,,,Vn t N : solve(p’(i)) E TI,~ t II

* ttU;;&3r,lE~::p(t)~TF, Trn. (“1

11:~ first define l’ to he the language determined by RF,. F,\f,, and C,yl,, ,!I” is an
ext,ension of Cp,

66 B. MARTENS AND D. DE SCHREYE

The proof again proceeds through an induction on n. The base case (n = 0; TL~ T
0 = 8) is trivially satisfied. Suppose that solve(p’(t)) E TL~ T n, where n > 0.
Then either there is a clause-fact in Mp of which clause(p’(?), empty) + is a ground
instance or this is not the case. Suppose first there is. Then PI must contain a fact
of which p(2) + is a ground instance in C’. This means that p(t) E Tpl T 1 in C’,
but, since PI is language independent, this implies that ? E UJ, (and thus t E Uf;)
and p(t) E Tpl 1‘ 1.

If there is no such clause-fact in Mp, then there must be one with a ground
instance clause (p’(t), C; & & CL), where k 2 1, such that solue(C{ & . . . &
C&) E TI,~ T (n - 1). A simple induction argument on k shows that we obtain

‘dl< i < k : 3n, < n E N : solve(Ci) E TL? T n,.

Through the induction hypothesis, we get

(where t, is the tuple of arguments appearing in the atom C, and ri is the arity of
its predicate). From the above and the fact that PI is language independent, (2)
follows.

The desired result for the bottom stratum is an immediate consequence of (*),
(I), and (2).

Now, let p E Pz(i > 1) and assume that the result is obtained for all q E Pj, j < i.
We first prove the Zj part. From p(t) E H p and p E Pa, we know there must be a
clause in P such that

P(E) +-Cl,...,G (n 2 0)

is a ground instance of it and all positive C, E HP and for no negative C, =
not Bj, Bj E Hp. Now:

?? If there is no C, containing a predicate symbol E P”, then we can prove
(through induction on i)

solve(p’(1)) + E Li+i.

From this, the desired result follows immediately.
?? In the other case, we can, without loss of generality, suppose that Ci, . 1 Cl

are the literals containing predicate symbols E P”. We then have in Ltcl:

solve(p(t)) + solve(Ci& &CA)

solve(C~& ” &CA) +- solve(Ci), solve(Ci& &CA)

solve(C& . . &CA) + solve(Ci), solve(CA& &CA)

solve(C[& . &CA) +- solve(CI).

(Here, if C, is a negative literal not B, CL of course denotes TB’.) solve(p’(2))
E HM,, now follows through an induction argument analogous to the one used
in the proof of (1) above.

Finally, we turn to the only-if part. We have one of the following two cases:

NONGROUND METAPROGRAMMING SEMANTIC’S 67

If solve(p’(2)) + E &+I. t.hen there is a clause in P such that,

p(t) +ci,....CL (71 2 0)

is a ground istance of it, all C, contain predicate symbols t u,,,P.’ mtl iLr(’

true in Hp. The desired result now follows from the language independcncc
of P.
Otherwise, L,+i must contain a clause

soPUe(p’(2)) + <snl~Ue(C;&~ &Lc;)

such that solve(Ci& .&C~) E H,+I. (Here again. CA possibly denotes --U’
for some atom B.) Let us (without loss of generality) suppose that, c’, C”l
are the only literals containing predicate symbols E P”. Then it follows that
L 1+1 also contains

solwe(Ci& &CA) + solue(Cj). solue(C;k kc;)

solve(Cb& kc:,) + solwe(solne(CAk ‘. &CT:,)

solwe(C[& I!&;) + solve(Ci).

An induction argument similar to the one in the proof of (2) above now brings us
the desired result. 0

Strictly speaking, t E U$ is of course implied by p(t) E Hp, hut since we judge
the former fact to be an important result in its own right, we have chosen to include
the statement explicitly in the formulation of the theorem.

Theorem 4.2 shows that untyped nonground vanilla metaprograms have a very
reasonable Herbrand model semantics for a large class of object programs. Notice,
however, that it does not incorporate any results on “negative” information. It is
obvious that a straightforward generalization to atoms of the form solve($(?)) is
not possible:

Example 4.1. Indeed, consider a very simple stratified, language independent. oil-
,ject program P:

p(a) +

We have solve($(empty)) E HM,, while of course empty @ UF).

However, we do have the result below:

Corollary 4.1. Let P be a stratified, language independent program with Cp # 0
and Mp its vanilla metaprogram. Let Hp denote the perfect Herbrand model P
and let HM,, be the weakly perfect Herbrand model of Mp. Then the following
holds for every p/r E Rp:

Vt EU;;: solwe(Tp’(?)) E HM,, ++ P(~)@HP.

PROOF'. From Theorem 4.2, we have

If,5 EU;;: solve(p’(t)) E HM,. +S p(t) E Hp,

68 B. MARTENS AND D. DE SCHREYE

and, therefore,

VT E Ub : not solve(p’(t)) is satisfied in HM,, ti p(?) @ Hp.

However, then Definition 4.2 implies

VT E Ub : solwe(lp’(2)) E NM,, X+ p(1) +i Hp.
??

Obviously, this result can be extended to ? E Uh,,, if one so desires. Note that
it is essential that Cp # 8.

To conclude this section, we briefly dwell upon the “strength” of Theorem 4.2.
In other words, can a similar result be proven for classes of programs significantly
larger than the class of language independent programs? We believe this not to
be the case. One argument in favor of this is the fact that the proof of Theorem
4.2 relies on the language independence of the object program in a very natural
way. However, one direction of the H can be shown to hold for (almost) all definite
object programs (in Proposition 4.2, MP is supposed to be defined without the third
clause of Definition 4.2; see Definition 7.7 and 7.8):

Proposition 4.2. Let P be a definite program with Cp # 8 and Mp its vanilla
metaprogram. Let Hp denote the least Herbrand model of P and HM,> the least
Herbrand model of Mp. Then the following holds for every p/r E Rp:

V’i E U;; : p(t) E Hp + solwe(p’(i)) E HM,,.

PROOF. The result follows immediately from Lemma 9 in [lo]. 0

(In fact, we can just as well use Mp as defined in Definitions 4.2 and 4.3, as the
first part of the proof for Theorem 4.2 shows.) Again, Cp # 0 is an essential con-
dition. Indeed, the least Herbrand model of a non-language-independent program
contains nonpropositional elements. All terms in these atoms are of course ground
and the only constant involved is *, which is not even .present in the language of
the metaprogram. It should also be mentioned that when the restriction to terms
in the object universe is imposed as a precondition, the reverse of Proposition 4.2
does hold. This is proved in [25].

The following example shows that Proposition 4.2 cannot be extended to the
class of stratified programs and their (weakly) perfect Herbrand models.

Example 4.2. The following program P is stratified, but not language independent:

r(x) + notp(x)

P(X) + notd?4)
s(a) +

We find that r(a) E Hp, and yet solve(r’(a)) $ HM,,.
It seems then that Theorem 4.2, Corollary 4.1, and Proposition 4.2 are about the

best we can do in the context of “classical” ground Herbrand semantics. In Section

NONGROUND METAPROGRAMMING SEMANTICS 69

7. we show that it is often possible to drop t,he condition of language independence
in the framework of an extended Herbrand semantics, designed to mirror more
closely the operational behavior of logic programs. However, first, in the next few
sections, we present some interesting extensions of the basic results obtained above.

5. EXTENSIONS

Theorem 4.2 is interesting because, for a large class of programs, it provides us with
a reasonable semantics for nonground vanilla metaprogramming. However, it also
shows that we do not seem to gain much by this kind of programming. Indeed, (the
relevant part of) the metasemantics can be identified with the object semantics.
So why go through the trouble of writing a metaprogram in the first place? The
answer lies, of course, in useful extensions of the vanilla interpreter (see? e.g., [40]
and further references given there). In this section, we study metaprograms that
capture t,he essential characteristics of many such extensions. We will first consider
definite object and metaprograms and turn to the normal case afterward.

5.1. Definite Programs and their Extended Metaprograms

Definition 5.1. A definite program of the following form will be called extended
(d-)metainterpreter.

solve(empty, tll,. . , tl,) + CII: , Clml

solve(x&y, t21,. , tzn) + solwe(x, t31, , tzn), solve(y, t41,. , t4n)r

C211~~.rC2mz

solve(z, t51, . . , tsn) t clause(x, y), solve(y, ttil,. , &),

C31,..‘,C3rn.,>

where the tij terms are extra arguments of the solve predicate and the ck1
atoms extra conditions in its body, together with defining clauses for any other
predicates occurring in the ck, (none of which contain solve or clause).

The prefix “d” serves to make a distinction with normal metainterpreters. How-
ever, when it is clear from the context whether a definite or a normal metaprogram
is intended, we will often not write down that “d” explicitly.

Definition 5.2. Let P be a definite program and let E be an extended (d-)metainter-
preter. Then Ep, the E-extended d-metaprogram associated with P, is the definite
program consisting of E together with a fact of the form

clause(A’, Bi&. &CBA) c

for every clause A + B1, . , B, in P and a fact of the form

clause(A’, empty) +

for every fact A +- in P.

70 B. MARTENS AND D. DE SCHREYE

As an example of this kind of metaprogramming, we include the following pro-
gram E, adapted from [40]. It builds proof trees for definite object level programs
and queries.

Example 5.1.

solve(empty, empty) +

solve(x&y, proof x&proof y) t solve(x,proof x), solve(y,proof y)

solve(x, x if proof) t clause(x, y), soZve(y,proof).

As is illustrated in [40], the proof trees thus constructed can be used as a basis
for explanation facilities in expert systems. Further examples can be found in,
e.g., [39].

We have the following proposition:

Proposition 5.1. Let P be a definite, language independent program and Ep an
E-extended d-metaprogram associated with P. Let HP and HER denote their
respective least Herbrand models. Then the following holds for every p/r E Rp:

V,t E u;, : (35 E U& : solve(p’(?), 3) E HE,,)
=+ t~iY;&p(t)~H~.

PROOF. It follows immediately from an obvious property of definite logic programs
that solve(p’(t),S) E HE,, implies solwe(p’(?)) E CE,, - HM~ (Mp’s least CE,,-
Herbrand model). Let f? be the language determined by Rp, ~~~~ and CEr. C’ is
an extension of Cp. The result now follows from the language independence of P.
17

It can be noted that the right-hand side of the implication in Proposition 5.1
is equivalent with t E Ubp&solwe(p’(ii)) E HM,, (where Mp denotes the vanilla
d-metaprogram associated with P, defined as in Definition 7.8, and NM,, is its
least Herbrand model). This follows from Theorem 11 in [lo], the proof of which
is similar to the bottom stratum part of the proof for Theorem 4.2 above.

