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Abstract

We study the convergence of rational interpolants with prescribed poles on the
unit circle to the Herglotz-Riesz transform of a complex measure supported on [—7,7].
As a consequence, quadrature formulas arise which integrate exactly certain rational
functions. Estimates of the rate of convergence of these quadrature formulas are also
included.
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1 Introduction

Let u be a finite complex Borel measure supported on [—7, 7], thus with S, = supp () C
[—m, 7] and 7, d|p| = K < oo, where |p| is the total variation measure. The Herglotz-Riesz
transform of u is

Fue) = [ S Zau(o). (L.1)

—x e — 2
We shall approximate (1.1) by rational functions with prescribed poles (multipoint Padé-

type approximants = MPTA). This gives rise to quadrature formulas of the form (2.1) below
to estimate integrals on the unit circle of the form

1) = [ H(e%)du(o). (1.2)

For these formulas, it will be shown that they are exact for certain rational functions with
given poles. Motivated by a paper of Nuttal and Wherry [17] (see also [12]), we treated a
similar problem in [4] where the quadrature formulas integrated exactly Laurent polynomials
and the approximants were restricted to two-point Padé approximants for (1.1). In Section
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2, we give the connection between quadrature formulas and MPTAs to (1.1). Estimations of
the rate of convergence of MPTAs to F,(z) are provided in Section 3. This will also result
in an estimate of the rate of convergence of the quadrature formulas when the integrand f
1s a holomorphic function in a neigborhood of S,. In Section 4, we study the case when f is
only continuous with a modulus of continuity that satisfies certain conditions.

2 Preliminary results

We use the following notation for the unit circle, its inside and its outside: T = {z € C :
2| =1},D={2€ C:|z| <1},and E= {2z € C: |z| > 1}. C is the set of complex numbers
and C = C U {o0o}. The space of polynomials of degree at most n is denoted as II,, and II
is the space of all polynomials. For every pair of integers (p,q), p < ¢, we denote by A, ,
the linear space of all Laurent polynomials (L-polynomials) of the form L(z) = ¥9_, c;27,
¢; € C. A is the space of all L-polynomials. Our quadrature formulas, approximating (1.2)
will be of the form

()= 3 Ainf(@in)y ©3n €T, win # @4, for i #5. (2.1)

For its construction we shall not use the L-polynomials as in [4] but we shall use rational
functions with poles not on T. For quadrature formulas based on rational functions with
prescribed poles outside a finite interval of the real line, see e.g. [14, 22, 8]. Let a = {a, :
n =1,2,...} be an arbitrary sequence in D. We introduce the Blaschke factors (x(z) as

((2)
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= alloms k=1,2,... (2.2)
and the Blaschke products By = 1, and By = (1...(x. These generate the spaces L, =
span{ By, ..., Bn} and L = UPL,. Introducing mo = 1 and m,(z) = p_,(1 — @rz), for
n > 0, we can represent R € L, as R = q/m,, with ¢ € II,,. The notation f.(2) = f(1/Z)
allows us to introduce the spaces L. = span{l, Bi., ..., B} and L, = UL L. If R € Ly,
then R = q/w, with ¢ € II, and where wo = 1 and wn(2) = I}_,(2 — ;) for n > 0.
Furthermore, let Ry, = Lo + L, = {P/(mqwp) : P € I,4,} and R = £ + L,. Note
that Rp, = span{l/B,,...,1/B1,1,B1,...,B,} and Ron = L,. When all ap = 0, then
Rpq = A_pq and L, = II,,. The spaces R,, will play the same role in this paper as the
L-polynomials in [4]. The following theorem is given in [1, Addendum A.2, p. 244] when all
the «a; are different. The adaptation of the proof for the case when two or more points are

allowed to coincide is trivial.

Theorem 2.1 The space R is dense in the space C(T) of continuous functions on T if and
only if (1 — ax]) = oo

Let X = {zjn:7 =1,...,n;n € N} be a triangular array of points contained in T with
Tjn # Tkn for j # k and let F,, be a rational function of type (n,n) with poles at {z;n}7_;
interpolating F,(z) at 0,a1,...,a, and at oo, 1/@y,...,1/a, such that p+¢=n—1, with p
and g nonnegative integers. Setting Fy, = Qn/ P, with Po(2) = II7_, (2 — 2;,.), if deg(my) = ¢
then the polynomial @, € II, is uniquely defined by requiring that the function

Fu(2)Pa(z) — Qn(2)

zwp(2)m,(2)

(2.3)
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1s analytic in C-T (to see this, just count the number of interpolation conditions). If
¢ = q —deg(my) > 0, then one needs £ extra interpolation conditions at oo given by F,(z) —
F.(2) = O(z7%1), 2 = oco. This F, is called an (n,n) MPTA to F, relative to the pair
(a, X); we shall denote it by (n/n).(z). Let

Tin t+2

_ @n(2) _ AL
= () " An + ; Aj,nmjm — (2.4)

Then from F,(0) = uo where po = F,(0) = [7, du(0) and F,(o0) = F,u(00) = —po, it follows
that A, = 0. It is also easily checked that

Fa(z) = (n/n)u(2)

1 n . .
Ajn _ Q (wﬂy ) _1 2

__zmj,n P,i(mj,n), J7=54L4...,

n. (2.5)

Note that this equality holds for any partial fraction expansion of a rational function of the
form (2.4) with A, = 0.

In this section it will be shown that such an MPTA to F, leads to a quadrature formula
which is exact in R,, and conversely that any quadrature formula exact in R,, can be
obtained in this way.

