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Abstract

In this paper, we study a new class of tractable diffusions suitable
for model’s primitives of interest rates. We consider scalar diffusions
with scale s′(x) and speed m(x) densities discontinuous at the level
x∗. We call that family of processes Self Exciting Threshold (SET)
diffusions. Following Gorovoi and Linetsky (2004), we obtain semi-
analytical expressions for the transition density of SET (killed) dif-
fusions. We propose several applications to interest rates modeling.
We show that SET short rate processes do not generate arbitrage
possibilities and we adapt the HJM procedure to forward rates with
discontinuous scale density. We also extend the CEV and the shifted-
lognormal Libor market models. Finally, the models are calibrated
to the U.S. market. SET diffusions can also be used to model stock
price, stochastic volatility, credit spread, etc.
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1 Introduction

One-factor models assume that all the information about the term struc-
ture of interest rates can be summarized by a single state variable which
is usually the short rate. The dynamic of the short-term interest rate has
received considerable attention in the financial literature. Among many oth-
ers, the Vasicek (1977) and the Cox-Ingersoll-Ross (1985) models define the
short rate as a linear diffusion with mean reverting instantaneous drift that
guarantees the stationarity of the process. The Vasicek model assumes a
constant instantaneous volatility while the volatility of the CIR model van-
ishes rapidly when the short rate falls off in order to make zero unattainable.
The Vasicek and the CIR models are very tractable as closed-form expres-
sions exist for the transition density and the bond price. Unfortunately,
these models partly fail in capturing the empirical behavior of short rate
time series.

The Japanese interest rates since the Asian crisis illustrate the unade-
quacy of classical models. As mentioned by Goldstein and Keirstead (1997)
and Gorovoi and Linetsky (2004), the Japanese short-term rate during the
period 1996 − 2003 remained at a very low level, but with a rather high
volatility. The Vasicek model is consistent with high volatility at low inter-
est rate regime but the probability for the short rate to become negative
is not negligible whereas the CIR model precludes negative interest rate
through a low volatility near zero. The second difficulty encountered when
modeling the Japanese term structure of interest rates relates to the so-
called Zero Interest Rate Policy (ZIRP). In February 1999, the Bank of
Japan adopted the ZIRP by providing the necessary liquidity to offer very
cheap credit against the deflationary pressure. The ZIRP was abandoned in
Augustus 2000 and reactivated on March 19, 2001. The changes in the pol-
icy of the Bank of Japan have resulted in a regime switching behavior of the
short-term rate depending whether the ZIRP is activated to maintain the
short rate near zero or deactivated to permit short rate around 0.5 percent.
Goldstein and Keirstead (1997) provide a solution to this problem by im-
posing a reflecting or an absorbing boundary to the short rate process while
Black (1995) proposes the use of a shadow rate. As explained in details
in Gorovoi and Linetsky (2004), analytical expressions can be recovered by
using eigenfunction expansions for both models.
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The U.S. interest rates have a similar regime switching feature depend-
ing on the level of the short rate. As mentioned in Pfann, Schotman and
Tschering (1996), during the period 1979−1982 interest rates were very high
and extremely volatile. They argue that the volatility of the U.S. interest
rates plummets when the short rate falls below 8.5 percent. Markov switch-
ing regime models were introduced in the literature to capture this behavior.
Under these models, the short rate switches between discrete regimes each
of them driven by a diffusion process with distinct drift and volatility. Ait-
Sahalia (1996) criticizes such models on their time-inhomogeneous feature
and argues in favor of a short rate process with bimodal transition probabil-
ity, both modes corresponding to a different regime. This can be achieved
through a diffusion process with highly nonlinear instantaneous drift and
volatility, see Ait-Sahalia (1996).

Factor models are mostly used (e.g. by central banks) to understand
the mechanisms driving the term struture of interest rates while more flex-
ible models are needed for pricing derivatives. Libor market models con-
sider the discrete forward (Libor) rates as model primitives rather than the
short-term spot rate as in the Vasicek or the Cox-Ingersoll-Ross model or
the continuously compounded forward rates as suggested by Heath, Jarrow
and Morton (1992). It allows for pricing caplets (floorlets) as call (put)
options with the popular Black’s formula. In Black’s formula, the forward
Libor rates are defined as martingales with lognormal marginals under the
appropriate risk-neutral forward measure. However, lognormal forward Li-
bor rates do not allow for the volatility skew present in the Japanese but
also in the U.S. Libor (and swap) markets. Andersen and Andreasen (2000)
propose to model the volatility skew by means of CEV diffusion. Mercurio
(2004) proposes mix shifted log-normal models for the forward rates, see
also Joshi and Rebonato (2003).

