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Abstract

In agricultural soil, a suite of anthropogenic events shape the ecosystem processes and populations. However, the impact
from anthropogenic sources on the soil environment is almost exclusively assessed for chemicals, although other factors like
crop and tillage practices have an important impact as well. Thus, the farming system as a whole should be evaluated and
ranked according to its environmental benefits and impacts. Our starting point is a data set describing agricultural events and soil
biological parameters. Using machine learning methods for inducing regression and model trees, we produce empirical models
able to predict the soil quality from agricultural measures in terms of quantities describing the soil microarthropod community.
We are also interested in discovering additional higher level knowledge. In particular, we have identified the most important
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actors influencing the population densities of springtails and mites and their biodiversity. We also identify to which agr
ctions different microarthropods react distinctly. To obtain this higher level knowledge, we employ multi-objective re

rees.
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. Introduction

The impact of anthropogenic sources on the soil
nvironment is almost exclusively assessed for chem-
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ical factors only, although in agriculture mechan
factors like tillage and biological factors such as cr
have a large impact as well (Steen, 1983). Since farm
ing systems consist of a certain temporal sequen
interdependent events of different types and dura
it is necessary to handle the farming system as a w
in order to accurately rank its environmental be
fits and impacts. Based on data about the agricul
events and the soil biological parameters reflec
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these events, we build empirical models that relate the
sequence of agricultural events to the biological param-
eters. More specifically, we employ machine learning
algorithms that build regression and model trees to
induce models able to predict the soil quality in terms
of quantities describing the microarthropod commu-
nity, given historical data about sequences of crops,
tillage, fertilisation and other agricultural measures.

Besides building accurate models, we are also
interested in discovering higher level knowledge. In
particular, we identify the most important factors influ-
encing the biodiversity and the population densities of
different microarthropods. Such knowledge can guide
us in further experiments and in more focused data
collection.

The long-term goal of this work is to design a deci-
sion support system for managing farms, which can
take into account both the economical and ecological
consequences of agricultural actions. The knowledge
discovered in this study can be later incorporated into
the ecological part of this system. For this reason the
purpose of the present modelling exercise is not only
to discover new knowledge, but also to “rediscover”
the knowledge in a quantitative form and therefore
operational form. Obtaining knowledge from domain
experts can be hard because it is generally difficult to
put down in writing or may be simply too obvious to
mention from the expert’s point of view. Therefore, we
prefer machine learning tools that produce descriptive
models from datasets, which can be used as a source
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This paper is organized as follows. Section2
describes the data: the data sources, the observed
variables and the transformations that are used. In
Section3, we discuss the modelling techniques that
we apply namely single and multi-objective regres-
sion trees and model trees. Section4 describes the
modelling phase: the experimental setup, the obtained
models and the knowledge that can be derived
from these models. In Section5, we state the main
conclusions.

2. Data

The data that is used in this study originates from
two data sets. The first data set (Krogh, 1994) describes
four experimental farming systems (all located at
the Foulum experimental station, Denmark) over the
period 1989–1993. Two systems are conventional sys-
tems with pesticide use; the other two are organic
ones with no pesticide use. Five hundred and thirty
microarthropod samples are available in this data set
(Dem̌sar et al., 2003). The second data set describes
a number of organic farms (Foulum and Flakkebjerg
experimental stations and a number of farms in Jut-
land) over the period 2002–2003. One thousand four
hundred and fifteen samples are collected.

The combined data set has 1945 records in total
(while our approach works also with significantly
less records, larger data sets usually improve accu-
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f questions to domain experts. Such questions w
therwise be impossible to pose without a signific
mount of background knowledge. The answers f

he experts can then be used in combination with
iscovered knowledge to construct the decision sup
ystem.

To obtain interpretable models, we employ mach
earning tools capable of multi-objective regress
uch tools allow us to produce one model predic
everal biological variables at once. This one m
s not only simpler compared to a set of models,
or each individual variable, but can also help us
nderstand different effects of the same agricult
ctions on different aspects of the soil microarth
od community. The tools that we use moreover a
s to constrain the size of the models. In this w
e can easily trade off interpretability for predict
ccuracy.
acy and reduce overfitting). Each record descr
ne microarthropod sample. A record consists of
ttributes, of which 142 are input attributes an
re target attributes (the abundances of Acari
ollembolans as well as Shannon–Wiener biod
ity). Table 1lists each attribute together with a sh
escription.