Let the points of the sequence a be contained in a compact subset of D (in what follows,
we paraphrase this by saying that « is compactly included in D) and let G be a region (open
and connected) in C such that T C G, 0 ¢ G, and GN (e U &) = 0, where & = {1/ax}°.
Suppose that T', the boundary of G, is a finite union of Jordan curves, and suppose f is a
function analytic in G. From Cauchy’s theorem, it then follows that

F(z0) = L/F 2otz (_fz(z)> dz (2.6)

21 Jr zg — 2

whenever zg is in G. From (2.6) and Fubini’s theorem it follows that

1) = [ Feauo) = = [ o) (—fz(j)) dz. (2.1

Now consider an arbitrary function R € R, , with p+ ¢ = n —1, then by taking into account
that F,, — (n/n), is analytic in C — T, it follows from Cauchy’s theorem that

. (Fu@’) - 358 ) (‘ X )> dz =0. (2.8)

Thus, by (2.5)—(2.8)

L(R) = i /F F(2) (- R;?) dz = i /F ?3:((3 (- ]%2(:)) dz = jz:‘;Aj,nR(mj,n) — I(R).
(2.9)

Thus we obtained a quadrature formula (2.1) valid in R, 4, p + ¢ = n — 1. Furthermore, for
any function f analytic in G

L(f) = ;Aj,nf(mm):im,n[l /ij’"ﬂ(‘fz@)dz]

27

_ i/r jéAj,nii’::*z [—féj)] (;zz _ %/P(n/n)”(z) l—fg)] dz.(2.10)




Remark 1. Starting from the table X, a formula (2.1) satisfying (2.9) for any R € R, 4,
p+q =mn—1, can be constructed for any function f, defined on T. However, representation
(2.10) is only valid for an analytic function.

Remark 2. When all the a = 0, then R, , = A_,, and formula (2.9) coincides with those
studied in [4] and [13].

For the error of (2.9), we immediately obtain

Lemma 2.2 Let f be analytic in G, a neighborhood of T such that GN (aU &) = 0 and
0 ¢ G. Then, for each n and any triangular table X C T such that z;, # Tk, for 7 # k, we
have

Bol) = 10 = 1) = g [ (Fule) = (i) (-2) &, o)

21 Jr 2z

where I is the boundary of G.

It trivially follows from (2.11) that

B < g ma T [[Ru(e) = o/ ()] (212)

So, we can say that a sequence {(n/n),} of MPTAs that converges to F, uniformly on

compact subsets of C — T, can provide “suitable” quadrature formulas. The weights of the
quadrature have the following integral representation

Theorem 2.3 Let p and q be nonnegative integers such that p + q¢q = n —1 > 0. Let
L(f) = X1 Ajnf(zjn) be a quadrature with distinct nodes z;, on T that is exact in R, ,.

Then < P(2)

wp(z)me(z) (7 —

Wp(Zjn )To(Zjm)
A = Yp\Tin)Ta\Zjn) ;
o Pi(zjm) "

where Pn(z) = [[G_1(2 — zjn)-

wm)) , z=c¢" (2.13)

Proof. Let us consider the function (with variable z and z a parameter)

w2 ) 220 . o

Clearly, this function belongs to R, 4. Since the quadrature formula is assumed to be exact

in R,, we obtain that I,(R,) = I.(R,). Since P(z;y,) = 0, it follows that

S z—2z oz —zwy(x)Ty(2)Pa(2)

L(Ra) =3 A, 5im 2 _ @n(2) (2.15)

S Tin— 2 Pu(2)

where ), € II,, is defined as the numerator polynomial of the rational function above. Thus
one has

Qu(2) = Pu(2)Iu(Rn) = I, (Pn(z) ;2 an(z) _ wnl(2)mo(2)F "(“’)D . (2.16)

T -2z wp(z)my(2)

By using (2.5) and expression (2.16), for @, we obtain (2.13). O



Remark 3. It can be easily verified that the Newton interpolation formula plus error term
for the function (¢ + 2)/(t — z) is given by (see also [3, p. 41])

t+z " zwi-1(2) 2wn(2)
e Tl L P e (2.17)

for t € T and z # t. Similarly (e.g., by applying the substar conjugate) we get

t"tra(2) .
2™t — 2)ma(t)

(2.18)

t+ z " R 1(2)
—_1-2 2
t—2z kX:l 2kmy(t) i

Now a converse to (2.9) can be given. Indeed, let the quadrature (2.1) be exact in R, 4,
p+¢q=n—1and let F,, = @,/ P, the rational function as defined in Theorem 2.3. Assume
that n > 1 (the case n = 1 is trivial) and take p > 0. Then, making use of (2.17) one can
write

" Tin+ 2
F, = A,
(2) ; e — 2
2" suns (V{1 fan (1)) + 220p(2) 3 " (2.19)
= o+ 2wi_1(2 we(t)) + 2zw,( 2 ’ .
’ k=1 ' g ? j=1 (Zjn — 2)wp(Tjn)
and
3 L 2.20
F = 2 _ I,(1 t 2 I,|———— . .
(2) = o+ 2 sna (I fonl) + 2o (s ) @0
Similarly, using (2.18) and supposing g > 0, we can get
4 Te_1(2) ( tk ) Tg(2) & Ajnmq-';l
Fo(z) = —po — 2 i 49T s, (2.21)
’ k2=:1 AN ) 2 12::1 (Zjn — 2)7g(Z5m)

and

Fu(2) = —po — 22:1 "r’“;}c(t)fﬂ ( t > Lomal?) (( - ) . (2.22)

Tk(Zjn) 24 t— 2)my(2)

Thus, from (2.19-2.20) and (2.21-2.22), it can be easily deduced that F,(z) is an MPTA to
F,.