In this paper, we propose a new family of tractable stochastic processes
for model’s primitives of interest rates. We consider the linear diffusion X
defined on the state space I = (e1, e2) and we allow the scale s′(x) and
speed m(x) densities to be discontinuous at the level x∗ ∈ (e1, e2). In case
s′(x) is continuous, the diffusion {X(t), t ≥ 0} is solution of a stochastic
differential equation with two regimes

dX(t) =

{
µ1(X(t))dt+ σ1(X(t))dW (t), e1 < X(t) < x∗

µ2(X(t))dt+ σ2(X(t))dW (t), x∗ ≤ X(t) < e2,
(1)

where {W (t), t ≥ 0} is a standard Brownian motion, the differences µ2(x
∗)−

µ1(x
∗) and σ2(x

∗)−σ1(x
∗) are finite. We write for short that the process X
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is a Self Excited Threshold (SET) diffusion with two regimes. In case s′(x) is
discontinuous, we show that the linear diffusion is a semimartingale solution
of a stochastic differential equation involving its symmetric local time. We
interpret these diffusions in terms of the probability of switching between
regimes at the level x∗. Following Linetsky (2004) and Gorovoi and Linetsky
(2004), we obtain semi-analytical expressions for the transition density and
prices of European-style contingent claims that facilitate the calibration of
the models. In case no analytical expression exists, we propose stochastic
representations that may help to find approximations.

The paper is organized as follows. In section 2, we recall the useful no-
tion of local time and we define the skew Brownian motion. In section 3, we
study properties of SET diffusions. We derive stochastic representations for
the transition probability of (killed) SET diffusions that hold under mild
assumptions. We adapt the results of Gorovoi and Linetsky (2004) to that
class of diffusions and we obtain eigenfunction expansions for the transi-
tion density when the spectrum of the (killed) semi-group is discrete. In
section 4, we study SET one-factor term structure models. We provide an-
alytical results in terms of special functions for the cases of two Vasicek
regimes and two CIR regimes. We interpret the resulting term structure as
a time-continuous version of Self Exciting Threshold AutoRegressive (SE-
TAR) time series model used by Pfann, Schotman and Tschering (1996).We
discuss generalization to multi-factors models and to SET diffusions with
discontinuous scale density. In section 5, we define SET Libor market mod-
els. We give expressions for the price of caplet and we adapt the approxi-
mation of Andersen and Andreasen (2000) for swaption price when adding
stochastic trading time. In section 6, we illustrate the convergence pattern
of eigenfunction expansions and we calibrate a SET model with two Vasicek
regimes to the U.S. zero-yield curve.

2 Definitions

In this paper, we present properties of the (killed) semi-group when speed
and scale densities are discontinuous at the level x∗. We start with a brief
introduction to the useful notions of local time and skew Brownian motion.

2.1 Local time

The notion of Local time was introduced by P. Lévy for measuring the time
spent by a diffusion process in the vicinity of a point. Following Ouknine
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(1991), we can distinguish three local times at a associated with the con-
tinuous semimartingale X started at x:

• the right-local time at a denoted L
a+
t (X)

1

2
L
a+
t (X) = (X(t) − a)+ − (x− a)+ −

∫ t

0

1(X(s)>a)dX(s),

• the left-local time at a denoted L
a−
t (X)

1

2
L
a−
t (X) = (X(t) − a)− − (x− a)− +

∫ t

0

1(X(s)<a)dX(s),

• the symmetric local at a denoted Lat (X)

Lat (X) = (L
a+
t (X) + L

a−
t (X)) /2

where x+ = sup (0, x) and x− = sup (0,−x). If L
a+
t (X) = L

a−
t (X), we say

that the local time is continuous at a. The symmetric local time satisfies
the occupation formula∫ t

0

ν(X(s))d〈X,X〉s =

∫
R
ν(x)Lxt (X)dx (2)

for every bounded measurable function ν(x).
As outlined in Lejay (2002), local times play an essential role in the

study of stochastic processes with non-regular coefficients. Lejay (2002)
shows that processes whose generators have discontinuous coefficients are
solutions of stochastic differential equations in the form

dX(t) = σ(X(t))dW (t) +

∫
R
ν(x)dLxt (X)dx, (3)

where {W (t), t ≥ 0} is a standard Brownian motion. For more details on
stochastic differential equations involving their local time, we refer also to
Le Gall (1981). When σ = 1 and ν(x) = (2α − 1)δ(x−a) where δ(x−a) is a
Dirac function with support {a}, the solution of (3) is the skew Brownian
motion. In what follows, we will extensively use the following Lemma which
is a particular case of Tanaka formula.
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Lemma 1 Suppose that the functions f : R → R, f ′ and f ′′ exist and are
continuous except at a where the limits

f ′(a±) = lim
x→a±

f ′(x) f ′′(a±) = lim
x→a±

f ′′(x)

are finite. Then, for any continuous semimartingale X,

f(X(t))−f(X(0)) =

∫ t

0

f ′(X(s))dX(s)+
1

2

∫ t

0

f ′′(X(s))d〈X,X〉s+γLat (X)

where γ = 1
2
[f ′(a+) − f ′(a−)].