The input attributes describe the field where
icroarthropod sample was taken and mainly inc
gricultural measures (e.g., crops planted, pac

illage, fertilizer and pesticide use, etc.). For sev
easures a history of 3 years is recorded, i.e., the
n attribute for the year in which the sample was

ected, one for the past year, and one for 2 and 3 y
go.

The type of crop planted on the field is represe
ith a set of binary attributes, one for each poss
rop. The attribute corresponding to the actual c
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Table 1
The available attributes: 142 variables as identified when characterising the fields and 3 target variables

Attribute Explanation

actsitmo Age of the current situation (time in months since current crop was sown or last crop was harvested)
soil JB Soil classification number
samptime Sample time (1 = March–April, 2 = May–June, 3 = July–August, 4 = September–November)
Currentcrop = X A set of binary attributes describing the current crop (i.e., the data contains one binary attribute for crops X listed

in Table 2—not all values fromTable 2appear)
crop1=X A set of binary attributes describing last year’s crop (possible values are listed inTable 2—not all values fromTable 2

appear)
crop2 = X A set of binary attributes describing crop 2 years ago (possible values are listed inTable 2—not all values from

Table 2appear)
crop3 = X A set of binary attributes describing crop 3 years ago (possible values are listed inTable 2—not all values from

Table 2appear)
AC, AC Y A set of binary attributes indicating a crop of type ‘annual crop’. The attributes describe current year (AC) and the

previous 3 years (AC1 to AC 3)
MC, MC Y A set of binary attributes indicating a crop of type ‘multi crop’ (with undersown crop). The attributes describe current

year (MC) and the previous 3 years (MC1 to MC 3)
CAC, CAC Y A set of binary attributes indicating a crop of type ‘catch crop’. The attributes describe current year (CAC) and the

previous 3 years (CAC1 to CAC 3)
WIC, WIC Y A set of binary attributes indicating a crop of type ‘winter crop’. The attributes describe current year (WIC) and the

previous 3 years (WIC1 to WIC 3)
PC, PCY A set of binary attributes indicating a crop of type ‘permanent crop’. The attributes describe current year (PC) and

the previous 3 years (PC1 to PC3)
ca, caY A set of attributes describing that cattle are/were grazing on the field (ca1, ca2 and ca3 describe the grazing in

previous years)
sh Sheep are grazing on the field
grazing Animals are grazing on the field
si, si Y A set of attributes indicating that the current/past crop is/was intended for silage or hay (si1, si 2, si 3 describe the

previous years)
sf Stubble field (current field condition)
o Seed bed: bare field, seeds planted less than 1 month ago (current field condition)
seha Seed bed harrowed (current field condition)
sepl Seedbed ploughed current field condition)
soha Bare field harrowed (current field condition)
sopl Bare field ploughed (current field condition)
tr packing Months since packing transformed using (1) withi = 1 to obtain a positive correlation with the impact
tr shal till Months since shallow (0–5 cm layer) tillage (weed harrowing etc.) transformed using(1) with i = 4
tr subshaltill Months since subshallow (5–10 cm layer) tillage transformed using(1) with i = 2
tr deeptill Months since deep (>10 cm layer) tillage (ploughing, rotovation, etc.) transformed using(1) with i = 2
fert lev Fertilizer level (low = 0, normal = 1, high = 2)
fert type Fertilizer type (no = 0, solid = 1, liquid = 2)
Tr fert time Months since fertilization transformed using (1) withi = 1
sotr Y Soil treatment (tillage and similar) in past year (Y = 1), 2 years ago (Y = 2) or 3 years ago (Y = 3): 0 = none, 1 = in

spring or autumn, 2 = in spring and autumn

Target variables
Acari Abundance of acari species
coll Abundance of Collembolan species
H Shannon biodiversity
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Table 2
Possible crops