Remark 4. Let R,, € Rpq, p+ ¢ = n — 1 be an interpolant for some function f defined
on T with interpolation points {z;,} with z,, # zgn, for j # k and X N (aU &) = 0. Thus
Roo(zin) = f(zjn), 7 = 1,...,n. Integration of R,,(e*) with respect to du(f) produces a
quadrature formula I,,(f) exact in R, ,. This fact enables us to obtain (2.13) in a different
way. We have indeed (for further details, see [2, § 2]):

zmw=§ﬁmm%J

where
1 —ay2 Q.(2)

LP (z) —

. = R 2.23
1) = T g agm (2= o) O] & P (2:23)



with

P.(2)
Qu(z) = ————=€R :
(z) () Ten1(2) P+l
Since P (n)
A-n:I Lpn ) and QI Tin) = n\ i
7 u( 5 ) ”( o ) wp(a:j,n)ﬂqﬂ(wj,n)

and mgy1(2) = me(2)(1 — @y412), formula (2.13) easily follows.
To conclude this section, we give an integral representation for the error of the MPTA.
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Lemma 2.4 Let a and X be as above. Then, setting z = €*, we have

Fu(z) = (n/n)u(2) = Fu(z) - ?3:((5)) = 2zw§§nz()$q(z) /_: wp(gij():)léa)_ 2 (2.24)
Proof. This follows from (1.1), Remark 3 and (2.16). O

3 Convergence for analytic functions

In this section we shall give results about the rate of convergence for the MPTAs (n/n), to
F,. These will immediately imply an estimate for the rate of convergence of the quadrature
formula I,(f) to the integral I,(f) when f is a function analytic in a neighborhood of T.

As before, a will denote a sequence of points compactly included in D and X a trian-
gular array of points on T. We want to make appropriate selections of  and X to obtain
good estimates of the MPTA (n/n), and deduce bounds for the rate of convergence of the
corresponding quadrature formulas for some function f holomorphic in a neighborhood of
T.

With a polynomial @ € II,, we associate the normalized counting measure v,(Q) =
%ZQ@):O 8¢ where 6¢ is the Dirac measure supported at £. It assigns a point mass at the
zeros of the polynomial @, counting multiplicity. For ¢ = w,, we denote this measure as
v, The logarithmic potential of a measure v is given by V,(2) = — [log |z — £|dv(€). Tt is
obvious that we have |w,(2)|"/" = exp{—V,«(2)}. Assume that there exists a measure v*
such that v2 converges to v® in the weak star topology of the space of measures. We shall
denote this as

This convergence implies [23, Lemma 1, p. 436]

lim |wn(2)['/" = exp{~V;a(2)}, 2 € C — supp (v*)

— 00

and
lim sup |wn(2)|™ < exp{—V,a(2)}, z€C. (3.1)

7n— 00

Convergence is uniform on each compact subset of the indicated regions. Set @,(z) =
I17_,(z—a;) (this equals 2"1,(1/2) if z # 0). Let »® be the measure associated with the point
set @, just as v* was associated with a. Then for any z such that 1/z € (C—{0}) —supp (¢v*)
we have

lim |7a(2)["™ = |2] lim [@a(1/2)]'™ = |2 exp{~V,=(1/2)}. (3.2)

n—o0

6



Furthermore, lim,,_, o |7,(0)[*/* = 1 and

lim sup |mn(2)[Y/" < |z|exp{—V,=a(1/2)}, =z C—{0}. (3.3)
As before, p and ¢ are nonnegative integers such that p + ¢ = n — 1 > 0. Since we shall
now let n — oo, these p and ¢ which are functions of n, will be written explicitly as
p(n) and g(n). Now suppose that lim, . (p(n)/n) = r and lim,_,e (q(n)/n) = 5. Since
p(n) +¢(n) = n — 1, we should have r + s = 1. Then, it follows from the above results that
we have for z € (C — {0}) — supp (v*) and 1/z ¢ supp (v*)

im Jwp(2)my(2)|"/™ = exp {— (rVia(2) + sV,2(1/2)) } |2/" (3.4)
and for z # 0
lim sup wp(2)my(2)|'/" < exp {~(rVia(2) + sV2(1/2)) } |2]* (3.5)
We shall now concentrate on the case lim, .o an = a. Without loss of generality, we may
assume a = 0. Hence v* = § = v* and supp (v*) = {0}. Since Vs,(2) = —log |z|, we have
by (3.4)
lim (o))" = |21, 2 € € {0}, (36)

where convergence is uniform on compact subsets of C — {0}. From (2.24) we deduce

2z ||up(2)mq(2)] max,cr|Palz G
[Fu2) = (n/m)u(2)] < S lts |f eze|

|Pa(z)]  minge |wp(z
and, consequently, taking limits for n — oo, we have
lim sup |wp(2)me(2)[*/*  lim sup{max, T |Pa(z)[}/"
- lim inf |P,(2)|'/*  lim inf{min . |wp(z)me(z)|}/™

2"
lim inf | P,(2)[*/™

lim sup | Fl(2) — (n/n)u(2)"'"

lim sup{m@%{ |Pn(9:)|}1/" (3.7)
z€

by (3.6). This shows that we have to investigate the nth root asymptotic behavior of the
polynomial P,(z), so that this upper bound is less than 1 on any compact subset of C— T,
and thus that geometric convergence results. An appropriate selection for the nodes X will
correspond to the zeros of the para-orthogonal polynomials. We introduce these first.