Proof. The proof is an application of Tanaka formula as f is the difference
of two convex functions, see Revuz and Yor (1998). �

2.2 Skew Brownian motion

The skew Brownian motion (skew BM) was first mentioned by Itô and
McKean (1974). Since then many authors have been interested by this
diffusion process. We cite Walsh (1978), Harrison and Shepp (1981), Le
Gall (1982) and Ouknine (1991). A skew Brownian motion with parameter
0 ≤ β ≤ 1 behaves like a Brownian motion away from the origin and is
reflected to the positive side with probability β and to the negative side
with probability 1 − β when it arrives at the origin. It can be defined as a
solution of the stochastic differential equation

dXβ(t) = dW (t) + (2β − 1)dL0
t (X

β) (4)

where {W (t), t ≥ 0} is a standard Brownian motion. The skew BM is
a piecewise linear function of a time changed Brownian motion. An ap-
plication of Tanaka formula yields that the process rβ(W (τβ(t))) where
τβ(t) = inf

{
s| ∫ s

0
du/σ2

β(W (u)) > t
}
, rβ(x) =

∫ x
dy/σβ(y) and σβ(x) =

(1−β)1(x≥0) +β1(x<0) is the skew BM. As shown in details by Harrison and
Shepp (1981), the skew BM is a linear diffusion with discontinuous scale
s′(x) and speed m(x) densities defined by

m(x) =

{ 2
β
,
2

1−β ,
s′(x) =

{
β, x < 0
1 − β, x ≥ 0.

(5)
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The local time of the skew Brownian motion is discontinuous at the origin.
As pointed out by Ouknine (1991)

1

2

(
L0+

t (Xβ) − L0−
t (Xβ)

)
=

∫ t

0

1(Xβ(s)=0)dX
β(s)

=

∫ t

0

1(Xβ(s)=0)dW (s) + (2β − 1)L0
t (X

β)

= (2β − 1)L0
t (X

β),

since L0
t (X

β) = 1
2

(
L0+

t (Xβ) + L0−
t (Xβ)

)
, it follows that

L0+

t (Xβ) = 2βL0
t (X

β)

L0−
t (Xβ) = 2(1 − β)L0

t (X
β). (6)

The transition density pβ(t; x, y) of the skew BM is obtained via its Green
function

pβ(t; x, y) =
1√
2πt

e−
1
2t
|y−x|2 + sign(y)

(2β − 1)√
2πt

e−
1
2t

(|y|+|x|)2, (7)

see e.g. Walsh (1978). It is also convenient to introduce the continuous
semimartingale {Rβ(t), t ≥ 0} with decomposition

Rβ(t) −Rβ(0) =

∫ t

0

1

Rβ(s)
ds+W (t) + (2β − 1)L1

t (R
β). (8)

3 Self Exciting Threshold (SET) diffusions

Consider a linear conservative diffusion X started at x taking values in the
interval I = (e1, e2). Let {Pt, t ≥ 0} be the semi-group of operators such
that for every bounded function f

(Ptf)(x) := Ex [f(X(t))]

=

∫
I

f(y)p(t; x, y)dy (9)

where p(t; x, y) is the transition density w.r.t. the Lebesgue measure. The
scale function s(x) and the speed density m(x) give rise to the next repre-
sentation of the infinitesimal generator of X, G : f ∈ D → g:∫

[a,b)

g(x)m(dx) =
df

ds
(b) − df

ds
(a)
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where df
ds

(x) = limy→x
f(y)−f(x)
s(y)−s(x) is the s− derivative, acting on the domain

D =

{
f : f,Gf ∈ Cb(I),

df

ds
(x) exists, conditions at e1 and e2

}
.

Usual assumptions are the continuity of the functions s, s′, s′′, m and
k. As mentioned in the introduction, we consider rather that s′ and m
are discontinuous at the level x∗ where the differences s′(x∗+) − s′(x∗−) and
m(x∗+) −m(x∗−) are finite. The infinitesimal generator is the second order
operator

Gf =
1

2
σ2(x)

d2f

dx2
+ µ(x)

df

dx

where the functions µ and σ are respectively the infinitesimal drift and
volatility coefficient. The conditions on s and m imply that the functions
µ and σ can be discontinuous at the level x∗ where µ(x∗+) − µ(x∗−) and
σ(x∗+)−σ(x∗−) are finite. In case s′ is continuous, the functions µ and σ are
related to the basic characteristics s and m through the fomula

s′(x) = exp

{
−
∫ x 2µ(z)

σ2(z)
dz

}

m(x) =
2

s′(x)σ2(x)
, (10)

and, under mild assumptions, X is a Itô process solution of the stochastic
differential equation

dX(t) = µ(X(t))dt+ σ(X(t))dW (t), X(0) = x.

We now show that the solution of the stochastic differential equation
involving its local time

dX(t) = σ(X(t))dW (t) +

∫
R
ν(x)dLxt (X)dx, X(0) = x

where ν(x) = µ(x)/σ2(x)+ (2α−1)δ(x−x∗), is a linear diffusion with discon-
tinuous scale density. We define the continuous function rα(x) =

∫ x
r′α(y)dy

such that rα(x
∗) = x∗ and r′α(x) = 1

α
1(x<x∗) +

1
1−α1(x≥x∗) for some α ∈ (0, 1).

Consider the process {Yt, t ≥ 0} solution of the stochastic differential equa-
tion

dY (t) =
µ(rα(Y (t)))

r′α(Y (t))
dt+

σ(rα(Y (t)))

r′α(Y (t))
dW (t),
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Y is a linear diffusion with scale and speed densities given by

s′Y (y) = exp

{
−2

∫ rα(y)

ν(z)dz

}
.