Abbreviation Crop Abbreviation Crop Abbreviation Crop

ba Winter barley fa-gr Fallow, grass ry-clgr Rye, clover, grass
ba-ch Winter barly, chicory gr Grass sba Spring barley
ba-clgr Winter barly, clover, grass le Leeks sba-clgr Spring barely, clover, grass
ba-gr Winter barley, grass lu Lupin sba-gr Spring barely, grass
ba-pe Winter barly, peas lu-gr Lupin, grass swh Spring wheat
be Beets/carrots oa Oates tc Triticale
cc Catch crop oa-clgr Oates, clover, grass wc Whole crop
ch Chicory oa-gr Oates, grass wc-gr whole crop, grass
chgr Chicory, grass pe Peas wh Winter wheat
clgr-wc Clover, grass, wholecrop po Potatoes wh-chgr winter wheat, clover, grass
clgr Clover, grass ra Rape wh-gr Winter wheat, grass
fa Fallow rd Radish
fa-clgr Fallow, clover, grass ry Rye

takes the value 1, and all others are set to 0. The list of
possible crops can be found inTable 2.

The effect of tillage on the microarthropod commu-
nity is thought to exhibit a non-linear decay over time.
Therefore, we apply the transformation

tillage′ =
(

10− months since tillage

10

)i

(1)

to the variables representing tillage. The parameteri
depends on the type of tillage:i = 2 for deep to sub-
shallow tillage andi = 4 for shallow tillage.

The target attributes describe the observed
microarthropod community, which is quantified by
measuring the abundance of 43 species. Of these, 4
belong to the Acari group (mites) and 39 belong to the
Collembola group (springtails). The species included
in both groups are listed inTable 3.

To measure the abundance of each species, soil sam-
ples were collected within a 20 m× 20 m area of the
field, with a distance of 5 m between the individual
samples. Sampling was performed in the upper 5.5 cm
soil layer and the sampling containers measured 6 cm
in diameter. Sampling was done using a split soil corer
and extraction was performed using a MacFadyen high
gradient heat extractor.

Based on the data describing the microarthropod
community, three target attributes are constructed: the
total abundance of the Acari group, the total abundance
o ner

biodiversity(2).

H = −
S∑

i=1

pi log2pi (2)

wherepi is the proportion of speciesi in the sample
andS the total number of species.

3. Regression and Model trees

The models that we present in this paper are single
and multi-objective regression trees and model trees.
The following two sections briefly describe the theory
behind such models and the systems that we have used
for constructing them.

3.1. Regression trees, multi-objective regression
trees and the Clus system

Regression trees are predictive models capable of
modelling a numeric target (Breiman et al., 1984).
Examples of regression trees can be found inFigs. 5–7.
The internal nodes of a regression tree contain tests on
the input attributes and the leaves store the predictions.
The prediction for a new data record is obtained by
sorting it down the tree, starting from the root (the top
of the tree). For each internal node encountered on the
path, the test stored in the node is applied to the given
record, and if it succeeds, the record is sorted down the
l ight
f the Collembolan group, and the Shannon-Wie
 eft subtree; if it fails, the path continues along the r
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Table 3
The observed species (Acari group—mites and Collembola group—springtails)

Abbreviation Species Abbreviation Species

Acari group (mites)
Crypt Cryptostigmata Ast Astigmata
Prost Prostigmata Meso Mesostigmata

Collembola group (springtails)
Iang Isotoma anglicana Hniti Heteromurus nitidus
Ipalu Isotomurus palustris Tquad Stenaphorura quadrispina
Hdent Ceratophysella denticulata Nmini Neelus minimus
Hsuc Ceratophysella succinea Saure Sminthurinus aureus
Xarma Hypogastrua sp. Fspino Folsomia spinosa
Llanu Lepidocyrtus lanuginosus Cterm Cryptopygus thermophilus
Lcyan Lepidocyrtus cyaneus Will Willemia sp.
Seleg Sminthurinus elegans Ocinct Orchesella cincta
Onych Protaphorura sp. Owillo Orchesella villosa
Sviri Sminthurus viridis Nmusco Neanura
Sminsp Smint. sp. Psexoc Pseudosinella sexoculata
Tull Mesaphorura sp. Iprod Isotomodes productus
Inot Isotoma notabilis Iarma Isotomodes armata
Entosp Entomobrya sp. IBiset Isotomodes bisetosus
Fmirab Friesea mirabilis Fquad Folsomia quadrioculata
Ffim Folsomia fimetaria Icilia Isotomurus sp.
Palba Pseudosinella alba Tomosp Tomocerus sp.
Bparv Brachystomelle parvula Tflav Tomocerus flavescens
Apygm Anurida pygmaea Tminor Tomocerus minor
Iminor Isotomiella minor

subtree. The resulting prediction is the value stored in
the leaf where the path ends.