Let ¢ be a finite positive Borel measure on T and let {p,} be the corresponding sequence
of monic Szego polynomials. The normalized polynomials are ¢n(z) = Knpn(z), kn > 0.
Thus (¢, 1), = 6k1, where (f,g), = [, f(€ 8)g(e®)dr(6). We introduce the notation
$%(2) = 2"Pne(2). If 7 € T, then Xn(Z 7') én(2) + 7¢%(2) is called the nth para-orthogonal
polynomial [15, § 6]. It is orthogonal to span{z,...,2""*}. For the convergence result to be
given in Theorem 3.4, we need the nth root asymptotics for the para-orthogonal polynomials
Xn. Such asymptotics can be obtained under rather week conditions for the measure ¢ (see
[20, Ch. 3]). However, since the measure 9 only plays an auxiliary role in the present
paper (see Theorem 3.4), it is not essential that we have the weakest possible condition on
the measure . It is sufficient to know that such a measure exists. So, we shall follow a
paved road and assume that ¢’ > 0 a.e., which is a sufficient condition to prove the ratio
asymptotics for the x,, which of course implies the nth-root asymptotics we need. This will
be done in Theorem 3.3. For its proof we need the following lemma’s:

7



Lemma 3.1 With the above notation and on condition that ¢'() > 0 almost everywhere on
[—7, 7], we have

o b
@ Ime
(i) lim ﬁ;)) =1 uniformly on TUD
G
(v)  lim pa(0) =0 and lim nyi/kn = 1.

n— 00

=z uniformly on TUE

=0 wuniformly on compact subsets of E

=0 wuniformly on compact subsets of D

Statements (i) and (iii) and the statements in (v) are equivalent (see [16, Lemma 2.4] and the
comments following it). Also (ii) and (iv) are equivalent and follow from (v) [18, Lemma 6].
That ' > 0 a.e. implies (i) is given in [18, Thm. 1, 4°, p. 207] (see also [16, Lemma 2.4]);
that it implies (v) is given in [19, Theorem on p. 206].

Lemma 3.2 (see [24, § 7.4]) Let K be a compact subset of C and {P.(z)} a sequence
of monic polynomials so that for each n, the zeros of P,(z) lie in K. Let |P|lx =
maXzck | Pn(2)| denote the mazimum norm in K, let gi(z; 00) be the Green’s function for K
with pole at oo, and let Cap(K) be the logarithmic capacity of K. Then we have lim,,_, o | Pn(2)
exp{gx(z; 00)}Cap( K) uniformly on any compact subset of C— K if and only iflim,_, ||Pn||}{/" =

Cap(K).

Now we can formulate

|1/n

Theorem 3.3 Let {7,}5° be a sequence of complex numbers on T. Set x¥(z,7,) = xn(z) =
bn(2) + Tndl(2) the para-orthogonal polynomials with respect to 1. Assume i)' > 0 a.e. Then
we have

(i) lim |Xn(z)|1/" = |z| uniformly on compact subsets of E
(i1) lim |Xn(z)|1/" =1 uniformly on compact subsets of D

(1)  lim MY™ =1 where M, = ||xn|T-
Proof. (i) Take z € E, then

Xn+1(2) _ Pni1(2) + Tn+1¢2+1(z) _ $ny1(z) 1+ Tn+1¢2+1(z)/¢n+1(z)
Xn(2) $n(2) + Tndr(2) $n(2) 14 Tagi(2)/da(z)

Thus by (i) and (ii) of Lemma 3.1, it follows that limy, e Xnt+1(2)/Xn(2) = 2, and therefore
also limy, o0 |Xnt1(2)|Y™ = |2|.
(ii) As in (i) we have

Xn+1(2) _ $n4a(2) Toir + $nia(2)/ 9114 (2)
Xn(2) ¢1(2) Tn + ¢n(2)/65(2)




The second fraction goes to 1, i.e.,

Tnt1 T+ ¢n+1(z)/¢;+1(z)

Y N OO

n—o0

—1 (3.8)

because for sufficiently large n

1— |¢n+1(z)/¢;+1(z)| < Tn41 + ¢n+1(z)/¢:1+1(z)
L+ [¢n(2)/d0(2)  — | 7n+ én(2)/d3(2)

so that ii) follows by iv) of Lemma 3.1.

(iii) Let An = Kn + Tndn(0) = kn(l + Tnpn(0)) be the leading coefficient of x,(2). Thus

< 1+ |¢n+1(z)/¢;+1(z)|
1= ¢u(2)/1(2)]

(3.9)

)\n—l—l _ Kn41 ]--I'Tn—l—lpn—l—l(o)

An Kn 1+ Tnpn(o)
and because lim,_,o pn(0) = 0 by v) of Lemma 3.1, we get that

An . n
lim 2% — (i Sntd 1,
n—o0 n n—o0 K./TL
so that
lim |A,|*™ = 1. (3.10)

The sequence {Xn(2)/An} of monic polynomials satisfies lim,_ o0 |Xn(2)/An|"/™ = |2|. Using
Lemma 3.2 with K =DU T, we get

. . 1 1/n . 1/n
1= lim ||xn/AnllT = lim WHXHHT/ = lim ||xn|7
and this concludes the proof. O

We thus have

Theorem 3.4 Let a = {a,} be a sequence of points contained in D and lim,_,o o, = 0.
For each n, let {z;.} be the zeros of the nth para-orthogonal polynomial xn(2;7n), ™ € T,
associated with some positive Borel measure 1) on T as described above. Furthermore, let
Fo(2) = Qu(2)/Pu(2) = (n/n)u(z) be a MPTA for F,(z) with denominator P,(z) = [17(z —

Tjn). Assume ' > 0 a.e. Then we have

lim sup [F,(2) — (n/n)u(2)|"/™ < A(2) < 1

where A(z) = |2[" if z € D and X(2) = |2]""! if z € E. This limit holds uniformly on compact
subsets of C —T.

Proof. Make use of (3.7) and Theorem 3.3. O

Corollary 3.5 Let f be analytic in a neighborhood G of T and 0 ¢ G. Assume that o and X
satisfy the conditions of Theorem 3.4. Let I,(f) denotes the n-point quadrature formula with
nodes {z;,}7 valid in Rp(n)qn) with p(n) + q(n) = n — 1 and suppose lim,_,o, p(n)/n =7,
0<r< 1. Then,

lim sup [ B (f)[*/" = lim sup [L(f) = I()]'/" <7 <1

7— 00

where v = max{v1,72} with y1 = max{|z|" : 2 € TND}, 72 = max{|z|""' : 2 € TNE} and
[’ is the boundary of G.