Proposition 5.1 essentially ensures us that working with extended metaprograms
is “safe” for definite, language independent programs. Indeed, no unwanted solu-
tions of the kind mentioned in Section 1 are produced. Further research can perhaps
determine conditions on E that allow an equivalence in Proposition 5.1. We know
such extended interpreters exist: The proof tree building program in Example 5.1
above presents an instance. In general, programs where the extra arguments and
conditions neither cause failures nor additional bindings on the main arguments are
obviously safe. (See Section 7.4 for a related comment.)

5.2. Normal Extensions

We will now address normal object programs and their normal extended metapro-
grams. The definitions we set out with, are of course very similar to those in the
previous subsection.

NONGROUND METAPROGRAMMING SEMANTICS 71

Definition 5.3. A normal program of the following form will be called extended
program metainterpreter:

solwe(empty, tll, , tl,) + CII,. > Clml

solve(x&y, t21,. , tzn) + solve(z, t31: , tsTr)> solve(y, t4l; tq71)r

C21,...,C2m2

sol21e(~5, tsl, . , ts,) + not solue(x, tnl, , &jn), CSI, . 3 C:i, i

solve(z, t71,) t& +- clause(x, y), solve(y, &I,. ‘. tBn);

c41,... ~C4ln,>

where the t,, terms are extra arguments of the solve-predicate and the Ckl literals
extra conditions, defined through a stratified program included in the extended
metainterpreter (but not containing solve or clause).

Definition 5.4. Let P be a normal program and E an extended metainterpreter.
Then Ep, the E-extended metaprogram associated with P, is the normal program
consisting of E together with a fact of the form

clause(A’, &B'& . . &G’&. .) +

for every clause A + . , B! . . , not C? in P and a fact of the form

clause(A’, empty) +

for every fact A t in P.

The first question now is: Are such programs weakly stratified? The following
proposition shows they indeed are, when the object program is stratified.

Proposition 5.2. Let P be a stratified program and E an, extended metainter~urtw.
Then EJJ, the E-extended metaprogram associated with P, is weakly stratified.

PROOF. A construction completely analogous to t,he one in the proof of Theorem
4.1 can be used, since;

. The strata of the program that defines the CI;~ literals can be considered first.

. IVe can still devide he solve-atoms in strata! based on the structure of their
first argument. 0

Having established this result, we would now like to generalize Proposition
However, the following simple examples demonstrate that this is not possible.

Example 5.2.

P: p tnotq

9 .

Notice P is language independent and (trivially) range restricted.

E : First 3 clauses as in M (Definition 4.2)

5.1

72 B. MARTENS AND D. DE SCHREYE

solve(x) c clause(s, y), solve(y), good(y)

good(7q’).

We have p $! Hp and yet solve(p’) E HER.

Example 5.3.

P : P(G 1~) + T(Z), not 4x1

da) + W

da)

h(a).

Notice P is language independent, but not range restricted.

E : First 3 clauses as in M (Definition 4.2)
solve(z) + clause(z, y), solve(y), not bad(y)

bad(h’(u)).

We have solve(p’(a, empty)) E HER (and, of course, (a, empty) $ U;).

However, we do have the following result:

Proposition 5.3. Let P be a stratified, range restricted program and let Ep be an
extended metaprogram associated with P. Let HER be its weakly perfect Herbrand
model. Then the following holds for every p/r E Rp:

v,t E u;,, : (3s E U& : solve(p’(t), S) E HER) + ? E UF.

PROOF. First, observe that all fact in a range restricted program are ground.
Second, all variables in the head of a clause appear in positive body literals. There-
fore, basically, when performing deductions, all variables are instantiated with
terms propagated upward from the ground facts. This property carries over to
the metaprogram and ensures that the ?-arguments cannot be instantiated with
terms outside Ub. A fully formal elaboration of this argument involves a completely
straightforward induction proof. 0

A few remarks are in order:

?? Example 5.2 shows that this proposition cannot be strengthened to also in-
clude p(?) E Hp in the right-hand side of the implication. Additionally, in
view of what might be required in actual applications, this seems very nat-
ural. Consider, for example, a jury finding a guilty person innocent through
lack of sufficient proof. When formalized by means of an extended metain-
terpreter, this would result in something like solve(innocent’) being true at
the metalevel, while innocent would be false at the object level.

?? Proposition 5.3 does certify that no nonsensical solve(p’(?, S)) atoms appear
in the weakly perfect Herbrand model of the extended metaprogram, at least
for range restricted object programs. Indeed, Example 5.3 shows that even
this minimum result cannot be extended to the class of all stratified, language

NONGROUND METAPROGRAMMING SEMANTICS 73

independent programs. In other words, language independence proves to be
too weak a concept in the context of extended normal metaprograms.

6. AMALGAMATION

6.1. A .Just$cation for Overloading

In the this section, we extend some of the results of Section 4 to provide a semantics
for a limited form of amalgamation. The simplest example of the kind of programs
we will consider is the (textual) combination P + Mp of the clauses of an object
program P with the clauses for its associated vanilla program A4p. A more complex
case is obtained by further (textually) extending P + hi’p with additional cla,usf>/2
facts and statements, covering the clauses in A4p itself. In the most general case, we
also allow the occurrence of solve/l calls in the bodies of clauses of P. Futhermort:,
we will impose the use of one particular functorization FR,,, namely, the one in
which all functors in FR[, are identical to their associated predicate symbols in
RJ~. (In the more complex cases. we will proceed similarly for the predicates so&
and clause.)

We first address the more basic problem with the semantics of such programs,
caused by overloading the symbols in the language. Clearly, the predicate symbols
of P occur both as predicate symbol and as functor in P + ibf,= (and in any further
extensions). Now, although this was not made explicit in, e.g., [29], an underlying
assumption of first order logic is that the class of functors and the class of predicate
symbols of a first order language C, are disjoint (see, e.g., [14]). So, if we aim to
extend our results to amalgamated programs-without introducing any kind of
naming to avoid the overloading-we need to verify whether the constructions,
definitions, and results on the foundations of logic programming are still valid if
the functors and predicate symbols of the language overlap. Of course. in that,
case, there is, in general, no way to distinguish well-formed formulas from terms.
They as well have a nonempty intersection. However, this causes no problem in t,he
definition of preinterpretations, variable and term assignments, and interpretations.
It is clear, however, that a same syntactical object can be both term and formula and
can therefore be given two different meanings, one under the preinterpretat,ion and
variable assignment, the other under the corresponding interpretation and variable
assignment. This causes no confusion on the level of truth assignment t-o well-
formed formulas under an interpretation and a variable assignment. This definition
performs a complete parsing of the well-formed formulas, making sure that, the
appropriate assignments are applied for each syntactic substructure. In particular.
it should be noted that no paradoxes can be formulated in these languages, since
each formula obtains a unique truth value under every interpretation and variable
assignment.

On the level of declarative logic program semantics, the main results both for
definite programs and for (weakly) stratified normal programs remain valid in t,he
extended languages. Thus, the amalgamated programs we aim to study can be given
a unique semantics. Below, we demonstrate that it is also a sensible semantics.

74 B. MARTENS AND D. DE SCHREYE

6.2. Amalgamated Vanilla Metaprograms

From here on, throughout the rest of the paper, functorizations will always contain
exactly the same symbols as their corresponding sets of predicate symbols. This
leads to an increased flexibility in considering metaprograms with several layers. In
fact, as shown in Section 6.3, we can now deal with an unlimited amount of met-
alayers. However, we first briefly consider a completely straightforward extension:
Including the object program in the resulting metaprogram.

Definition 6.1. Let P be a normal program and Mp its associated vanilla metapro-
gram (see Definition 4.3). Then we call the textual combination P + Mp of P
and Mp the amalgamated vanilla metaprogram associated with P.

Notice that fIp+~,, is determined by:

?? RP+Mp = Rp U {solve, clause}.

?? 3p+hl,> =3pURpU{&,7}.

?? CP+M,J = Cp U {empty}.

We immediately have the following:

UP+M,> = uMp.

The semantic properties of P + Mp are, of course, straightforward variants of
those obtained above for Mp. First, we have the following:

Proposition 6.1. Let P be a stratified program. Then P + Mp, its associated amal-
gamated vanilla metaprogram, is weakly stratified.

PROOF. For the construction in Proposition 3.2, we can first consider the strata
of P and then continue as in the proof of Theorem 4.1. 0

This enables us to formulate the next theorem:

Theorem 6.1. Let P be a stratified, language independent program, Mp its vanilla,
and P + Mp its amalgamated vanilla metaprogram. Let Hp, HM~, and HP+M~
denote their (weakly) perfect Herbrand models. Then the following holds for every
p/r E Rp :

tJz E i&M,, : solve(p(t)) E HP+M,, * P(t) E HP+M~,

vt E U;;+M,, : solve(p(?)) E HP+M~ w ? E Ub&p(?) E Hp,

‘dt E U;+Mp : solve(t) E HP+,+J~ W t E UMr&sotve(t) E HM~.

PROOF. Obvious from Definition 6.1 and Theorem 4.2. ??

Naturally, adapted versions of Corollary 4.1 and Proposition 4.2 also hold.
Considering extended amalgamated metaprograms is likewise straightforward. We

will not do this explicitly and only illustrate by an example the extra programming
power one can gain in this context.

NONGROUND METAPROGRAMMING SEMANTICS 75

Example 6.1. In applications based on the proof tree recording program from Ex-
ample 5.1, it may be the case that users are not interested in branches for
particular predicates. To reflect this, clauses of the form

solve&(z), some-info) t p(x)

can be added (combined with extra measures to avoid also using the standard
clause for these cases).

6.3. Meta2-Programs

In this section, we consider metaprograms that include clause-information for the
A&p-clauses themselves, thus allowing the use of an unlimited amount of metalay-
ers. Programming of this kind is relevant in, e.g., the contexts of reasoning about
reasoning (see, e.g., [26]) and p roof-plan construction and manipulation (see, e.g.,
1261).

We start with a formal definition.