We can verify using Tanaka formula and the occupation identity (2) that
X = rα(Y ). The scale and speed densities of X result from the relations
s′(x) = s′Y (r−1

α (x))/r′α(r
−1
α (x)) and m(x) = mY (r−1

α (x))/r′α(r
−1
α (x)). It is

easy to check that s′ is discontinuous at x∗ where (1 − α)s′(x∗−) = αs′(x∗+).
We write for short thatX is a Skew Self Exciting Threshold (SSET) diffusion
with skew parameter α. SSET diffusions have a nice interpretation in terms
of the probability of switching between regimes when X reaches the level
x∗. Indeed, the probability of hitting x∗ + ε before x∗− ε when X is located
at x∗ is given by

Px∗(Hx∗+ε < Hx∗−ε) =
s(x∗ − ε) − s(x∗)

s(x∗ − ε) − s(x∗ + ε)

=

∫ x∗−ε
x∗ s′(y)dy∫ x∗−ε

x∗ s′(y)dy +
∫ x∗
x∗+ε s

′(y)dy
(11)

where Hx∗±ε = inf {t ≥ 0 : X(t) = x∗ ± ε}. This probability is close to α
for small value of ε. We can interpret the quantity (2α − 1)

∫ t
0
e−δsdLr

∗
s (r)

as the cost1 of maintaining high regime of X with probability α when it hits
x∗.

The price of a claim contingent on X with payout h ∈ Cb(I) is the
expectation under some risk neutral measure of the discounted payments.
Gorovoi and Linetsky (2004) introduce the pricing semi-group {P̂t, t ≥ 0}

(P̂th)(x) := Ex

[
e−

t
0 r(X(s))dsh(X(t))

]
=

∫
I

p̂(t; x, y)h(y)dy (12)

where p̂(t; x, y) is called the state-price density and can be interpreted as
the price of fundamental securities, or Arrow-Debreu securities that yield
1 only if X equals y at time to maturity. When the discount function
r(.) takes non-negative values on I, {P̂t, t ≥ 0} is the semi-group of a linear
diffusion killed at a rate r(x). Let X̂ be the non-conservative linear diffusion

1δ is a constant discount factor.
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with scale and speed densities defined by (10) sent to a cemetery ∂ when
the additive functional

∫ t
0
r(X(s))ds exceeds an independent exponential

random variable τ with parameter 1, then

(P̂th)(x) = Ex[h(X(t))1(τ<t)]

= Ex[h(X̂(t))]

assuming that f(∂) = 0. The generator of X̂ is defined by Ĝ : f ∈ D → g∫
[a,b)

g(x)m(dx) =
df

ds
(b) − df

ds
(a) −

∫
[a,b)

f(x)k(x)dx

where k(dx) = m(dx)r(x) is the killing measure and acts on the same
domain as G. We refer to Gorovoi and Linetsky (2004) and Linetsky (2004)
for a complete account on pricing semi-groups.

3.1 Stochastic representations

Under some regularity conditions upon the infinitesimal drift µ and infin-
itesimal volatility σ, the transition density p(t; x, y) can be represented as
the conditional expectation of a multiplicative functional of a Brownian mo-
tion or a three-dimensional Bessel process. These stochastic representations
are widely used to prove the existence and some properties of p(t; x, y), see
Dacunha-Castelle and Florens-Zmirou (1986) and Ait-Sahalia (1999) and
(2002). The following Theorem generalizes this result for SET diffusions.
We can also rely on these representations to derive approximations when no
closed-form expression exists for p(t; x, y), see e.g. Decamps, De Schepper
and Goovaerts (2004).

Theorem 1 Let {W (t), t ≥ 0} be a Brownian motion on the probability
space (Ω,F , (Ft)t≥0,Q) and {X(t), t ≥ 0} be the solution of the stochastic
differential equation

dX(t) = µ(X(t))dt+ σ(X(t))dW (t) + (2α− 1)dLx
∗
t (X), X(0) = x0

taking values in the interval IX . We assume that the functions σ, σ′ and µ
exist and are continuous except at x∗ ∈ IX where the limits

σ(x∗±) = lim
x→x∗±

σ(x), σ′(x∗±) = lim
x→x∗±

σ′(x), µ(x∗±) = lim
x→x∗±

µ(x)
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exist and are finite. We define the non-decreasing continuous function

φ(x) =

∫ x dz

σ(z)

such that φ(0) = 0, y0 = φ(x0) , y = φ(x), y∗ = φ(x∗). The process
{Y (t) = φ(X(t)), t ≥ 0} is a solution of the stochastic differential equation
dY (t) = µY (Y (t))dt+ dW (t) + (2β − 1)dLy

∗
t (Y ), Y (0) = y0 where

µY (y) =
µ(φ−1(y))

σ(φ−1(y))
− 1

2
σ′(φ−1(y))

β =
(α + 1/2)σ(x∗−) + (α− 1/2)σ(x∗+)

σ(x∗−) + σ(x∗+)
,

and takes value in the interval IY . Define the quantities

λY (y) = (µ2
Y (y) + µ′

Y (y))/2

γ = βµY (y∗+) − (1 − β)µY (y∗−),

the following representations hold

(i) when IY = (−∞,+∞), the transition probability of X can be written
as

p(t; x0, x) =
e

y
y0
µ(z)dz

σ(x)
pβ(t; y0, y)

×Ey0
[
e−

t
0 λY (Xβ (s))ds−γLy∗

t (Xβ)|Xβ(t) = y
]

where pβ(t, y0, y) is the transition density of the skew BM.