Proof. See (2.11) and Theorem 3.4. O



4 Convergence for continuous functions

In this section, we shall prove similar convergence results when f is continuous on T, but
not necessarily analytic. For simplicity, we shall only consider complex measures of the form
du() = w(6)dd where w is a complex-valued measurable function on [—, 7| such that

/_: w(8)[d8 < oo. (4.1)

Let h(6) be a weight function defined on [—m, 7], i.e., h(f) > 0 a.e. and

/_7r h(6)d8 < oo. (4.2)
Assume that o2
/_W |12((0))| df = 0 < . (4.3)

Let us consider a sequence a = {a,} compactly included in D. From the inner product
associated with A, i.e.,

(£,9) = [ £e*)a(e)h(6)de, (44)

we generate an orthonormal system of rational functions {¢x}, do = 1 and ¢x € L — Li—1
and ¢ L Lr_1, k =1,2,.... We introduce the notation ¢:(2) = Bn(2)¢n«(z) with B, the
finite Blaschke product with zeros a1, ..., a,. The ¢ are uniquely defined if we require that
kn = ¢i(an) > 0. Thus if ¢n(2) = Yp_o aknBr(2), then a,n = k,. In analogy with the
polynomial case where all o = 0, we call k, the leading coefficient of ¢, (with respect to
the basis Bg). Also in analogy with the polynomial case we set for 7,, € T

fn(z§ Tn) = an(z) + Tn¢;(z) € Ln. (4'5)

Functions defined by (4.5) are called para-orthogonal rational functions. We have from [2,
Theorem 4]

Theorem 4.1 For 1, € T, the para-orthogonal rational function f,(z,7,), given by (4.5)
has n simple zeros which lie on T.

For our purposes, it is convenient to recall a result about rational Szego formulas. That are
quadrature formulas approximating integrals of the form [™_ f(e*®)h(6)df. Their nodes are
the zeros of the para-orthogonal functions f,, for the weight A. This choice, together with
an appropriate choice for the weights, ensures a maximal domain of validity [2, p. 108]. We
denote them by S.(f) = ¥X7—; Ajnf(2jn) in order to distinguish them from the quadrature

formulas I,, in (2.1) which approximate integrals (1.2). We have
Theorem 4.2 [2, Theorem 6] Consider a quadrature formula S.(f) = Y71 Ajnf(Zjn)

=1
where Tj, # Tgn for 3 # k and |z;,| = 1. Then S, is ezact in Rn_Jl,n_l, that is
Sa(f) = [ f(e®)h(6)db for all f € Ru_1,n-1 if and only if (i) and (ii) hold:
(1) I.(f) is ezact in R, 4 for any pair (p,q) of nonnegative integers satisfyingp+q=mn— 1.
(ii) There exist T, € T such that the nodes z;, are the zeros of the para-orthogonal rational

functions f, from (4.5).

10



Since S,(f) is exact for any f € R,4, where p + ¢ = n — 1, we have for the weights
Ajn = /_: L2 (2)h(6)ds, z=¢® j=1,2,....n
where the L%, are given by (2.23). Furthermore, para-orthogonality allows us to write
Ajm = /_ : L2 (2)*h(8)d6, @ = e®. (4.6)
Thus, by (2.23) and (4.6) one has

wp(Zjn)Te(Zjm) L Pr(z)
P (@jn) /—r (z — zjn)wp(z)mq(z)

If we choose the table X = {z;,} such that {z;,}}_, are the zeros of the f,(2;7,) given by
(4.5), we can prove

Ajm =

h(8)d6. (4.7)

Lemma 4.3 Assume that h and w satisfy conditions (4.1)—(4.3) and that o is compactly
included in D. Take X = {z;n} such that {z;.}}_, are the zeros of the para-orthogonal
rational functions (4.5). Then there ezxists an absolute constant Cy such that

3 |Ajnl < Ca/m (4.8)

7=1

where the A;, are the coefficients in the m-point quadrature formula relative to the pair

(a, X).

Proof. Multiply and divide the integrand in (2.13) by {/A(6), and use the Cauchy-Schwarz

inequality, (4.3), and (4.7) to get
1/2 1/2
™ |w(6)|*df
h“i [[,—2@7— = VOidin

I
(4.9)

Since 1 € Rp—1pn-1 foreachn =1,2,..., we get 37 X;n = J™, h(0)df = C3. Therefore, using
(3.6) and the Cauchy-Schwarz inequality gives

S A5l < V01 3 Ao < /Cum
j=1 j=1

which proves (4.8). O

2

Pn(m)

(2 — @i )Jwp(2)mq(2)

wp(Zjn)Ta(Tjm)

P (zjn)

|Ajnl <

. 1/2
Z )‘j,n] =V Cl 03n7

i=1

A similar result can be proved when the {z,,} are the zeros of para-orthogonal polynomials
with respect to certain rational modifications of a positive weight function. Indeed, set
To-1(z) = mg(z)wp(z) € Iy (recallp+ ¢ =n — 1) and write

ha(8) = % >0, 6¢el—m,m]. (4.10)

Then we have ["_h,(0)dd < co. Let ¢, be the orthonormal polynomial of degree n with
respect to the measure h,(6)dé (varying with n) and let P, be the associated para-orthogonal
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polynomial, i.e., Pn(2) = ¢n(2) + Tndki(2), 7n € T. As mentioned before, P, has exactly n
distinct zeros {z;,} on T. From the Szegd quadrature formula [15, § 7] we know that there
exist n positive numbers ;. such that for all R € A_(5_1)n-1

/W R(z) dﬂ—z'yjn (2jn), z=e* (4.11)
and
1 = | P(z) |? 1 = |P.(z)]? h(6)df
Yim = T, 2/ (z) hn(6)df = / 2/ Pul2) 2 ©) 2
|Pr(zjn) 2 Jm |2 — Tjm |Pr(zjn) 2 o [Tn-1(2)? |2 — ;0]