Multi-objective regression trees (Blockeel et al.,
1998) generalize regression trees in the sense that they
can predict a value for more than one target attribute.
Therefore, instead of storing a single numeric value,
the leaves of a multi-objective tree store a vector. Each
component of this vector is a prediction for one of
the target attributes.Fig. 4 shows an example of a
multi-objective regression tree predicting the target
attributes Acari abundance, Collembola abundance and
biodiversity.

A (multi-objective) regression tree is usually con-
structed with a recursive partitioning algorithm from a
training set of records, i.e., records that include mea-
sured values for the target attributes. Such an algorithm
starts by selecting a test for the root node. Based on
this test it partitions the data into a training set for
the left (records for which the test succeeds) and right
(records for which the test fails) subtree, and then recur-
sively repeats the same procedure to construct the left
and right subtree. The partitioning process stops if the

number of records in the induced subsets is smaller
than some predefined valueminrec. In that case, a leaf
is generated storing a vector with as components the
mean of the target attributes (over the records stored in
the leaf).

The test selected for a given node is the one that
minimizes a heuristic computed on the training data.
The goal of the heuristic is to guide the algorithm
to small trees with good predictive performance. In
this paper, we apply the system Clus (Blockeel and
Struyf, 2002) for constructing (multi-objective) regres-
sion trees. In Clus, the heuristic is the sum of the
variations in the induced subsets, where variation is
measured as

∑T
j

∑N
i

(
xi,j − xj

)2, with T the number
of target attributes,N the number of records in the sub-
set,xi,j the value of target attributej of theith record in
the subset, andxj the subset mean of attributej. A low
intra-subset variation results in accurate predictions.

After a regression tree is constructed, it is com-
mon to prune it, i.e., to replace some subtrees by
leaves, in order to improve predictive accuracy and/or
interpretability. We choose the pruning method that is
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proposed byGarofalakis et al., 2003. Essentially, this
is a dynamic programming optimization method that
selects a subtree from the constructed tree with at most
maxsize nodes and minimum training set error (mean
squared error, summed over all target attributes). We
employ this particular method because we are inter-
ested in obtaining small and interpretable trees, i.e.,
we setmaxsize to a manageable value and the algo-
rithm then returns the best subtree satisfying this size
constraint.

3.2. Model trees and the M5′ system

We compare the regression trees built by Clus to
model trees (Quinlan, 1992). Model trees differ from
regression trees in the sense that the leaves do not con-
tain numeric values, but linear regression models. In
order to obtain a prediction with a model tree, the given
record is sorted into a leaf and then the corresponding
linear model is applied to obtain the actual prediction.
Model trees are generally more accurate than regres-
sion trees, but more difficult to interpret because of
the linear models. In the experiments, we apply the
M5′ (Wang and Witten, 1997) system for inducing
model trees, which is available in the Weka (Witten
and Frank, 1999) data mining toolkit. Note that M5′
can only generate single-objective trees and that it uses
a heuristic and pruning method that differs from the
ones employed by Clus.
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three regression trees are constructed: one predicting
Acari abundance, one Collembola abundance and one
biodiversity. In the multi-objective setting a single tree
predicts all of these three target attributes at once.
While multi-objective trees can yield a lower predic-
tive performance, they have the important advantage
that they are easier to interpret. Obviously interpret-
ing one single tree is less difficult than three differ-
ent trees. Moreover, the multi-objective model allows
one to identify conditions that have different effects
on target attributes, e.g., if a particular leaf predicts
an Acari abundance above average and a biodiversity
below average, then one can conclude that the condi-
tions describing the leaf have a positive effect on Acari
species, but a negative effect on other species and bio-
diversity.