Definition 6.2. Let P be a normal program. Then MS, the van.illa meta pro-
gram associated with P, is the program M (see Definition 4.2) together with the
following clause:

clause(clause(z, y), empty) + clause(z, y)

and a fact of the form

(*)

clause(A, . &B& . &4’& .) +

for every clause A + . , B!...,notC;..inPorMandafactoftheform

clause(A, empty) +

for every fact A + in P or M

Notice that this definition essentially adds to the vanilla metaprogram clause
facts for the four solve clauses in M and for every clause fact. An actual textual
execution of the latter intention would, however, demand the addition of an infinite
amount of clause facts. Indeed, we do not only want clause facts for the clauses
in P and M and the clause facts in Mp, but also for the clause facts about these
clause facts, etc. Rule (*) in Definition 6.2 covers all the “facts about facts” cases.
Definition 6.2 implies that CM;, is determined by:

0 R M:, = {solve, clause}.
0 _TM;, = 3p U Rp U {solve, clause, &, 1).
0 CM;, = Cp U {empty}.

It follows that Cp # 8 + Up c UM;.

The proof of the following theorem is a straightforward adaptation of the one
for Theorem 4.1.

Theorem 6.2. Let P be a stratified program. Then MS, the vanilla metal? program
associated with P, is weakly stratijied.

76 B. MARTENS AND D. DE SCHREYE

PROOF. Suppose that P’, . . , P” is a stratification of P. To see that i’@ is
indeed weakly stratified, it suffices to take the sets Vi in the construction described
in Proposition 3.2 as follows:

0 VI = {clause(tl,tz) 1 t1,t2 E UMy,}.

?? V2 = {solve(t) 1 t E T’} with

T1 = {p(X) Ip/nE P’J E?YJ$&,}

u {t1&t2 I t1, t2 E T1)

u(m) I.flnEFP,t Eq&}

u CMp

u {clause(tl, t2) 1 tl, t2 E UM;}

U{solve(t) I t E T’}.

?? For 3 I: i 5 k + 1, V, = {solve(t) 1 t E 7--l} with

rz--l = {p(t) 1 p/n E Pi-l, t E V&,}

u tl&t2 I t1,t2 E u
i

73 and either tl or t2 E F1
J<i-1 i

u {‘t I t E +“}

U {solve(t) I t E 7%-l}.

?? For k + 1 < i, V, = {solve(t) I t E +-l} with

7 z-1 = t18Lt2 I t1,t2 E u
{

rj and either tl or t2 E ~-~“-l
jsi-1

u {‘t I t E +2)

U{solwe(t) I t E ~~-l}. 0

At least part of the following theorem will by now no longer come as a surprise.

Theorem 6.3. Let P be a stratified, language independent program and MS its
vanilla meta program. Let HP denote the perfect Herbrand model of P and let
HM; be the weakly perfect Herbrand model of Ms. Then the following holds:

vt E uq : solve(solve(t)) E HM;, @ solve(t) E HM;.

Moreover, the following holds for every p/r E Rp:

v’t E lJj$: solwe(p(1)) E HM:, *
P

2 E U$ 8~ p(2) E HP.

PROOF. The proof of the second equivalence is analogous to the proof of Theorem
4.2. To prove the first, we discern between different possibilities for the structure
of t.

NONGROUND METAPROGRAMMING SEMANTICS 17

?? t = empty. From Definition 6.2, it clearly follows that both solve (solve(empty))
and solve(empty) are in HM;,

?? t = tl&ta and suppose the equivalence holds for tr and t2. Then we have:

solwe(solwe(t)) E H,q

H 3y clause(solve(ti&t2), y) and solve(y) E H-b!:,

++ solve(solve(tr)&solve(Lz)) E HM;,

G+ solve(solve(tr)) and solve(solve(t2)) E HM:,

@ solve(tl) and solve(t2) E HAI:,

w solve(tl&&) E HM;,

?? t = +’ and suppose the equivalence holds for t’. Then we have:

solve(solve(t)) E HM:,

H 3y clause(solve(d’), y) and solve(y) E Hbf:,

ti solve(ysolve(t’)) E Hnp,

Ed solve(solve(t’)) $ HM:,

‘S solve(f) 6 HM;

@ solve(+‘) E HMY,.

. Finally, we deal with the remaining cases.

solve(solve(t)) E HM;,

w 3y clause(solve(t),y) and solve(y) E HM~>

ti 3y’solve(cluuse(t, y’))&solve(y’)) E H,q

@ 3y’solve(clazlse(t, y’)) and solve(solve(y’)) E HA{;,

@ Sly’, y”clause(chse(t, y’), y”)? solve(y”)

and solve(solve(y’)) E HM;,

H 3y’cluuse(t, y’) and solve(solve(y’)) E HM:,.

Now suppose t E 7%. Then we can use induction on the level at which
the TL,+~- operator derives solve(solve(t)). Indeed, solue(solve(y’)) will be
derived at a lower level, and therefore we have:

(j 3y’cluuse(t, y’) and solve(y’) E Hq

@ solve(t) E HM:,. 0

Theorem 6.3 shows that vanilla meta programs have a sensible Herbrand seman-
tics, just like plain vanilla metaprograms. Notice that the language independence
of P is not used in the proof of the first equivalence.

It is obvious that Corollary 4.1 can be rephrased for meta programs. and we
also have the following:

78 B. MARTENS AND D. DE SCHREYE

Corollary 6.1. Let MS be the vanilla metal? program associated with a stratified
object program P. Let HM; denote its weakly perfect Herbrand model. Then the
following holds:

vt E u,z :
F

solwe(Tsolve(t)) E Hhl; w solve(t) # HM;.

PROOF. Immediate from Definition 6.2 and the first equivalence in Theorem 6.3.
0

Various amalgamated and/or extended meta programs can be treated. We will
just point out one interesting further step it is possible to take. Indeed, we can
consider meta programs in which the “object” clauses contain metacalls. It is
clear that we can in such cases no longer discern between an object level and a
metalevel. Results similar to what we obtained before make no sense, but we can
state the following proposition:

Proposition 6.2. Let P be a stratified program and let P+ MS be its amalgamated
vanilla meta program. Let PM be a program textually identical to P + MS,
except that an arbitrary number of atoms A in the bodies of clauses in the P part
of it have been replaced by solve(A). Then the following holds:

H P
P+M2 = HPM

PROOF. (Sketch) First, both P + Mj$ and PM can be shown to be weakly strat-
ified. For PM,p(t) and solve(p(t)) t a oms of course have to be taken together in
the same stratum. Moreover, the same can be done in the dynamic stratification
of P + M$. A proof through induction can then be produced to show that every
layer in one program has the same least Herbrand model as its corresponding layer
in the other program. 0

Notice that language independence is not immediately relevant here, since P +
MS and PM have identical underlying languages.

Example 6.2. In this framework, we can address interesting examples from [5].
Consider, e.g., the following clause, telling us that a person is innocent when he
is not found guilty:

innocent(x) +- person(x), not solve(guilty(x)).

Of course, such possibilities only become really interesting when using extended
metainterpreters, involving, e.g., an extra solve argument limiting the resources
available for proving a person’s guilt. Results similar to those in Section 5, but
now pertaining to the relationship between PM-like programs and their extended
versions, can be stated and proved.

Further extensions are possible, but we believe that the above sufficiently illus-
trates the flexibility, elegance, and power of our approach.

NONGROUND METAPROGRAMMING SEMANTICS 19

Finally, Examples 6.1 and 6.2 indicate how the amalgamated metaprograms con-
sidered in this section, provide a basis for incorporating reflection,. iUore comments
and references on this subject can be found in [31].

7. S-SEMANTICS FOR METAINTERPRETERS

7.1. Introduction

We believe that in many applications, the conditions we imposed on the ol)ject
programs in the past few sections are very naturally satisfied. However. it is a
fact that our basic results no longer hold for classes of object programs c,onsitl-
erably surpassing the limitation of language independence. In spite of thr: above
expressed belief, this can be regarded as a sornewhat annoying limitation. Indeed,
the actual practice of metaprogramming reaches beyond this boundary, without
experiencing much trouble. The underlying reason for this phenomenon is the fact,
that least/(weakly) perfect Herbrand semantics does not really accurately reflect
the operational behavior of many logic programs. Indeed, Herbrand models con-
tain only ground atoms, while logic program execution often produces norrgroun,d
answer substitutions.

In [15] and [lS], nonground Herbrand models are introduced to bridge the gap
between declarative semantics and operational behavior. In this section, WC will
show that many of our results can be generalized beyond language independence
in a context of the so-called S-semantics. However; since currently S-semantics is
only fully developed for definite programs, this whole section is restricted to definite
object and metaprograms.

7.2. S-Semantics

We first recapitulate some relevant basic notions and results concerning the S-
semantics for definite logic programs, as it was introduce in [15] and (161.

For atoms A and A’, we define A 5 A’ (A is more general than A’) iff there
exists a substitution 0 such that A0 = A’. The relation < is a preorder. Let KZ he
the associated equivalence relation (renaming). (Similarly for terms.) Then we can
define the following.

Definition 7.1. Let P be a definite program with underlying language Cr. Then
its S-Herbrand universe Up is the quotient set of all terms in Lp with respect
to %.

So, U$ basically contains all possible terms, not only ground ones. Notice, how-
ever, that terms which are renamings of each other are considered to be one and
the same element of Up. The following definition similarly extends the concept of
Herbrand base.

Definition 7.2. Let P be a definite program with underlying language Cp. Then
its S-Herbrand base Bs is the quotient set of all atoms in Cp with respect to =:.

We can now extend the notions of interpretation, truth, and model

80 B. MARTENS AND D. DE SCHREYE

Definition 7.3. Let P be a definite program. Any subset Is of Bc is called an
S-Herbrand interpretation of P.

Definition 7.4. Let P be a definite program and I$ an S-Herbrand interpretation
of P.

?? A (possibly nonground) atom A in Cp is S-true in I: iff there exists an atom
A’, such that (the equivalence class of) A’ belongs to 1; and A’ 5 A.

?? A definite clause A +- B1, . . , B, in Cp is S-true in I$ iff for every B{ , . . , BL
belonging to 1:, if there exists a most general unifier B = mgu((Bi, . . , Bd),
(Bl, . . . , B,)), then A8 belongs to 15.

Definition 7.5. Let I; be an S-Herbrand interpretation of a definite program P.
I: is an S-Herbrand model of P iff every clause of P is S-true in I:.

It is clear that S-Herbrand interpretations and models contain nonground atoms.
Notice that the notion of S-truth is defined differently for atoms and for facts (i.e.,
clauses with no literals in the body). The reason for demanding A0 E I:, instead
of A0 S-true in 1$, is the wish to attach a different semantics to programs such as
P2 and P3 in Example 7.1 below. Definitions 7.3 to 7.5 are taken from [15]. In [16],
a more elegant, but also slightly more elaborate approach leads to the same results.