Now, multiplying and dividing each term on the right-hand side of (4.11) by |Tn_1(z;n)|?,
we obtain

™ R(2)h(0) . _ ¥ R(;n)
n— >, VREA_(n_1)n- 4.12
‘/;T |T”_1(m)| Z J |Tn l(mjn)|2 ( 1)’ 1 ( )
with ,
| Taa(zin) /w Pue) P h(6) )
= | Tpr(p) do, «=c¢". 4.13
fYJa P:,I,,(mj,’n.) — Tn_l(m) |m _ mj"n,|2 Z e ( )

Proceeding as in Lemma 4.3, we see from (4.13) that there exists a positive constant C] such

that
|Ajnl < 4/Ci%im- (4.14)

On the other hand,

————— _ wp(@)7q(@)7p(2)wy(2)
[ To-1(2)* = lwp(2)mo(@)* = wo(@)m(@)wp(@)mq(2) = —S——F—2 o=,
and since p + ¢ = n — 1, we have |T,,_1(z)|> € A_(n_1)n-1. If we take R(z) = |Tp_1(z)[? in
(4.12), it follows that

/_7r h(6)d6 = _Xnﬁjm. (4.15)

From (4.14)—(4.15), a result similar to Lemma 4.3 can be proved.

Lemma 4.4 Assume that h and w are as in Lemma 4.3 and take X = {z;n} such that
{z;n}7 are the zeros of the para-orthogonal polynomials of degree n with respect to the varying
measure h(0)|wy(e®)m (€)%, p+ g =n — 1, then there exists an absolute constant C} such
that

3 1450 < Ch/m. (4.16)
7=1

Remark 5. From the point of view of the convergence of quadrature formulas for continuous
functions, the meaning of Lemma’s 4.3 and 4.4 will become clear later. It follows that taking
as nodes the zeros of the para-orthogonal rational functions with respect to a given positive
measure h(0)df is equivalent to taking nodes as zeros of para-orthogonal polynomials with
respect to an appropriate rational modification of this measure. We illustrate this with an
example.
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Example. Let us consider the Lebesgue measure h(6) = 1/[27], § € [—m,7]|. The orthonor-
mal rational functions are then given by (see [7, formula (1.2)], [5, p. 165])
B,
bu(2) = /1 — Jonp 202 (=) (4.17)

Z— Qp

Thus, the zeros {z;n} of fu(2) = ¢n(2) + Thd’:(2), Tn € T are the roots of the equation
0 = Pu(2) = 2wn—1(2) + TnTn_1(2). (4.18)

On the other hand, for a given polynomial h(z) of degree k of the form h(z) = hi(2)ha(2) =
¥ (2—a;) [1%(1—2b;) such that |a;| < 1, |b;| < 1, and ky+k, = k, the nth Szegd polynomial

with respect to the measure

dé
2 |h(e*)?
can be expressed as

pn(2) = z"_khl(z)h;(z), n > k. (4.19)

The study of rational modifications of a measure has been introduced by Szegé in the case
of the unit circle [21, § 11.2]. For further details, see [13, § 4] for the case of the Lebesgue
measure on T and also [9] where formulas are given for the sequence of monic orthogonal
polynomials associated with a rational modification of a finite positive measure supported
on Jordan curves. Let us now take hi(2z) = wy(2) and ha(z) = my(2), p+ ¢ = n — 1, then

from (4.19)

ou(2) = 2up(2)en(2). (4.20)
Hence, for 7, € T, the zeros of the nth corresponding para-orthogonal polynomial are the
roots of the equation

0 = Pu(2) = 2wp(2)wg(2) + Tamp(2)my(2). (4.21)

The nodes of Lemma 4.3 are given by (4.18), while the nodes of Lemma 4.4 are given by
(4.21).

Assume that {p(n)} and {g(n)} are two sequences of nonnegative integers such that
p(n)+q(n) =n — 1 and lim,_,o p(n)/n = r < 1. Define for a continuous function f on T

Yu-1(f) = o dnf I = Rl (4.22)

RERn—l n—

By Theorem 2.1, one has that lim,_,co Yn—1(f) = 0. However, it can be seen from Lemma
4.3 (or 4.4) that this is not sufficient to assure the convergence of the sequence {I.(f)}. So,
we need to give estimates of v,_1(f) in terms of » when f is a continuous function on T.
Such estimates are known when f is approximated by Laurentpolynomials. More precisely,
it is proved in [4, Theorem 5] by using Jackson’s theorem III (see [6, Ch. 4, § 6, p. 144]) that
if f is a continuous function on T then there exists some R, 1 € A_(n_1)n—1 such that

max |f(2) — Raos (2)| < 20(,7/n), (423)

where w(f,8) = sup{|f(e*) — f(e*)| : |t —s| < § ; —7 < 5,t < 7} denotes the modulus of
continuity of f on T. If ag # 0 is a fixed point in D, then a bilinear transformation gives

'Yn—l(f) < KUJ(f, 7'('/7’2/),
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where K is a constant and
P(z)

(z — )" (1 — @pz)™ !