(ii) When IY = (0,+∞), the transition probability of X can be written as

p(t; x0, x) =
e

y
y0
µ(z)dz

σ(x)

y

y0

pβ(t; y0, y)

×Ey0
[
e−

t
0 λY (Rβ(s))ds−γ′Ly∗

t (Rβ )|Rβ(t) = y
]

where γ′ = (γ − (2β − 1)/y∗) and pβ(t; y0, y) is the transition density
of Rβ.

Proof. A proof can be found in Appendix A. �
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3.2 Eigenfunction expansions

Ornstein-Uhlenbeck (O-U) and square-root (CIR) processes are very popu-
lar in finance since the transition probability is known in closed-form. When
analytical solutions exist for both regimes 1 and 2, we can use the spec-
tral theory to recover tractable expressions. According to Itô and McKean
(1974), the transition density w.r.t. the Lebesgue measure associated to the
semi-group with infinitesimal generator G satisfies the partial differential
equation

Gu(t; x) =
d

dt
u(t; x),

and can be constructed by means of an eigenfunction expansion. The eigen-
function ϕλ(x) is the continuous solution with continuous scale derivative
dϕλ

ds
(x) of the Sturm-Liouville problem

−(Gu)(x) = λu(x), ∀x ∈ I = (e1, e2) (13)

for some λ ∈ C such that ϕλ(x) is m−square integrable and satisfies ap-
propriate boundary conditions. The ordinary differential equation (13) can
be solved as soon as analytical solutions exist on the intervals (e1, x

∗] and
[x∗, e2).

Applications of spectral theory to finance are recent. Without claim-
ing any exhaustiveness, we refer e.g. to Lewis (1998), Lipton (2001) and
(2002), Linetsky (2004) and Gorovoi and Linetsky (2004). When the spec-
trum of the transition density is a countable sequence {λn}n∈N , the spectral
decomposition reduces to the series

p̂(t; x, y) = m(y)

+∞∑
n=0

e−λntϕn(x)ϕn(y) (14)

where ϕn(x) is the normalized eigenfunction associated to λn and m(y) is
the speed density. In this section, we adapt the Proposition 3.3 in Gorovoi
and Linetsky (2004) to the present situation. The following Theorem gives
a method to obtain the eigenfunctions and the eigenvalues for the transition
density and the state-price density of SET models with discrete spectrum.

Theorem 2 Assume a SSET diffusion with skew parameter α ∈ (0, 1), in-
finitesimal volatility σ(x) = σ1(x)1(x<x∗) + σ2(x)1(x≥x∗), infinitesimal drift
µ(x) = µ1(x)1(x<x∗) + µ2(x)1(x≥x∗) and domain I = (e1, e2); −∞ ≤ e1 <
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e2 ≤ +∞. Let φλ(x) be the unique (to some multiplicative constant) con-
tinuous solution with continuous scale derivative dφλ

ds
(x) of the ODE

−1

2
σ2

1(x)u
′′(x) − µ1(x)u

′(x) + r(x)u(x) = λu(r) ∀r ∈ (e1, x
∗]

such that
∫ x∗
e1

|φλ(x)|2m(x)dx < +∞ and φλ(x) satisfies the appropriate
condition at e1.

Let ψλ(x) be the unique continuous solution with continuous scale deriv-
ative dψλ

ds
(x) of the ODE

−1

2
σ2

2(x)u
′′(x) − µ2(x)u

′(x) + r(x)u(x) = λu(x) ∀x ∈ [x∗, e2)

such that
∫ e2
x∗ |ψλ(x)|2m(x)dx < +∞ and ψλ(x) satisfies the appropriate

condition at e2.
Then, the eigenvalues 0 ≤ λ1 < λ2 < ... of the Sturm-Liouville problem

(13) associated to the transition probability of the diffusion r killed at a rate
r(x) are the zeros of the Wronskian ω(λ)

ω(λ) := φλ(x
∗)
ψλ
ds

(x∗) − ψλ(x
∗)
φλ
ds

(x∗) = 0

and the eigenfunctions ϕn(x) read

ϕn(x) =



√

ψλn (x∗)

∆nφλn(x∗)
φλn(x), e1 < x ≤ x∗√

φλn (x∗)

∆nψλn(x∗)
ψλn(x), x∗ ≤ x < e2,

(15)

where ∆n = dω(λ)
dλ

|λ=λn.