On the set of S-Herbrand interpretations of a given program, we impose an
ordering through set inclusion, just as in the case of “ordinary” ground Herbrand
interpretations. We can then include the following result from [15].

Theorem 7.1. For every definite logic program P, there is a unique least S-Herbrand
model H;.

We will consider this least S-Herbrand model of a definite program P as the
description of its S-semantics.

A fixpoint characterization of the least S-Herbrand model is possible.

Definition 7.6. Let P be a definite program. The mapping Tp on the set of S-
Herbrand interpretations, associated with P, is defined as

Tc(Is) = {A’ E Bs 1 3A + Bl,. . , B, in P, 3Bi,. . , BA E I:,

38 = mgu((Bi , . . . , BA), (Bl, . . . , Bn)), and A’ = AB}.

The following theorem can now be included from [15]. It provides the desired
least fixpoint characterization of Hp.

Theorem 7.2. For every definite program P,

H; = lfp(T,) = u T;” (0)(= T; 1‘ w).
nEw

Finally, it can be pointed out that the least S-Herbrand model of a program
exactly characterizes computed answer substitutions for completely uninstantiated

NONGROUND METAPROGRAMMING SEMANTICS 81

queries with respect to this program. We refer to [15] and/or [16] for a full formal
development with soundness and completeness results.

We conclude this brief introduction to S-semantics with a few simple examples
to illustrate the concept of least S-Herbrand model.

Example 7.1

PI : p(a) +

H& = {p(a)),
Pz : P(X) +

HZ2 = {P(X)),
P3 : P(X) +

p(a) +.

H& = {P(~),P(~)),
P4 : P(X) + (l(z)

4(a) +,

H& = {p(a), 4(a)),
Ps : P(X> y) + 4(x)

4(a) +>

H& = {p(a, z), 4(a)).

Notice that * (see Section 2) does not show up in HP;‘. Indeed, Definition 7.6 and
Theorem 7.2 show that atoms in the least S-Herbrand model of a program without
contants do not contain any constants either. In particular, the special constant
*, added to the underlying language, plays no role in least S-Herbrand semantics
although it does of course occur in the S-Herbrand universe of such programs.

7.3. Vanilla Metainterpreters

As pointed out above, this section is about definite programs. For clarity and
completeness, we include the definition of a definite program’s vanilla metaprogram
below. We leave out the “d”, used in similar circumstances in Section 5.1, since
in the context of the present section, no confusion with normal metaprograms is
possible. Finally, we remind the reader of the fact that we use functorizations which
are identical to their associated sets of predicate symbols.

Definition 7.7. The following definite program M is called vanilla metainterpreter:

solue(empty) t

solve(z&y) +- solve(z), solve(y)

solve(z) t clause(z, y)> solve(y).

Definition 7.8. Let P be a definite program. Then Mp, the vanilla metaprogram
associated with P, is the definite program consisting of M together with a fact

82 B. MARTENS AND D. DE SCHREYE

of the form
clause(A, Bl&. . &B,) +

for every clause A t B1, , B, in P and a fact of the form

clause(A, empty) +

for every fact A +- in P.

We have:

Proposition 7.1. Let P be a definite program. with Cp # 8 and Alp its vanilla
metaprogram. Then Up c Us,,.

PROOF. Obvious from the definitions. 0

Just like before, * precludes a generalization of Proposition 7.1 to all definite ob-
ject programs. However, our observation above guarantees the absence of problems
with * when considering the least S-Herbrand model of programs where Cp = 8
and their metaprograms.

We are now in a position to start proving the main result of this section. We set
out with the following two lemmas.

Lemma 7.1. Let P be a definite program and let Mp be its vanilla metaprogram.
Then the following holds for every p/r E Rp:

V’tEU:‘,VnEN: p(t)ETpS?n

+ 3m E N : solve(p(2)) E TsI, 7 m.

PROOF. The proof is through induction on n. The base case (n = 0; T$! 1‘ 0 = 8)
is trivially satisfied. Now suppose that p(2) E T: t n, n > 0. Then there must
beatleastoneclauseAtB1,...,B,,(k>O)inPsuchthat~C1,...,CkETpT
(n - l), 30 = mgu((G, . ,Ck), (BI, , &)), and p(%) = AB. Consider first the
case that we have one with k = 0. In other words, p(f) + is a fact in P. In that
case, Definition 7.8 immediately implies that salve(p(2)) E Ts,, 1‘ 2.

Suppose now k > 1. The induction hypothesis guarantees for every C, the
existence of an m, E lV such that solve(C,) E Tz,, t m,. Let mm denote the
maximum of these mL. This means that Vl < i 5 k : solve(C,) E Tc,, T mm. In
particular, solwe E T,$,, t mm. Moreover, for any 1 < 1 < k>

solve(Cl+l& . &Ck) E T,$,, t (mm + k - 1 - 1)

implies
solve(Cl < Cl+l&. .. &Ck) E Tf{,, r (mm + k - 1).

It follows (induction on 1) that

‘dl<l<k: solue(C~&~~~&C~) ET;,, t(mmfk-1).

In particular,
solve(Cl& . &Ck) E Tz,, t (mm + k - 1).

NONGROUND METAPROGRAMMING SEMANTICS 83

Since we also know that

. rlause(A, && &Bk) E ThsI,, j’ 1,
?? 0 = mp((C1, ” , C,), (B1> ” , Bk)),
. p(t) = AB>

it follows that solve(p(2)) E T.ff,, T (mm I k). o

Lemma 7.2. Let P be a definite program and let Up be zts vn~71dln n~~ettrprogram.

Tla~n th,e following holds for, every p/r t ‘R.p:

V’t E iY~;,,,‘ti~r~ E N : solu~(p(t)) E T;;;,,, 7‘ II

=+ i E Uj?’ Elm, t N : p(i) E Tp" t in.

PROOF. The proof proceeds through an induction on II. The base case (/L =
0; I’zl,, T 0 = 8) is trivially satisfied. Suppose that .solve(p(1)) E Tl$,, ‘/ II. n > 0.
Then either there is a fact clazLse(p(1), empty) + in Mp or this is not, t,lie case.
Suppose first there is. Then there must be a fact I,(1) + in P and the rcsult-
follows. If there is no such clause fact in Alp, then the following must, 1x7 true:

imd solue(p(t)) = soluc(~~)8.

From the last point, it follows that if c = VHJU ((L?,& “. &Bk). (Cl& Ml~)).
thrn p(3) = Aa. Furthermore, the first, point implies the presence of ii clause
A +- BI. ~ Bk in P and the second can only he true if

Vl < i 5 k, 372, < n E N : sol’!,Y(c,) E T,s,,, * ?I.,

Tllro~lgll the induction hypothesis, we obt,ain

Vl 5 i 5 k, 3m, E N : C, E 2’: T rll, k c t r?-,2’ .

where t, is the tuple of arguments appearin, m in the atom C, and 7’, is the arit,?; of
its predicate. The desired result now follows. 0

Our main result on the S-xmantics of vanilla Iiietirint,erpreter‘s is cxl)rcsstYl IW
tlic> following theorem.

‘I’hPorrm 7.3. Let P be a definite program and let l\Ip br: its vanilla mctaprwgram.
Le,t Hs an.d H&,, denote the least S-Hu,brand rrrod~l of I’ and Mp. r~(~spectively.
?‘II.P~ the followkg holds fo,r cveq p/r E Rp :

PROOF’. The theorem follows immediately from Lc~nrnas 7.1 and 7.2. n

84 B. MARTENS AND D.DE SCHREYE

When we compare this theorem with Theorem 4.2, we first of all notice that
it is restricted to definite object and metaprograms. However, we conjecture that
this limitation follows from the current state of S-semantics and is not inherent
to metaprogramming. We briefly return to this issue at the end of this section.
More important is the absence of the language independence condition. Indeed,
Theorem 7.3 shows that there is a sensible correspondence between the S-semantics
of any definite object program and its vanilla metaprogram. Therefore, this theorem
can be regarded as a formal confirmation that this kind of programming gives
on practical problems, not even for programs that are not language independent.
Notice, by the way, that Theorem 7.3 also generalizes Proposition 4.2. Indeed, as
indicated above, S-semantics allows a more elegant treatment of the Cp = 0 case
than classical ground Herbrand semantics.

7.4. Extended Metainterpreters

Having established Theorem 7.3, the next question that comes to mind is: Can
we similarly generalize Proposition 5.1? Contrary to our initial expectations, this
question has to be answered negatively.

The definitions of definite extended metainterpreters and metaprograms were
already given in Section 5.1. We will not repeat them here and simply refer to
Definitions 5.1 and 5.2. Now, consider the following example.

Example 7.2.

P: p(x) +-l
H; = {p(x)),
Ep: solve(empty) +-

solve(x&y) t solve(x), solve(y)
solve(x) +- clause(x, y), solve(y), inst(x)
clause(p(x), empty) +
inst(p(a)) +.

It is easy to see that solve(p(a)) E Hi,,.
The source of the problem is clearly the fact that answers might become further

instantiated than is the case in the object program. Since the least S-Herbrand
model represents the most general answer substitutions, this means that a straight-
forward generalization of Proposition 5.1 is impossible.

However, we can prove a more modest variant of Proposition 5.1.
We first prove the following:

Proposition 7.2. Let P be a definite program. Let HP denote its least Herbrand and
H; its least S-Herbrand model, respectively. Then P is language independent Zff
HP = H;.

PROOF. The proposition follows from Definition 7.6, Theorem 7.2, and Proposi-
tion 2.2 via a straightforward induction proof. 0

Notice that Hp = H; implies that H: contains only ground atoms. It follows
that:

NONGROUND METAPROGRAMMING SEMANTICS 85

Lemma 7.3. Let P be a definite, language independent program and Mp ats asso-
ciated vanilla metaprogram. Let H&[, denote the least S-Herbrand model of Alp.
Then th.e following holds for every p/r g Rp :

‘d2 E UE;, : solue(p(t)) E H$,, + t is ground.

PROOF. The lemma follows from Theorem 7.3 and Proposition 7.2 7

1\;i: rleed a second lemma:

Lemma 7.4. Let P be a definite program, Mp the vanilla, and Ep a,n fended
metaprogram associated with P. Then the following holds:

t’t E Vi,, : (32 E Ug): : solve(t,$ E Hg,,)

:+ 38,3solve(t’) E H$,, : t = t’B.