'Yn—l(f) = Pell'Ian_z

f(z) -

T
Thus, it seems natural to wonder if the same type of estimate for v,_1(f) holds when f
is approximated by functions from R,_1n-1 (recall that R,_;,_1 depends on the sequence
a = {ar} C D). In this respect, a Jackson-type theorem was proved in [11, Thm. 4] for a
function continuous on [—1,1] that is approximated by rational functions with prescribed
poles outside [—1,1]. We shall prove a similar result. First some auxiliary results are
required. Let

Py,
Ln(Z) = zin € A—n,n; P2n € H2n

be a Laurent polynomial and 7,,(6) = L,(e') a trigonometric polynomial of degree n. Then it
is clear that |T,(8)| = |Ln(2)| = | Pan(2)| for z = € € T. We also consider the trigonometric
rational function R,(6) = Tn(6)|wn(e®)|™2. If {8;}321" C [—m, x| with 6; # 6 for j # k
and f is a periodic function on [—m, ], then R,() is uniquely defined by the interpolation
conditions

Rn(ﬁj):f(ﬁj), ] = 1,2,...,2’)1—{—1,
because the system {1,sind,...,sinnf,cosf,... cosnf} satisfies the Haar condition. We
e () (<)

~ : P2n e P2n e’

R.(8) = Ru(e®) = — S = . — € Ron.
( ) (8 ) ezn0|wn(eze)|2 wn(eze)ﬂ-n(eze) € !

Setting ; = €%, j =1,2,...,2n + 1, we have R,(z;) = g(z;), where g(e*®) = f(0). Let us
assume that g is defined on a certain neighborhood G including T and let I' be the boundary
of G. Then, from Hermite’s interpolation formula (see Walsh [24, Thm. 2, Ch. 8]), one has

Ru(0) = f(8) = Rn(€”) = g(”) = Ra(2) = g(2), 2=¢"
_ [z e mmnimt) 50)
r(t—21) - (t — Tant1)wn(2)mn(2) 2
/ Xant1(2)]/[wal2)Ta(2)] 9(t)
T [Xont1(8)]/[wa(t)ma(B)] 2 =2

(4.24)

where xx(2) = H?Zl(z —z;).

Next we need to extend the Bernstein-Walsh formula (see Walsh [24, p. 77]) to trigono-
metric polynomials. We recall that, for ordinary polynomials, this formula says that if f is a
continuous function on [a, b] and @7, is the best (in uniform norm) polynomial approximation
of degree m, then for m sufficiently large

Q7 (2)] < 2]|flleo exp{mgia(2, o0)},

where g[, 4(2, 00) is Green’s function for the region C— [a, b] with singularity at infinity. The
trigonometric generalization of this result is

Lemma 4.5 Let f be a real 27 -periodic continuous function and let T} (6) be the trigonomet-
ric polynomial of degree m of best approzimation in the uniform norm. Then if L} € A_,,
is the Laurent polynomial such that T (8) = L* (e®), for sufficiently large m we have

() V2#0, o] <1: |Ln(2)] < 20| flanle| ™,
(i) V2€C, |2 >1: |Ln(2)] <27l
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Proof. Given P;,, € Ilym, put L} (2) = P;,.(2)/2™. Since Py, is analytic in DU T, we have
that
| Pom(2)] < max [Py, (2)] = max | Py, (2)| = [ Tplee, 2 €DUT.

Thus, if z # 0 and |z| < 1 then

< N Tllool 2™ (4.25)

z'rn.

L) = | Pl

For z € C and |z| > 1 we consider the function z7?™P;,_(z), analytic in |z| > 1, so that

‘L:n(a _ ‘P;m(z)

Zm Z2m

— | = max| P (2)| = [| T |l co- (4.26)
ZET

By the Weierstrass theorem, we have limpy, o Ty (8) = f(0) uniformly on [—m,7|. Thus for
sufficiently large m

1T lleo < 2] f]oo- (4.27)
By (4.25)—(4.27) the result now follows. O

Now we can prove a rational form of Jackson’s theorem III.

Lemma 4.6 Let a = {ar} be compactly included inD such that (3.4)—(3.5) hold forr = s =
1/2 and let f be a real 27-periodic continuous function. Then there ezxists a trigonometric
rational function R,(8) = T.(8)|w(e®)|? with T,(8) a trigonometric polynomial such that
for sufficiently large n there is a constant K, with

If = Ralleo < Kaw(f, 757)- (4.28)

Proof. Let T; be the best trigonometric polynomial approximation to f of degree m and
set T*(0) = L} (%), LY, € A _ppm. Let X = {X,}2, with X,, = {z;,:7=1,...,n} bea
triangular table of points contained in T. Set xn(2) = II}_,(2z — z;,) and, with the notation
introduced above, assume that

yf 0

n b

where vX

=+ = v(xn) and 7 is the equilibrium measure on T in the presence of the exterior field

V() = ~5 (Von () + Via(1/2) + Vao(2));

here &y is the Dirac measure supported at z = 0. Details about existence and construction
of table X can be found in [10, main thm. p. 124]. Let T)* be the trigonometric polynomial
of degree m that is the best approximation of f and suppose that 7% (6) = L% (), L:, €
A mm. Set z;, = €¥in 5 =1,... n and take R,(8) = Tn(6)|wn(e?®)|? the trigonometric
rational function of degree n which interpolates 7, at § = 6,041, 7 = 1,...,2n + 1. By
(4.24), for z = € € T we have

n(a(s) Ln(?)
R.(0)—-T,(0) = SO —
wn(t)mn(t)
Suppose that ' =T Ul where I = {z € C: |z|=r <1} and T, ={z € C: |2| =R > 1}.
If G denotes the annulus centered at the origin with radii » and R, then, since « is compactly

dt. (4.29)
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included in D), 7 and R can be chosen sufficiently close to 1 so that GN(a U &) = 0. Setting
p = log(max{R, 1/r}), by the preceding lemma, we obtain

sup | Ly, (2)] < 2| f]|oo exp{mp}. (4.30)

Replacing » by 2n + 1 in (3.4) and (3.5) and setting p(2n + 1) = ¢(2n + 1) = n, so that
r=s=1/2, for z € (C— {0}) — supp (v*) and 1/2 ¢ supp (v*) one obtains