Proof. The proof is similar to Proposition 3.3 in Gorovoi and Linetsky
(2004), see Appendix A. �

4 SET factors models

One-factor models of term structure are based on a single state variable
which is usually the short-term rate. In this section, the short rate process
{r(t), t ≥ 0} is a SSET diffusion with skew parameter α ∈ (0, 1) under
some risk-neutral measure. Term structures driven by SSET short rate
are suitable to model target zones announced by central banks and we can

13



relate the skew parameter α to the market uncertainty concerning monetary
policies. The pricing semi-group for claims contingent on r with payoff
h ∈ Cb(I) satisfies

(P̂th)(r0) := Er0

[
e−

t
0 r(s)dsh(r(t))

]
=

∫
I

p̂(t; r0, r)h(r)dr (16)

where p̂(t; r0, r) is the state-price density. We can replicate any European-
style contingent claims with continuous payout c(., s) (0 ≤ s < t) and
final payoff h(.) by purchasing a portfolio of Arrow-Debreu securities and
determine the price as∫

I

∫ t

0

p̂(τ ; r0, r)c(r, τ)drdτ +

∫
I

p̂(t; r0, r)h(r)dr, (17)

see e.g. Beaglehole and Tenney (1991). In particular, the payout of a zero-
coupon bond with maturity t is h(r) = 1. The payout h(r) = (P (r, t, T ) −
K)+ where P (r, t, T ) is the price of the zero-coupon bond, corresponds to
bond options important to evaluate the popular Black’s formula for caps.

Eigenfunction expansions can be obtained for the state-price density
(r(x) = x) but the continuity of the scale derivative dϕn

ds
(x) implies that

the eigenfunction ϕn(x) has continuous derivative except at r∗ where (1 −
α)ϕ′

n(r
∗
−) = αϕ′

n(r
∗
+). As a consequence, the price of the zero-coupon bond

P (r(t), t, T ) = Er(t)

[
e−

T
t
r(s)ds

]
=

∫
Ir

p̂(T − t; r(t), y)dy (18)

when the short rate process {r(t)}t≥0 is a SSET diffusion with skew para-
meter α, has discontinuous derivative at r∗ where (1−α)dP

dr
(r∗−) = α dP

dr
(r∗+).

An application of Lemma 1 yields

dP (r(t), t, T ) = P (r(t), t, T ) (r(t)dt+ σ(t, T )dW (t))

+

(
α
dP

dr
(r∗+) − (1 − α)

dP

dr
(r∗−)

)
dLr

∗
t (r)

= P (r(t), t, T ) (r(t)dt+ σ(t, T )dW (t)) (19)

where {W (t), t ≥ 0} is a Brownian motion under the risk-neutral mea-
sure. We conclude that SSET short rate processes do not generate ar-
bitrage between the zero-coupon bonds and the savings account β(t) =

14



exp
(∫ t

0
r(s)ds

)
. Although short rates with discontinuous scale density

are consistent with arbitrage free requirements, the Heath-Jarrow-Morton
(HJM) procedure is not directly applicable to fit the current term struc-
ture. As mentioned by Goldstein and Keirtsead (1997) in case of a reflect-
ing boundary, the HJM constraint determines the drift of forward rates by
means of the volatility σ(t, T ) and precludes terms proportional to the local
time. Following Dybvig (1997) and Goldstein and Keirtsead (1997), we sug-
gest to add a deterministic function of time c(t) to the short rate in order
to recover consistency with the current term structure. The resulting short
rate process is {c(t)+ r(t), t ≥ 0} where r is a SSET diffusion and the zero-

coupon bond price is given by e−
T
t
c(s)dsP (r(t), t, T ). In what follows, we

give analytical expressions for the spectral representation of (S)SET models
in case of two Vasicek regimes and two CIR regimes.

4.1 SET Vasicek model

The Vasicek model (1977) defines the short rate as the Gaussian process
solution of the stochastic differential equation

dr(t) = κ(θ − r(t))dt+ σdW (t),

with state space I = (−∞,+∞). Similarly, the Self Exciting Threshold
Vasicek model is driven by the short rate process solution of

dr(t) =

{
κ1(θ1 − r(t))dt+ σ1dW (t), −∞ < r(t) < r∗

κ2(θ2 − r(t))dt+ σ2dW (t), r∗ ≤ r(t) < +∞.
(20)

The resulting process is a scalar diffusion with scale density

s′(r) =


 e

k1(θ1−r)2

σ2
1 , −∞ < r < r∗

e
k1(θ1−r)2

σ2
1

− k1(θ1−r∗)2

σ2
1

+
k2(θ2−r∗)2

σ2
2 , r∗ ≤ r < +∞;

and speed density m(r) = 2/(s′(r)σ2(r)) with σ2(r) = σ2
11(r<r∗) + σ2

21(r≥r∗)

discontinuous at the level r∗. A direct application of Theorem 2 leads to
the next Proposition.

Proposition 1 The functions φλ(r) and ψλ(r) defined in Theorem 2 cor-
responding the transition density of SET Vasicek models are given by

φλ(r) = ez
2
1/4Dν1(−z1)

ψλ(r) = ez
2
2/4Dν2(z2)
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where z1 =
√

2κ1

σ1
(θ1 − r), z2 =

√
2κ2

σ2
(θ2 − r) and Dν(z) are the parabolic

cylinder functions of parameter ν1 = λ/κ1 and ν2 = λ/κ2.
The functions φλ(r) and ψλ(r) defined in Theorem 2 corresponding to

state-price density of SET Vasicek models are given by

φλ(r) = ez
2
1/4Dµ1(−(α1 − z1))

ψλ(r) = ez
2
2/4Dµ2(α2 − z2)

where z1 =
√

2κ1

σ1
(θ1 − r) and z2 =

√
2κ2

σ2
(θ2 − r); α1 = σ2

1

√
2/κ3

1 and α2 =

σ2
2

√
2/κ3

2; and Dµ(z) are the parabolic cylinder functions of parameters µ1 =
σ2

1/2κ
3
1 + (λ1 − θ1)/κ1 and µ2 = σ2

2/2κ
3
2 + (λ2 − θ2)/κ2.