PROOF. Obvious from the definitions. 0

This allows us to prove the following variant of Proposition 5.1:

Proposition 7.3. Let P be a definite, language independent program and Ep an
E-extended metaprogram associated with P. Let H$ and Hi,, denote the least
S-Herbrand model of P and Ep, respectively. Then the ,following holds for eWI?J

p/1. E Rp :

‘dlt E CJzi : (EliaU$;: : solve(p(2),Ts) E H,&)

=+ ~EU;‘&~(~)EH;.

PROOF. From Lemmas 7.3 and 7.4, we obtain that solve(p(7).s) E Hz,, implies
solve(p(?)) E HcI, (and therefore ? E Uz;,). Th e result now follows from t,heorem

Example 7.2 shows that the S-semantics results for vanilla metaprograms can not,
immediately be carried over to extended metaprograms, and, indeed, in practice.
logic programming with extended metaprograms can generate unwanted answer
substitutions. Proposition 7.3 shows that this is not the case for language inde-
pendent object programs. It is of course possible to investigate conditions on the
metaprogram which would ensure that Proposition 7.3 holds for any definite object
program. It is not even very difficult to conjecture some such conditions. (See the
comment concluding Section 5.1.) However, we do not wish to pursue this topic in
the present paper.

7.5. Concluding Remarks

A treatment of amalgamated metaprograms and meta programs in the context,
of S-semantics is straightforward and not particularly enlightening. All the results

86 B. MARTENS AND D. DE SCHREYE

from Section 6 can be generalized in the expected way. We will neither state nor
prove them explicitly.

Concerning the limitation to definite programs, we can remark that [44] extends
[15] and [16], drawing from work on constructive negation, and in this way perhaps
provides a setting for addressing normal object and metaprograms.

Finally, it should be noted that [28] independently extended the result for vanilla
metaprograms of language independent programs in [lo] to all definite object pro-
grams and their vanilla metaprograms in the context of S-semantics. Moreover, a
sizeable metaprogramming application is sketched and its semantics discussed in
the proposed framework.

8. DISCUSSION AND SOME CLOSELY RELATED WORK

This section contains some further comments on our approach to metasemantics
and its results, mainly through a discussion of some related work. Since there is a
vast literature on metalogic, its semantics, possible applications, advantages, and
disadvantages, we do not strive for completeness. Instead, we only consider some
closely related papers within logic programming.

Let us first consider [23]. In the first part of that paper, it is shown that through
the use of appropriate tgpping, vanilla metaprogams can be given a suitable declara-
tive (the well-known Clark’s completion semantics is used) and procedural seman-
tics. Moreover, in a second part, a ground representation for object level terms at
the metalevel is considered, and it is shown how a number of problematic Prolog
built-ins (static and of the type called “first order, ” i.e., not referring to clauses or
goals, in [3]) can be given a declarative meaning in this setting.

Addressing the latter topic first, it should be noted that such Prolog metapredi-
cates, of which var/l and nonvar/l are prototypical examples, are not included in
our language. This certainly puts some limitation on the obtained expressiveness.
Observe, however, that in the typed nonground representation proposed in [23], no
alternative for var/l was inroduced either and that the declarative var/l predicate
introduced in the ground representation approach provides no direct support for the
sort of functionalities (e.g., control and coroutining facilities) that the var/l predi-
cate in Prolog is typically used for. Recently, [3] proposed a declarative semantics
for such predicates. We conjecture that if one so desires, our basic methodology can
be adapted to the semantics described there, thus enabling the inclusion of such
built-ins in our language. A (perhaps superior) alternative for providing the latter
kind of facilities are delay control annotations as in Giidel.

For the assert/l and retract/l Prolog built-in predicates, the solution of [22], to
represent dynamic theories as terms in the metaprogram, can as well be applied
in our approach. However, this requires special care with variable bindings, and
leads to some inconveniences in the context of a ground Herbrand model approach
to semantics. A thorough discussion of the problems related to these predicates is
given in [22]. They are also treated in [41], which is discussed below. As a final
remark about Prolog built-ins, we would like to mention that our use of overloading
largely eliminates the need for a call/l predicate, as Example 6.1 illustrates.

Next, observe that the condition of range restriction, which is the practical,
verifiable, sufficient condition for language independence our approach was mostly
designed for, is strongly related to typing. Indeed, typing can, in principle, be

NONGROUND METAPROGRAMMING SEMANTICS x7

converted into additional atoms that are added in the bodies of clauses. expressing
the range of each variable. See, e.g., [14] and [29]. In t,his context, it is interesting to
not,e the apparent duality between range restriction at, the object, level and t,yping
at the metalevel. If one “hardwires” types into the code of the object program
through range restriction. typing (or range rest,riction) at the metalevel is no longer
required for a sensible declarative semantics. [18] cm also be mentioned here. It,
presents a program transformation technique that enables us to minimize ruri-time
t,ype checking is systems which represent types as (unary) predicates. thus largely
eliminating one of the main advantages types might offer in comparison with rtanges.

Finally. [23] does not address amalgamation, and Godel (see [21]), t,he progran-
ming language whose extensive metaprogrammin g facilities are largely based upou
the foundations laid out in [23] and [22] 1 does not allow it. While dealing with amal-
gamut,ed programs of the kind addressed in Section 6.2 seems relatively st,raight-
forward. a generalization of the typed approach to meta programs is probably not,
immediat,e.

With respect to the extension to amalgamated programs, we should point out
that our use of overloading is strongly related to the logic proposed in [37]. Indeed~
in his analysis of the problems connected with reference and modality. Richards
considers logical languages that contain their well-formed formulas as teuns. He
interprets these languages on specially devised models whose domains are a union
of t/lr constants and the sentences (i.e., closed formulas) in the language.

Kalsbeek [25] recently proposed a variant of Richards’ logic as a suitable basis
for studying the semantics of metaprograms. She allows any fo7mula to bc CI tuun.
in the language and uses (Herbrand) interpret,ations with arbi,trury closed terms in
the domain. In the logic framework thus obtained, soundness and completeness
of definite vanilla metaprograms with respect, to their definite object program are
proved, restricted to terms in the object level language.

Jiang [24] proposes an even more ambivalent language, also allowing terms as
forrr~~7dns. He shows that a number of interesting properties (Herbrand theorem,
completeness), lost in Richards’ logic, are recovered. Vanilla metaprograms are
considered, leading to similar results as obtained by others. The framework is,
however; more powerful and particularly suitable for addressing quant,ifietl object
level statements and full amalgamation. To this end, a sophisticated treatment
of variables, not syntactically distinguishing bet,ween variables and their names. is
proposed. This allows to consider metatheories dealing with full first order object
st,at,ements. However, at the time of writing, this work is not yet in a finalized
stat,?. Particularly the treatment of variables seems to require further study.

In summary, our technique of overloading function and predicate symbols is
probably less powerful than approaches using more fully ambivalent syntax. but
it requires no modification of the familiar not,ion of Herbrand interprrtat,ions and
models.

A comparison with the work in [9] basically leads to the same conclusion. The
semantic techniques proposed there provide a first order semantics for a class of
programming constructs that, includes the kind of amalgamation we consider, but
significantly surpasses it. Clauses like sol Ue(x) c :r are allowed, as well as higher
order functions, generic predicate definitions, etc. The basic characteristic of HiLog
logic is the fact that “terms may represent individuals, functions, predicates, and
atomic formulas in different contexts.” However, the semantics required to support
this is a less immediate extension of the common first order logic semantics.

88 B. MARTENS AND D. DE SCHREYE

Finally, for definite program, a powerful framework is proposed in [41]. It pro-
vides quantification of object level formulas in metalevel statements, as well as a
fully developed naming mechanism. However, the price to be paid for this is a non-
trivial modification of the standard Herbrand semantics for logic programs. How
this approach generalizes to programs with negation is also not immediately clear.

We conclude that our approach is a good compromise between complicating se-
mantics and enhancing programming power. If one considerably wants to extend
the latter, e.g., by allowing full quantification in named object-level statements, a
more complex semantics is probably inevitable.

9. CONCLUSION

In this paper. we have considered untyped nonground metaprograms. We have
studied rather extensively the semantic properties of vanilla metainterpreters of this
kind, and we have looked at interesting extensions and variants involving (a limited
form of) amalgamation. It turned out that in most of these cases, least or weakly
perfect Herbrand semantics is well-behaved for definite (respectively stratified) lan-
guage independent object programs (and if not, then at least for ran.ge restricted
ones; see Proposition 5.3). This is an interesting result since these semantics are
widely accepted as good declarative semantics for logic programs. Moreover, we
believe that our methodology can often also be applied when considering untyped,
nonground metaprograms that do not immediately fall within one of the categories
we explicitly considered (see [31] for further comments and references). We have
also shown how, for nonextended metaprograms, the restriction of language inde-
pendence can be lifted in the context of a declarative semantics that more closely
reflects the procedural behavior of logic programs. These results explain why the
language independence condition almost never surfaces in logic programming prac-
tice.

Along the way, we have, moreover, shown that vanilla metaprograms, as well
as their variants, associated with stratified object programs are weakly stratified.
We have conjectured that this result can be generalized to weakly stratified object
programs. Our work, therefore, seems to provide evidence in favor of the view that
weak stratification is a much more natural and useful generalization of stratification
than local stratification appears to be. In that context, Lemma 3.1 and its proof
in the Appendix are interesting. Indeed, we conjecture that they provide the es-
sential ingredients for a completely general proof showing that a weakly stratified
program possesses a unique weakly perfect model, independent of the particular
(successful) “weak stratification” used to obtain it. In other words, Definition 3.7
can be reformulated to allow the use of nonmaximal layers as in Proposition 3.2.
An important issue from a practical point of view, and one that was, to the best of
our knowledge, not addressed before.

It seems to us that almost all realistic logic programs are at least weakly strati-
fied. Nevertheless, it can be a topic of further research to investigate whether our
results can be generalized in the context of a semantics that is able to deal with
any logic program. Well-founded semantics (see, e.g., [46]) is one such approach
which recently has gained popularity. It attaches to any logic program a (possibly
partial, three-valued) unique well-founded Herbrand model. If we want to recast
our results in this setting, the first step is of course a reformulation of the lan-

NONGROUND METAPROGRAMMING SEMANTICS 89

guage independence notion. This provides no fundamental difficulties, but some
care has to be taken since for most sensible programs, the negative information im-
plied (now explicitly incorporated in the well-founded model) does depend on the
language. So, one should only require stability of the positive information. Having
established this, a generalization of our results can be attempted. However, well-
founded semantics remains just one of various formalisms proposed as a semantics
for a.rbitrary normal logic programs. It might. therefore, be more worthwhile to
study metaprogram semantics in the context of a generic unifying semantic frame-
work such as provided in, e.g., [la]. By restricting ourselves to a class of programs
the semantics of which is the subject of little or no controversy, we have. in the
present work, taken a dual approach.