Since we are interested in obtaining simple and
understandable trees, we constrain the number of nodes
in a tree to be less thanmaxsize. To be able to quantify
the possible performance loss incurred by smaller trees
we experiment with different values of this parameter:
400, 200, 100, 50, 20 and 10. In all experiments, the
minrec parameter of Clus was set to 5. For the multi-
objective trees, we also enabled normalization, which
internally transforms the target attributes by subtracting
the mean and dividing them by their standard deviation.
In this way, each target attribute has a similar contribu-
tion in the computation of the heuristic and in the error
estimate used by the pruning method. All other param-
eters are set to their default values. We also perform
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In this section we discuss the models that h
een obtained by applying the modelling techniq
resented in Section3 to the available data. We fir
escribe the experimental setup. Next, we compar
odels obtained with Clus and M5′. The section end
ith a discussion of the knowledge entailed by
odels.

.1. Setup

As discussed in Section2, the data set used in th
tudy contains three target attributes: Acari abunda
ollembola abundance and biodiversity. We com

wo settings: single-objective regression and m
bjective regression. In the single-objective sett
number of experiments with M5′ where we vary th
inrec parameter (in order to find a model tree with
cceptable compromise between accuracy and si

The predictive performance of each of the mo
s estimated with ten-fold cross validation. The e

easures used are: relative mean absolute error RM
elative root mean squared error RRMSE and the P
on correlation coefficientr. The relative measures a
btained by dividing the error of the model by the e
f a baseline model that always predicts the mean

. Results

Table 4presents the results. In order to be able to
er compare the different settings,Figs. 1–3show the
orrelation coefficients for single and multi-object
egression, for each of the target attributes. The re



D. Demšar et al. / Ecological Modelling 191 (2006) 131–143 137

Table 4
The error rate and size for multi-objective and singe objective regression trees, and for model trees (RMAE—relative mean absolute error,
RRMSE—relative root mean squared error,r—correlation)

Max tree size
(number of nodes)

Measure Multi-objective regression Single-objective regression

Acari Collembola Biodiversity Acari Collembola Biodiversity

400 RMAE 0.602 0.599 0.729 0.592 0.617 0.732
RRMSE 0.701 0.701 0.733 0.693 0.714 0.736
r 0.716 0.715 0.686 0.724 0.704 0.684
#Leaves 197 200 200 197

200 RMAE 0.631 0.612 0.731 0.600 0.621 0.734
RRMSE 0.714 0.707 0.740 0.694 0.713 0.742
r 0.703 0.709 0.677 0.722 0.704 0.678
#Leaves 100 100 100 100

100 RMAE 0.668 0.654 0.769 0.632 0.639 0.743
RRMSE 0.731 0.730 0.772 0.713 0.718 0.751
r 0.683 0.684 0.637 0.705 0.698 0.664
#Leaves 50 50 50 50

50 RMAE 0.703 0.686 0.829 0.682 0.687 0.789
RRMSE 0.758 0.738 0.828 0.735 0.738 0.788
r 0.653 0.675 0.562 0.680 0.678 0.617
#Leaves 25 25 25 25

20 RMAE 0.791 0.770 0.906 0.792 0.733 0.855
RRMSE 0.819 0.777 0.913 0.800 0.755 0.847
r 0.572 0.629 0.410 0.600 0.655 0.531
#Leaves 10 10 10 10

10 RMAE 0.890 0.811 0.925 0.878 0.801 0.921
RRMSE 0.874 0.791 0.936 0.877 0.793 0.918
r 0.484 0.611 0.351 0.482 0.610 0.399
#Leaves 5 5 5 5

M5’ Best model tree RMAE 0.733 0.647 0.740
RRMSE 0.641 0.712 0.751
r 0.680 0.701 0.668
#Leaves 13 17 27

M5’ Best regression tree RMAE 0.700 0.718 0.776
RRMSE 0.787 0.774 0.784
r 0.618 0.637 0.625
#Leaves 31 27 45

show that the performance of multi-objective regres-
sion is comparable to that of single-objective regres-
sion, especially for large trees. The difference increases
if the trees are heavily pruned (maxsize < 50). This
effect is most noticeable for biodiversity. The results
furthermore confirm that the error of both methods
increases ifmaxsize is decreased, especially for bio-
diversity and Acari abundance.

If we compare the regression trees constructed by
Clus to the regression trees of M5′, then we observe that

Clus performs better for trees of comparable size. For
example, the tree of M5′ predicting Acari abundance
with 31 leaves has a correlation of 0.618, which is in
between the 0.680 obtained by Clus for a tree with 25
leaves and the 0.600 obtained for a tree with only 10
leaves. This effect is probably caused by the pruning
method employed by Clus: the tree with 10 leaves is
the ‘best’ possible subtree of that size. On the other
hand, the model trees of M5′ perform better than the
regression trees of both systems (when comparing trees
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Fig. 1. The correlation coefficientr for multi-objective and single-
objective trees predicting Acari abundance for different values of the
pruning parameter maxsize.