Proof. The proof is a trivial application of Theorem 2, see Appendix A. �

4.2 SET Cox-Ingersol-Ross model

Cox, Ingersoll and Ross (1985) propose to model the short rate as the
process solution of the stochastic differential equation

dr(t) = κ(θ − r(t))dt+ σ
√
r(t)dW (t).

The CIR short rate remains positive if the parameters satisfy the condition
σ2 ≤ 2κθ. Similarly, the Self Exciting Threshold CIR model is driven by
the short rate process solution of

dr(t) =

{
κ1(θ1 − r(t))dt+ σ1

√
r(t)dW (t), 0 < r(t) < r∗

κ2(θ2 − r(t))dt+ σ2

√
r(t)dW (t), r∗ ≤ r(t) < +∞.

(21)

The resulting process is a linear diffusion with scale density

s′(r) =


 r

− 2κ1θ1
σ2
1 e

2κ1r

σ2
1 , 0 < r < r∗

r
− 2κ2θ2

σ2
2 e

2κ2r

σ2
2 r∗

2κ2θ2
σ2
2

− 2κ1θ1
σ2
1 e

2κ2r∗
σ2
2

− 2κ1r∗
σ2
1 , r∗ ≤ r < +∞;

and speed density m(r) = 2/(s′(r)σ2(r)) with σ2(r) = σ2
1r1(r<r∗)+σ

2
2r1(r≥r∗)

discontinuous at the level r∗. The state space of r is the positive half line
(0,+∞) if the parameters κ1, θ1 and σ1 satisfy the condition σ2

1 ≤ 2κ1θ1. A
direct application of Theorem 2 leads to the next Proposition.
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Proposition 2 The functions φλ(r) and ψλ(r) defined in Theorem 2 cor-
responding to the transition density of SET Cox-Ingersoll-Ross models are
given by

φλ(r) = r
−κ1θ1

σ2
1 e

κ1r

σ2
1 Mk1,m1

(
2κ1r/σ

2
1

)
ψλ(r) = r

−κ2θ2
σ2
2 e

κ2r

σ2
2 Wk2,m2

(
2κ2r/σ

2
2

)
where Mk1,m1 is the first Whittaker function of parameters k1 = λ

κ1
+ κ1θ1

σ2
1

,

m1 = κ1θ1
σ2
1

− 1
2

and Wk2,m2 is the second Whittaker function of parameters

k2 = λ
κ2

+ κ2θ2
σ2
2

, m2 = κ2θ2
σ2
2

− 1
2
.

The functions φλ(r) and ψλ(r) defined in Theorem 2 corresponding to
the state-price density of SET Cox-Ingersoll-Ross models are given by

φλ(r) = r
−κ1θ1

σ2
1 e

κ1r

σ2
1 Mk3,m1

(
2κ1r/σ

2
1

)
ψλ(r) = r

−κ2θ2
σ2
2 e

κ2r

σ2
2 Wk4,m2

(
2κ2r/σ

2
2

)
k3 = λ

γ1
+ β1κ1

2γ1
and k4 = λ

γ2
+ β2κ2

2γ2
with γ1 =

√
κ2

1 + 2σ2
1 and γ2 =

√
κ2

2 + 2σ2
2.

Proof. The proof is a trivial application of Theorem 2, see Appendix A. �

4.3 Multi-factor models

It is straightforward to extend our analysis to multi-factor models. If we
define the short-term interest rate process r as a sum of independent (S)SET
diffusions

r(t) =

n∑
i=1

X(i)(t), (22)

the price of the zero-coupon bond can be decomposed into the product

P (r(t), t, T ) = Er(t)

[
e−

T
t
r(s)ds

]
=

n∏
i=1

EX(i)(t)

[
e−

T
t
X(i)(s)ds

]
. (23)

Hence, a closed-form expression for bond price can be obtained as long as
eigenfunction expansion exists for each factor.
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5 SET Libor market models

Libor market models consider the discrete forward (Libor) rates as model
primitives rather than the continuously compounded forward rates as sug-
gested by Heath, Jarrow and Morton (1992) or the short-term spot rate
as in the Vasicek (1977) or the Cox-Ingersoll-Ross model (1985). In recent
papers, Brace et al.(1997), Jamshidian (1997) and Miltersen et al.(1997)
were able to derive simultanously (under the same forward measure) the
dynamic consistent with arbitrage-free requirements of all relevant forward
rates.