Ot.her possible topics for further research include the following:

?? A characterization of extended metaprograms that would allow more pow-
erful variants of Propositions 5.1, 5.3: and/or 7.3. The classification of en-
hancements of the vanilla metainterpreter presented in [39] can perhaps be a
starting point here.

0 An extension of Section 7 to normal programs.
?? A reformulation of our results in the context of a declarative semantics for

Prolog built-ins, as proposed in [3].
?? A study of object theories beyond the scope of normal logic programs, and

t,heir associated metaprograms.

APPENDIX: PROOF OF LEMMA 3.1

Throughout this Appendix, P will denote some normal program. Observe that, for
any normal program P, Grothnd(P) 1s a (possibly infinite, but countable) set of
ground clauses. It is then possible and convenient to associate a particular natural
number with each clause in Growzd(P). So, we will occasionally refer to a clause
in Ground(P) as being a couple (C, nc;), where no two clauses in Groulld(P) have
the same associated RC. In this way. we can in the construction in Proposition
3.2, always identify the unique clause in Ground(P) from which a clause in a
given P, is derived (through the deletion of true body literals): they have identical
labels. In the same way, correspondences between clauses in P, sets in two different
such constructions can be established. Finally. when we refer to some series VI;
below. we always mean a series of sets chosen to serve as V, sets in the context of the
construction in Proposition 3.2. We will occasionally use the notation V (or other
characters in a similar way) to denote such a series, and we will use superscripts to
distinguish P,. L,, H,, and HEI sets in different constructions. Observe that for any
series V, Pf’ = Ground(P), and also Bp;, = ,E?c;rolrnd(~) = Bp.

\Ve start with a fairly basic lemma:

Lemma A. 1. Let V = VI! be a series such that Pzv is defined. Let IVY =
{II<’ t W j there exists a, clause (C, 71~) i71 P2”}. Th,en:

?? ?? ? ? ? ? is monotonically decreasing.
. B pi 1. is monotonically decreasing. I

90 B. MARTENS AND D. DE SCHREYE

PROOF. In the construction in Proposition 3.2, each Pz”,l is obtained from Pi”
by:

1. Deleting some clauses.
2. Removing some literals from the remaining clauses.

Both statements above trivially follow. 0

Lemma A.1 enables the following definition:

Definition A. 1. Let V = VI, . . . be a series such that P,” is defined. Then for
each atom A E Bp\Bqv , we define the V-layer of A, Iv(A), to be the smallest
j (1 5 j < i) such that A $ B,v . 7+1

Notice that Iv(A) is well defined in the sense that it does not depend on i. In
particular, if V terminates successfully, then each A E BP has a unique associated
layer Iv(A).

The layer concept is interesting, since we can easily show:

Lemma A.2 Let A E Bp such that i = Iv(A). Then for any j # i such that
Ly is defined, there are no clauses with head A in Ly

PROOF. For j < i, A E B,v . .7+1
Therefore, A $ Vj, from which the result follows.

On the other hand, A # Bs”,,, so that the desired result for j > i follows from

Lemma A.1. 0

So, when a atom is “consumed” by a series, the unique definite program corre-
sponding to its layer is the only one that possibly contains clauses defining A. It is,
therefore, this program which decides whether A is in the resulting model (if any).

Another useful property of the layer concept is the following:

Lemma A.3. Let A E BP such that iv(A) = i. For any B E B~v, such that
B 5 A, we have Iv(B) = i.

PROOF. By the construction in Proposition 3.2, B E V,. Thus, B q! BP;, (which

exists since Iv(A) = i exists). Obviously, B E B,v, so that the result follows. 0

We can now prove a quite powerful result, basically establishing equality of truth
according to two different series for the same P.

Lemma A.4. Let V and W be two series such that Pi” and Pj” are defined. Let
A be an atom in Bp\(Bp,v U BP,“). Then:

PROOF. Notice that the result trivially holds if either i or j equals 1, since in that
case Bp\(Bqv U B pi) = 8. Suppose, therefore, that they are both bigger than 1.

I

NONGROUND METAPROGRAMMING SEMANTICS 91

It follows from Lemma A.2 that for any A E Bp\(Bq” U Bp,w),

So. it is sufficient to show that:

A 6 H’;(A) * A E fGww(A).
The proof proceeds through induction on iv(A) and lw(A).

We first comment on the structure of the induction proof, which is nonstandard.
Let us denote by Equi(k, 1) the formula

VA E Bp\(Bpv u B,w) :

(M-4) 5 k A b$! 5 U =+ (A E #v(,j * A E HlW,(A,)

Notice that, since for any A E Bp\(Bp ,v u Bp,w); (iv(A) 5 i - 1 A Iw(A) 5 J - 1)

trivially holds, we need to prove Equi(i - 1, j - 1). In order to achieve this, we will
show:

1. Equi(l,I), for all 1 < j - 1.
2. Equi(k - 1,1) A Equi(k,l - 1) + Equi(k,l), for all k < i - 1 and 1 5 j - 1.

From 1, due to symmetry, Equi(k, l), f or all k 5 i - 1, follows. Then, by repeatedly
applying 2, Equi(i - 1,j - 1) is implied by a finite conjunction of formulas of the
type Equi(l, I), 1 5 j - 1, and Equi(k, l), k 5 i - 1, which completes the proof.

The proof of1 is by induction on 1. For the base case, 1 = 1, A E Hy u A E HIW
follows immediately, because the subprograms of Ly and Lr on which A depends
are identical. This is due to the construction in Proposition 3.2, which ensures that:

?? L4/ and Ly contain all clauses of Ground(P) with head A.
?? VI and WI contain all atoms B with B < A.
?? Ly and Lr also contain all clauses of Ground(P) with such B’s as their

head.

Next, assume that Eqzli(1,l - 1) holds, with 1 5 j - 1. We prove Equi(1, 1). The
increment of Equi(1,l) over Equi(1,l - 1) is

VA E Bp\(Bpv u Bpw) : (Iv(A) = 1 A l,+,(A) = 1)
J

=+ (AEH~MAAH~~)

So, let A be an atom with Iv(A) = 1 and lw(A) = 1. From the way clauses are
transformed and/or deleted in the construction procedure, we obtain the following
correspondence between clauses with head A in Lr and Ly :

1. Every such clause (C, n) E Lr such that there is no clause (Cw, n) E Ly,
has a body with at least one atom in u mcl W,, but not in U m<l H,“.

92 B. MARTENS AND D. DE SCHREYE

2. There is a one-to-one correspondence between other clauses (A +- BV, n) E
Ly and (A + BW,n) E Ly, where BV is identical to BW except for the
possible occurrence of atoms in BV that are not in BW but in U m<lWm and
in U,,lH$.

We show by induction that

VA E Bp\(Bpv u Bpw) : (Iv(A) = 1 A lw(A) = 1)

ti 3m’: A E T+ T m’).

First, if A E TLy r 1, then Ly contains a fact (A +-,n). Only 2 is applicable
and, since the Ly clause can only have more body atoms than the corresponding
Ly clause, (A +, n) E LT, so that A E TLy t 1. Conversely, if A E TLy T 1,
then (A +,n) E Llw. Again, only 2 is applicable. Thus, Lr contains a clause
(A t Bv, n), where all atoms in B” are in U m<lWm and in U m<lHz. Let B
be such an atom. Since Lv(B) = 1 and Lw(B) < 1, we can apply the induction
hypothesis Equi(l,l - 1). It states that B E Hy @ B E HIEC,). However, since
BEU mtlHK, the right-hand side holds, so that B E Hy. Therefore, there exists
an mB such that B E TLy t mB. Taking mA = max({mB 1 B in B’}) +l, we get
A E TL,v T mA.

For the induction step and the left-to-right implication, let A E TL~ t m and
assume that this implication holds for all B E TLy T (m - 1). So, there exists a
clause (A + BV,n) E LI(, such that B E T,v r (m - l), for each B E BV.

First, we prove that (A + BV, n) must b: of type 2. Assume that it is of type
1. Then there exists a B in BV such that B E U,,~W,\ U m<l H,“. Clearly,
Iv(B) = 1 and lw(B) < 1, so that the induction hypothesis Equi(l,l - 1) applies.
So, B E Hy ++ B E H[z(,). However, since B E HlzCBj ti B E U,,lH$
and B +! Um<lHz, we obtain B # HF. This contradicts B E TLv T (m - 1).

So, (A t BV, n) is of type 2 and there exists a clause (A + B ‘W n) in Llw
containing a subset of the body atoms in BV. For each such atom, ‘B in BW,
B E TLy t (m - 1) holds. By the induction hypothesis, B E TLy T mg for some
mn. Taking mA = maX({mg) B in Bw}) + 1, we get A E TL,w t mA.

Finally, for the induction step on the right-to-left implication, let A E TLw T m
and assume that the implication holds for all B E TL,w t (m - 1). Again,’ there
exists a clause (A + BW, n) in Ly, such that B E TLp 1 (m - l), for all B in BW.

Only case 2 can apply. Thus there exists a clause (A +- BV, n) in Ly, identical to
(A t BW, n), except that it may contain some additional body atoms B, where
BEU m<lWm n u m<lHK. For the body atoms B which are both in BV and BW,
we can apply the right-to-left induction hypothesis: B E TLy T mB, for some mB.
For the atoms B not in BW, we again have Iv(B) = l,lw(B) < 1, and B E HILCBj.

So, we apply Equi(l,l - l), obtaining B E HIV, which means that B E TLy t mB,

for some mB. Again, mA = max({mB (B in Bv}) + 1 allows us to conclude the
proof.

Next, we prove the implication

Vk<i,Vl<j: Equi(k - 1,l) A Equi(k, 1 - 1) + Equi(k, 1).