Fig. 2. The correlation coefficientr for multi-objective and single-
objective trees predicting Collembola abundance for different values
of the pruning parameter maxsize.

Fig. 3. The correlation coefficientr for multi-objective and single-
objective trees predicting biodiversity for different values of the
pruning parameter maxsize.

of similar size). Model trees are however more difficult
to interpret because of the linear models in the leaves.

5.1. Interpretation of the obtained models

In the previous section we have shown that almost
the same predictive performance is obtained with a
single multi-objective tree as with three separate single-
objective trees. In this section, we study the structure
of the trees to identify important factors influencing
the microarthropod community. Consider the multi-
objective tree depicted inFig. 4 (created with the
pruning parametermaxsize = 50 nodes). It shows for
example the following.

• Soil type and the age of the current situation are
the most important factors for all three modelled
measures: sandy soils and an old age of the cur-
rent situation provide the best conditions for the soil
microarthropods.

• While the age of the current situation (in not
extremely sandy soils and summer sown crops)
strongly influences the abundances of both Acari and
Collembola it does not influence biodiversity, which
means that most species profit in similar amounts.
The same is true for the sampling time (spring sam-
ples have lower abundances but about the same bio-
diversity than later samples when other conditions
do not change).

• On the other hand in sandy soils and in a young
ar-
la
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situation (less than 1 month after sowing or h
vesting) the Acari thrive, while the Collembo
struggle.
Fertilization can have a strong negative impac
both Acari and Collembola abundance, while it
only a medium negative effect on their biodivers
Rye with undersown clover-grass (at least 4 mo
ago and in not extremely sandy soils) has a st
positive effect on the Acari abundance and at
same time a strong negative effect on the Coll
bolan abundance and biodiversity.

We can furthermore compare the multi-objec
egression tree (Fig. 4) with the three single-objectiv
egression trees shown inFigs. 5–7. We observe that th
ulti-objective regression tree does not closely res
le any of the single-objective trees. The root node
n the same attribute as in the Acari tree (Fig. 5), how-
ver the test condition is not identical. Such differen
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Fig. 4. The multi-objective regression tree modelling Acari abundance, Collembola abundance and biodiversity, created with pruning setting maxsize = 50 nodes. The numbers in
the leaves are the number of Acari divided by 1000, number of Collembola divided by 1000 and biodiversity, respectively. The average values of the target attributes over the entire
data set are: 48724, 33030 and 2.06.
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Fig. 5. The regression tree modelling Acari abundance, created with pruning setting maxsize = 50 nodes. The numbers in leaves are number of Acari divided by 1000.
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Fig. 6. The regression tree modelling Collembola abundance, created with pruning setting maxsize = 50 nodes. The numbers in leaves are number of springtails divided by 1000.
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Fig. 7. The regression tree modelling biodiversity, created with pruning setting maxsize = 50 nodes.
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in trees are to be expected because decision trees are
known to be unstable, e.g., for a given data set, typi-
cally many trees exist that have a comparable predictive
performance. Some similarities between the trees nev-
ertheless do exist. The attributes that Clus selected as
splitting criteria in the nodes are similar in all four trees.
This confirms that soil type, age of the current situa-
tion, tillage, the use of crops belonging to the family
of grasses, etc. are important for the community of soil
microarthropods.

6. Conclusions

We have modelled the community of soil micro-
arthropods in agricultural soil with machine learning
methods based on data describing chemical, biolog-
ical and mechanical actions on the fields. We used
the obtained models to identify the most important
parameters influencing the abundance of soil mites and
springtails and the biodiversity of soil microarthropods.
In particular, we show that the most important param-
eters are the soil type, the age of the current situation,
and the different forms of tillage. We also identified
the different effects of one action on several agricul-
tural measures: some actions have a positive effect on
one type of soil microarthropods and a negative effect
on other types. We gained knowledge that will help us
in further modelling and, in the end, in building a deci-
sion support system for the management of farms. We
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