Jim lon(2)ma() ) = exp { =2 (Via(2) 4 Via(1/2) } 212 = exp{-V(2)},  (431)
and, for z # 0,
lim sup |wn(2)mn(2)[Y/ ") < exp{—V(2)}. (4.32)

n—o0

By (4.29) and (4.30) it follows that

Ra0) - T30 < 2T B gy (439
n m(0) < K1 nf,op |20 exp{mp o .
wn(t)mn(t)
By (4.31), we have
1/(2n+1)
. X2n+1(t)
1 — = t)— Vp(t
RN ey exp{V(t) — Vi(?)}
uniformly for ¢ € T, and, by (4.32)
1/(2n+1)
fim sup jﬁj()) < exp{V(2) - Vo(2)}

uniformly on T. Given € > 0, we obtain

Xant1(t)
wn(2)7n(t)

forn > ng and t € T, and,

> exp{(2n + 1)[V(t) - Vi(t) - €]}

Xant1(2)
wn(2)mn(2)

< exp{(2n + 1)[V(2) - Vi(2) + ]} = exp{(2n + 1)(K + )}

for z € T, where K is the constant value that V(z) — V;(2) takes on T. From (4.33) and the
last two centered formulas we can conclude that, for n > ng and 6 € [—=, 7],

Ral6) = To(8)] < Kill oo exp{me} exp { (20 + 1) | K + 2 = inf(V() - Vo(e)| . (4.34)

Take m = m(n) = [(2n + 1)/I] with |-| the integer part and [ an appropriately chosen
positive constant. Then m < (2n + 1)/l and from (4.34) it follows

Ral6) = Tio(8)] < Kl fllooexp { (2 + 1) [ /1 + K + 2 — inf(V($) - Va(2))] } .
On the other hand, it is known that

inf(V(t) - Va(t)) > K.

tel
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Therefore, by taking € > 0 sufficiently small and [ sufficiently large, we can ensure that
pll+ K + 26— inf(V(t) ~ V(1)) = C
with C a positive constant. Thus we have obtained that for all § € [—m, 7]
|Rn(8) = T (0)] < Ki| flloo exp{—=C(2n + 1)} (4.35)

Next we assume without loss of generality that f vanishes at least once at a point 6, € [—7, 7]
(if not, it suffices to consider g(8) = f(8)— f(6y) and take into account that w(f,8) = w(g, §)).
Under this condition

I£llee < max {£(6)} ~ , min_{£(6)}. (4:36)

Let f(61) be the maximum and f(6;) be the minimum. Suppose §; < 0, (the other case is
similar); then

2n+1 . }
50 - 8 = |3 [£6+ G8) — s0 + u_zﬂ‘
2n+1 . .
<X A6+ G — 0+ B
< (2n+2)w(f, 1)
Therefore
[ flleo < (2n + 2)w(f, ;57)- (4.37)
From (4.35) and (4.37) we obtain
|Rn(6) — T (0)] < Krw(f, 755) exp{log(2n + 2) — C(2n + 1)}. (4.38)

Now, using Jackson’s theorem III [6, p. 144], for 2n + 1 > [ we obtain
|£(6) — Ty (6))

< 2w(f,ﬁ)§2w(f: Li;i-_lJ)
< 2w(f,2) < 2w(f, 2
<

2n+1 n+1

2(21 + Lw(f, -25), (4.39)

where we have used that [H > % if n > 1, that w(f,61) < w(f,6,) if 6 < §; and that

w(f,A8) < (1 4+ MNw(f,8). A combination of (4.39) and (4.38) then gives

£(6) = Ra(0)] < [f(6) = Toym)(0)] + | Tom)(6) — Ba(6))]
< [2(204 1) + Ky exp{log(2n + 2) — C(2n + 1)}|w(f, n"?)

Hence, noting that lim,_, exp[log(2n + 2) — C(2n + 1)] = 0, the lemma follows. O

Finally we are ready to prove

Theorem 4.7 Let a = {ax} be compacly included in D such that (3.4)-(3.5) hold for r =

s =1/2 and let f be a function continuous on T. Then there exists a constant Cy such that

’Yn(f) < C4W(f, #)7
where Y, (f) is as in (4.22) with n sufficiently large.
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Proof. Let us now consider a continuous function f on T; then we can set

f(€) = f1(8) +ifa(6), 6 € [-m,7], (4.40)
where f1(0) = R(f(€*®)) and f2(0) = S(f(e®)) are 2m-periodic functions on [—7,7]. Let

R, ;(8), 7 = 1,2 be the trigonometric rational functions appearing in (4.28) and correspond-
ing to f;(8), 7 = 1,2, that is,

1f5 = Bnjlloo < Kaj0(fs, 55), 7 =1,2. (4.41)

Write Rn(2) = Rni(0) + 1Rap2(8), 2 = e’; then clearly R, € R,,. Furthermore, since
£3(s) = F(DI < [£(e) = f(eD)], § = 1,2, it follows that w(f;,6) < w(f,6), j = 1,2. Thus,
by (4.28)-(4.41) it follows that

V(f) < max|f(z) = Ru(2)| < [lfs = Balloo + [If2 = Bnalleo < (Kan + Ka2)w(f, 257)-
This concludes the proof. O

It follows that if f is a continuous function on T with w(f,§) = O(é?) and p > 1/2, then, by
Theorem 4.7 and Lemma 4.3 or 4.4, there exist constants A and B independent of n such
that for sufficiently large n one gets

A+ By/n
np '

11 (f) = 1(F)] <

This means that the following theorem is proved.

Theorem 4.8 Let f be a continuous function on T with modulus of continuity w(f,6) =
O(6%) for some p > 1/2. Let X = {z;n} be the triangular array of nodes as described
in Lemma 4.3 or as in 4.4. Then the sequence of quadrature formulas with nodes {z;,}
converges to I,(f).

Remark 6. Note that Theorem 4.8 holds for any function f satisfying a Lipschitz condition
of the form

|f(z1) — f(z2)| < AMzs — 2P, p>1/2; 21,25 €T.
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