NONGROUND METAPROGRAMMING SEMANTICS 93

The proof is completely similar to the previous step, except that more different
correspondence cases between clauses in LF and Llw can be distinguished. Let A
be an atom with Iv(A) = k and lw(A) = 1. F rom the way clauses are transformed
and/or deleted in the construction in Proposition 3.2, we can now distinguish the
following possible cases for clauses in LL or in Lj’% having A as their head:

1. Every such clause (Cv , n) E Lr such that there is no clause (C”, 1~) t Ly ,
contains at least one body atom B, such that B is in U m<lIVm. hut not in

u rn<J&$
Notice that this is less trivial than the corresponding statement for Ly and
LF’ above. Although it is clear that the clause (C, 71) in Ground(P) contains
at least one such body atom B, in (C”, n) t,his body atom could have been
removed. However, since Equi(k, I- 1) is given and since B $ u ,<lHz, we
have B $ U mikHK. Thus B has not been removed from (Cv: n,). Further-
more, Equi(k, 1 - 1) also implies that this atom B is not in Hr.

2. Every such clause (Cw, n) E Ly such that there is no clause (C”, 71) t Lz,
contains at least one atom B such that B is in U m<kvmr but not in U m<kHK.
(Here, we have used Equi(k - 1,1).) No w. Equi(k - 1,1) also implies that
B $ HIW.

3. There is a one-to-one correspondence between other clauses (A + Bv , rt) E
Lr and (A + BW, n) E Ly, where BV is identical to BW except that:

(a) BV might contian atoms not occurring in BW. All such atoms are in

(b) gGcl
Hz, but then also in Hz since Equi(k> 1 - 1) holds.

might contain atoms not, occurring in BV. All such atoms are in
Un<kHxr but then also in Hlw since Equi(k - 1,1) holds.

The proof again proceeds through induction, proving the statement

VA E Bp\(BpY u Bp,w) :

(Iv(A) = k A lW(A) = 1) 3 (3m : A E TLY 7 m

* 3m’ : A E TL,“’ T m’).

It, is very similar to the proof of the induction step for Equi(l, 1). The main differ-
ences are:

1. Due to symmetry, we only need to prove one of the implications.
2. We occasionally use Lemma A.3 to establish that any atom B occurring in

Ly (resp. Ly), on which A depends, also has Iv(B) = k(resp. lw(B) = 1).

We omit the details. 0

Let us now take a first look at the maximal choice series for some P and its
relationship with another successful series.

Lemma A.5 Let VI,. . . be a series such that the construction in Proposition 3.2
terminates successfully for P with resulting model HF. Let S1, be the maximal
ch,oice series for P. Then, for every i such that Pts is defined,

u Hf = HP” n (Bp\BpP).
jc2

94 B. MARTENS AND D. DE SCHREYE

PROOF. Let i be such that Pi” is defined. First, if A E Bps, then both A $
Uj<iH; and A $! Bp\Bp: are trivially satisfied. So, suppose that A $ BP;. Then
AEH+AEU. J<ly(~~+~HJv and, of course, A $ BP,v(,)+,. The result now
follows from Lemma A.4

”
13

We need one more lemma before we can actually complete the proof of Lemma
3.1.

Lemma A.6. Let V = VI,. . . be a series such that the construction in Proposi-
tion 3.2 terminates successfully for P with resulting model HF. Let S = 5’1, . . . be
the maximal choice series for P. Then, for every i such that Pi” is defined, one of
the following holds:

1. There is a j 5 i such that PJ$ = 8 and

u H: = H;s n (Bp\Bp_v).
k<i

2. Alternatively, P,” is defined and nonempty and the following both hold:

(a)

u @’ = u @‘n (BP\%+
k<i kia

(b) V(CS,nc) E P,” : 3(CV,nc) E P,“, where Cv is identical to Cs except
for the possible presence of extra body literals, with an atom in U k<isk,
which are satisfied in U k<iHt.

PROOF. Not surprisingly, the proof proceeds through induction on i. Again, the
base case (i = 1) is immediate (either Ground(P) = 0 and 1 holds or Ground(P) #
0 and 2 holds). So, let us prove the induction step. In other words, we assume
that the property is satisfied for every i < n. If P,” = 0, then Pi” is not defined
for i > n and we are done. Suppose, therefore, that P,” # 0. Then P,“+I is defined
and we have to show that the property holds for i = n + 1.

Now, if there is a j 5 n + 1 such that Pjs = 0, then it follows from Lemma A.4
that

VA E BP\B~;+~ : AEH;MAE u H;.
k<n+l

Moreover, obviously
‘dA E BP_“,~ :A$ u H[

k<n+l

and the result follows.
This leaves us with the case that P,” is defined and nonempty. We have to show

that also P,“++l is defined, and that 2(a) and 2(b) hold for i = n + 1 in case it is
nonempty.

0 We first show that p,” has at least one minimal component. Suppose that
this is not the c-. Then every atom in BP: is a member of some infinite

NONGROUND METAPROGRAMMING SEMANTICS 95

series of atoms Al, AZ,. . . such that Al > Aa > . . . Now, the clauses in
Ground(P) (for the atoms in BP:) that correspond to the clauses in P,”
might contain extra body literals whose atom is not in Bps and which are ”
satisfied according to U kcnHf. Lemma A.4 ensures that these literals can
never be falsified in the V-construction. So, the V-construction can delete
none of these clauses without first having an atom from BP: in a bottom
component of some Bpiv This, however, is not possible and therefore the V-
construction cannot terminate successfully, which contradicts the assumption
that it does.
Our next task is to show that L: is definite. Suppose that it is not. Then
there is a bottom component B of B p,~ containing at least one atom with

a nondefinite defining clause C in P, . ’ However, then, if any atom in B is
defined in terms of an atom not in B, B would not be a bottom component
of BP;. Therefore, all clauses in P,” with a head in B only contain literals
with an atom in B. Again, it follows that none of the corresponding clauses
in Ground(P) can be deleted by the V-construction without first having B
as part of some Vl. However, then also Lv would be nondefinite, which again
contradicts the assumption that V terminates successfully.
So, p:+i is indeed defined. Above, we have already dealt with the case that,
it is empty. Assume, therefore, that it is nonempty. We prove 2(a) and 2(b)
for i = n + 1.

We start with 2(b) and first show that V, n Bps & S,. Let A E V, TI BP;:. I!
We show that the subprogram of P,” on which A depends is either empty or
definite. In both cases, A does not depend negatively on any atom in BP:,
so that by definition, A E S,. If P,” contains no clause with A as its head, we
are done. Otherwise, let (A t BS, nc) E P,“. By the induction hypothesis
2(b), there exists a clause (A t B”, nc) E P,“, such that every literal in BS
is also in BV. Because A E V, and Lz is definite, (A +- B”, no) is definite
and so is (A +- BS, nc). It remains to be shown that for all other atoms
B E B,:, such that B 5 A, the same holds. Let B be such an atom. Using
induction hypothesis 2(b) again, B < A also holds in P,“: for any sequence
of clauses (C,“, nCk)k in P,“, establishing the dependency of A and B in P,“;
the corresponding sequence (C,“, nCk)k in P,” establishes the dependency in
P,“. Therefore, B E V, f’ B,:, and, by the same argument as used for A
above, the clauses in P,” with head B are definite. Thus, the subprogram of
P,” on which A depends is definite, and A E S,.
Next, we show that

qCS,nc) E P;+l : 3(CV,nc) E P,“+1.

Since it is given that

Y(F,nc) E P,” : 3(C”,nc) E P,“,

it suffices to prove that if a clause (C’, nc) E P,” is not pruned during
the construction of P,f+, from P,“, then neither is the corresponding clause
(Cs, nc) E P," pruned while constructing P,“++l from P,“.
Suppose that such a (C”, nc) E P,” is pruned. One possible cause is that
(C”,nc) E L,V. Since (Cs , nc) has the same head, say A, as (Cv, nc) and

96 B. MARTENS AND D. DE SCHREYE

A~V,nBp,byV;,nBp~~S,,wehaveA~S,. S~,(C~,nc)~L~and
is pruned too.
Alternatively, (C”, nc) E Pl\LK can be pruned because it contains a body
literal B, with atom Ba E V,, such that B is falsified in H,“. By induction
hypothesis 2(b), the only body literals of (C”, no) that do not occur in the
body of (C’, no) are satisfied in U k <,H,f. Furthermore, by Lemma A.4,

V’A E BP\(BP;+, u BP;+~) :

AE u H: tj A E u Hf.(*)
k<n+l k<n+l

so that B is not satisfied in U kcnHt and is a body literal of (C’, nc). Finally,
Ba E S”, because B” E V, n BP:, and B is falsified in Hf , because it is
falsified in H,” and (*) holds. Thus, (C’, no) would also be pruned in the
S-construction.
It remains to be proved that Cs and Cv are related as stated in 2(b). To see
this, let (Cs, nc) E P,“, (C”, nc) E P,“, (C”, nc) E Pz+I, and (C’“, no) E
P,“+l. We know that Cs and C” are related in the proper way. Moreover, Cls
is identical to Cs except for the possible removal of body literals with an atom
in 5’” which are satisfied in H,“. Additionally, Cl” is identical to C” except
for the possible removal of body literals with an atom in Vn which are satisfied
in H,“. The result now again follows from (*) and V, n Bp_s 5 S,, since we
obtain that no literal which occurs in the bodies of both Cs and C” can be
removed from the latter without likewise being removed from the former.

- Finally, we prove 2(a) for i = n + 1. First, 2(b) for i = n + 1 implies

BP;+~ C Bp,“tl.

Therefore, (*) can be rewritten as

VAEB~\B~V : AE u H: e AE u Ht. 7, + 1
kin+1 k<n+l

Moreover, from the definition of the construction in Proposition 3.2,

u KY r- (BP\“PY+*) = IJ HE

k<n+l k<n+l

so that 2(a) for i = n + 1 follows.

We can now complete the proof for Lemma 3.1:

Proof of lemma 3.1. First, it is clear that S will also terminate successfully.
Indeed, suppose there is some i such that Pi” = 8. Then case 2 in Lemma A.6 can
not hold for i, due to 2(b). Therefore, case 1 holds and S terminates successfully.
So, suppose Pi” # 8 for all i. If there is an i such that case 1 in Lemma A.6 holds,
we again obtain successful termination of S. When case 2 holds for every i, Pi’ is
defined for every i < w. However, since U I,uCH(Piv) = 0, 2(b) implies that also
rkwCH(Pf) = 0.

.
NONGROUND METAPROGRAMMING SEMANTICS 97

Next, Lemma A.5 implies that for every j such that Pf is defined, IJ kc,, H: C_

HF. It follows that Hs 2 HF. Similarly, Lemma A.6 guarantees that for every i
such that Pv is defined, U kclHl C H$ and we obtain HK C H;. Therefore. the
two modelstare equal. 0

We thank Antonio Brogi, Maurice Bruynooghe, Francois Bry, Michael Codish, Marc Denecker,
Wlodzimierz Drabent, Michael Gelfond, Pat Hill, Y.J. Jiang, Marianne Kalsbeek, Robert Kowal-
ski, John Lloyd, Rodney Topor, and Frank van Harmelen for interesting discussions and/or wm-
ments. We also greatly appreciated several helpful observations from anonymous referees. Finally.
we are obliged to Maurice Bruynooghe for suggesting the title of this paper.

REFERENCES

1.

2.

3.

4.

5.

9.

10.

11.

12.

13.

Abramson, H., and Rogers, M. H. (eds.), Meta-Programming in Logzc Pro,g7nmmzng,
Proceedings of Meta’88, MIT Press, Cambridge, MA, 1989.
Apt: K. R., Blair, H., and Walker, A., Towards a Theory of Declarative Knowledge,
in: J. Minker (ed.), Foundations of Deductive Databases and Logic P~agrammwq,
Morgan Kaufmann, Los Altos, CA, 1988, pp. 899148.
Apt, K R., Marchiori, E., and Palamidessi, C., A Theory of First-Order Built-In’s
of Prolog, in: H. Kirchner and G. Levi (eds.), Proceedings of the 3rd Internatronal
Conference on Algebraic and Logic Programming, Lecture Notes i71 Computer S’cre7m:

632, Springer, New York, 1992, pp. 69-83.
Bowen, K. A., Meta-Level Programming and Knowledge Representation, NPUJ CYW

e&ion Comput. 3(4):359-383 (1985).
Bowen, K. A., and Kowalski, R. A., Amalgamating Language and Metalanguage in
L,ogic Programming, in: K. I,. Clark and S.-A. Tarnlund (eds.), Logrc PrwgrcLmm,zng,
Academic Press, New York, 1982, pp. 1533172.
Bruynooghe, M. (ed.), Meta’90, Proceedings of the Second Worksh,op on Met,apro-
gramming in Logic, Katholieke Univ. Leuven, 1990.
Bry, F., Query Evaluation in Recursive Databases: Bottom-Up and Top-Down Hec-
onciled, Data Knowledge Eng. 5(4):289-312 (1990).
13ry, F., Manthey, R., and Martens, B., Integrity Verification in Knowledge Bases, in:
A Voronkov (ed.), Proceedings 1st and 2nd Russian Conference on Logic I’roqrarn-
ming, 592 Springer, New York, 1992, pp. 114-139.
Chen, W., Kifer, M., and Warren, D. S., HiLog: A Foundation for Higher-Order logic
Programming, J. Logic Program. 15(3):187-230 (1993).
De Schreye, D., and Martens, B., A Sensible Least Herbrand Semantics for Untyped
Vanilla Meta-Programming and Its Extension to a Limited Form of Amalgamation.
in: A. Pettorossi (ed.), Proceedings of Meta’92, Lecture Notes in Computer Science
649, Springer, New York, 1992, pp. 1922204.
Demolombe, R., Syntactical Characterization of a Subset of Domain Independent
Formulas, J. ACM 39(1):71--94 (1992).
Denecker, M., and De Schreye, D., Justification Semantics: A Unifying Framework
for the Semantics of Logic Programs, in: A. Nerode and L. Pereira (eds.). Proceedings
of LPNMR’SS, Lisbon, Portugal, MIT Press, Cambridge, MA, 1993, pp. 365-379.
Denecker, M., De Schreye, D., and Willems, Y. D., Terms in Logic Programs: A
Problem with Their Semantics and Its Effect on the Programming Methodology,
CCAI, J. Integrated Study of Artificial Intellzgence, Cognitive Sea. Appl. Epist,emology
7(3&4):363-383 (1990).

--
98 B. MARTENS AND D. DE SCHREYE

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

Enderton, H. B., A Mathematical Introduction to Logic, Academic Press, New York,
1972.
Falaschi, M., Levi, G., Martelli, M., and Palamidessi, C., Declarative Modeling of the
Operational Behavior of Logic Programs, Theoret. Comput. Sci. 69:289-318 (1989).
Falaschi, M., Levi, G., Martelli, M., and Palamidessi, C., A Model-Theoretic Re
construction of the Operational Semantics of Logic Programs, Inform. Computation
103(1):86-113 (1993).
Gallagher, J., Transforming Logic Programs by Specialising Interpreters, in: Proceed-
ings ECAI’86, 1986, pp. 109-122.
Gallagher, J., de Waal, D. A., Deletion of Redundant Unary Type Predicates from
Logic Programs, in: K.-K. Lau and T. Clement (eds.), Proceedings LOPSTR’92,
Lecture Notes in Computer Science, Springer, New York, 1993.
Gallaire, H., and Lasserre, C., Metalevel Control of Logic Programs, in: K. L. Clark
and S.-A. Tarnlund (eds.), Logic Programmzng, Academic Press, New York, 1982, pp.
173-185.
Giunchiglia, F., and Traverso, P., Plan Formation and Execution in a Uniform Archi-
tecture of Declarative Metatheories, in: M. Bruynooghe (ed.), Proceedings Meta’90,
Leuven, April 1990, pp. 306-322.
Hill, P., and Lloyd, J., The Giidel Programming Language, MIT Press, Cambridge,
MA, 1994.
Hill, P. M., and Lloyd, J. W., Meta-Programming for Dynamic Knowledge Bases,
Technical Report CS-88-18, Computer Science Department, University of Bristol,
Great Britain, 1988.
Hill, P. M., and Lloyd, J. W., Analysis of Meta-Programs, in: H. D. Abramson and
M. H. Rogers (eds.), Proceedings Meta’88, MIT Press, Cambridge, MA, 1989, pp.
23-51.
Jiang, Y. J., On the Semantics of Real Metalogic Programming-A Preliminary Re-
port, Technical Report,‘Department of Computing, Imperial College, London, Great
Britain, ‘July 1993.
Kalsbeek, M., The Vanilla Meta-Interpreter for Definite Logic Programs and Ambiva-
lent Syntax, Technical Report CT-93-01, Department of Mathematics and Computer
Science, University of Amsterdam, The Netherlands, January 1993.
Kim, J.-S., and Kowalski, R. A., An Application of Amalgamated Logic to Multi-
Agent Belief, in: M. Bruynooghe (ed.), Proceedings of Meta’90, Leuuen, April 1990,
pp. 2722283.
Kowalski, R. A., Problems and Promises of Computational Logic, in: J. W. Lloyd
(ed.), Proceedings of the Esprit Symposium on Compuational Logic, Springer, New
York, 1990, pp. l-36.
Levi, G., and Ramundo, D., A Formalization of Metaprogramming for Real, in: D. S.
Warrant (ed.), Proceedings ZCLP’93, Budapest, MIT Press, Cambridge, MA, 1993,
pp. 354-373.
Lloyd, J. W., Foundations of Logic Programming, Springer, New York, 1987.
Martens, B., and De Schreye, D., A Perfect Herbrand Semantics for Untyped Vanilla
Meta-Programming, in: K. Apt (ed.), P roceedings JICSLP’92, Washington, MIT
Press, Cambridge, MA, 1992, pp. 511-525.
Martens, B., and De Schreye, D., Why Untyped Non-Ground Meta-Programming is
not (much of) a Problem, Technical Report CW 159,‘Department Computerweten-

NONGROUND METAPKOGKAMMING SEMANTICS 99

32.

33.

34.

35.

36.

37.
38.

39.

40.
41.

42.

43.

44.

45.

46.

schappen, Kathdieke Univ. Leuven, Belgium, December 1992; revised November 1993.
Pottorossi, A. (ed.), Meta-Programming in Logic, Proceedings of Meta’92, I,ecturrl
Notes in Computer Science Springer, 649, New York, 1992.
Przymusinska, H., and Przymusinski, T. C., Weakly Perfect Model Semantics for
Logic Programs, in: R. A. Kowalski and K. A. Bowen (eds.), Proceedings ZCSLP’118.
1988, pp. 1106-1120.
Przymusinska, H., and Przymusinski, T. C., Semantic Issues in Deductive Databases
and Logic Programs, in: R. B. Banerji (ed.), Formal Techniques in Artificial IntpZZr-

gence, Elsevier Science Publishers B.V., Amsterdam, 1990, pp. 321-367.
Przymusinska, H., and Przymusinski, T. C.. Weakly Stratified Logic Programs. I<iLn-
dame&a Informaticae XIII:51 -65 (1990).
Przymusinski, T. C., On the Declarative Semantics of Deductive Databases and Logic
Programs, in: J. Minker (ed.), Foundations of Deductive Databases and Lo,gzc, Pro-
grumming, Morgan Kaufmann, Los Altos, CA, 1988, pp. 193-216.
Richards, B., A Point of Reference, Synthese 28:361&454 (1974).

Ross, K. A., Modular Stratification and Magic Sets for DATALOG Programs with
Negation, in: Proceedings PODS’90, Nashville, Tenessee. ACM, New York, 1990, pp.
161 171.
Sterling, L., and Beer, R. D., Meta Interpreters for Expert System Construction. J.
Logic Program. 6(1&2):163-178 (1989).
Sterling, L., and Shapiro, E., The Art of Prolog, MIT Press, Cambridge, MA. 1986.
Subrahmanian, V. S., A Simple Formulation of the Theory of Metalogic Programming,
in: H. D. Abramson and M. H. Rogers (eds.), Proceedings Meta’88, MIT Press,
Cambridge, MA, 1989, pp. 65~.101.
Takeuchi, A., and Furukawa, K., Partial Evaluation of Prolog Programs and Its Ap-
plication to Metaprogramming, in: H.-J. Kugler (ed.), Information Processzng. 86,
1986, pp. 415-420.
Topor, R. W., and Sonenberg, E. A., On Domain Independent Databases, in: J.
Minker (ed.), Foundations of Deductive Databases and Logic Programming: Morgan
Kaufmann, Los Altos, CA, 1988, pp. 217-240.
Turi, D., Extending S-Models to Logic Programs with Negation, in: K. Furukawa
(ed.), Proceedings of ICLP’91, Paris, MIT Press, Cambridge, MA, 1991, pp. 397-411.
ULlman, J. D., Database and Knozuledge-Base Systems, Computer Science Press,
Rockville, MD, 1988, vol. I.
Van Gelder, A., Ross, K. A., and Schlipf, J. S., The Well-Founded Semantics for
General Logic Programs, J. ACM 38(3):620-650 (1991).