Assume that the zero-coupon bond price processes {P (t, T ), 0 ≤ t ≤ T}
satisfy the stochastic differential equation

dP (t, T )

P (t, T )
= r(t)dt+ σ(t, T )dW (t),

where {W (t), t ≥ 0} is a Brownian motion under the risk-neutral measure
Q and σ(t, T ) is the adapted volatility process. Following Musiela (1995),
we define the (risk-neutral) forward measure QT by means of the absolute
continuity relation

QT = exp

(
−
∫ T

0

σ(t, T )dW (t) − 1

2

∫ T

0

σ2(t, T )dt

)
Q

= (β(T )P (0, T ))−1Q

where β(t) = exp
(∫ t

0
r(s)ds

)
is the savings account. We can verify that the

process {P (t, s)/P (t, T ), 0 ≤ t ≤ s} is a martingale under QT . Moreover,
an application of Girsanov theorem, see e.g. Musiela (1995) and Brace et
al.(1997), provides that the process

WT (t) = W (t) +

∫ t

0

σ(s, T )ds (24)

is a QT−Brownian motion.
In the tenor structure 0 = T0 < T1 < . . . < TN+1, the discrete forward

Libor rates are defined by the formula

Ln(t) =
1

δn

(
P (t, Tn)

P (t, Tn+1)
− 1

)
, δn = Tn+1 − Tn (25)

for n = 0, 1, . . . , N . By standard use of Itô formula, see e.g. De Jong,
Driessen and Pelsser (2002), we obtain the following volatility structure,
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dLn(t) = . . . dt+ Ln(t)γn(t)dW (t) with

γn(t) =
P (t, Tn)

P (t, Tn) − P (t, Tn+1)
(σ(t, Tn) − σ(t, Tn+1))

=
1 + δnLn(t)

δnLn(t)
(σ(t, Tn) − σ(t, Tn+1)) . (26)

Note that relation (26) is invariant under changes of measure. Since P (t,Tn)
P (t,Tn+1)

is a martingale under the risk-neutral forward measure QTn+1 , we deduce
that Ln(t) is also a QTn+1−martingale. Andersen and Andreasen (2000)
specify the forward rate dynamics as the solution of the stochastic differen-
tial equation

dLn(t) = σ̃ (Ln(t)) γn(t)dWTn+1(t) (27)

for some regular function σ̃. Using relations (26) and (24), we deduce the
dynamic of the forward rate Ln(t) under the measure QTn

dWTn+1(t) = dWTn(t) + (σ(t, Tn) − σ(t, Tn+1)) dt

= dWTn(t) +
δnLn(t)

1 + δnLn(t)
dt

and, thus

dLn(t) =
δnσ̃ (Ln(t)) γn(t)

1 + δnLn(t)
dt+ σ̃ (Ln(t)) γn(t)dWTn(t). (28)

The payoff δn (Ln(Tn) − κ)+ of a caplet offers protection against high
interest rate at future time Tn. The arbitrage-free price at time t < Tn of
this security satisfies

Cn(t) = EQ
[

β(t)

β(Tn+1)
δn (Ln(Tn) − κ)+

]
= δnP (t, Tn+1)E

n+1
[
(Ln(Tn) − κ)+

]
(29)

where En+1 denotes the expectation relative to the forward measure QTn+1 .
When the forward rate Ln(t) is lognormal as suggested in Brace et al.(1997),
Jamshidian (1997) and Miltersen et al.(1997), the pricing formula (29) corre-
sponds to the market standard Black’s formula. The following proposition
provides caplet price for more general instantaneous volatility function σ̃
and slighty extends Theorem 2 in Andersen and Andreasen (2000).
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Proposition 3 The process Ln(τ) where τ(t, T ) = inf{s, v(t, s) > T} with
v(t, s) =

∫ s
t
γ2
n(u)du, is a scalar diffusion with scale function s(x) = x and

speed density m(x) = 2
σ̃2(x)

. The price of a caplet with maturity Tn and
strike price κ is given by

Cn(t) = δnP (t, Tn+1)

∫ +∞

κ

p (v(t, Tn);Ln(t), y) (y − κ)dy

where p(t; x, y) is the transition density w.r.t Lebesgue measure of Ln(τ).

Andersen and Andreasen (2000) provide a complete study for the case
σ̃(x) = xβ. The CEV model is attractive because it allows for implied
volatility skew, see Derman and Kani (1996), and offers closed-form expres-
sion for the price of caplets. Andersen and Andreasen (2000) demonstrate
that the CEV model improves the fit to observed caplets and swaptions
prices. Nevertheless, some drawbacks might discourage practitioners from
using this model. Computing the CEV option price formula is not a trivial
task as the solution involves an infinite series expansion and the numerical
evaluation of an improper integral. Several approximations are proposed in
the literature to overcome this difficulty, we cite e.g. Schroder (1989) and
Lo, Yuen and Hui (2000). Mercurio (2004) proposes to mix shifted log-
normal models with volatility σ̃(x) = x − γ, see also Joshi and Rebonato
(2003). Those models offer tractable expressions for caplets price and flex-
ible volatility skew. In this paper, we propose the following shifted CEV
volatility

σ̃(x) =

{
σ1(x− α1)

β1 , x < x∗

σ2(x− α2)
β2 , x ≥ x∗,

(30)

for some constants σ1, σ2, β1, β2, α2, l > 0 and α1 > l. Roughly speaking,
when the time changed forward rates cross the threshold x∗, the instanta-
neous volatility makes a jump of magnitude |σ2(x

∗−α2)
β2 −σ1(x

∗−α1)
β1 |.

The process Ln(τ) is a scalar diffusion on (α1,+∞) with scale function
s(x) = x and discontinuous speed measure m(x) = 2/σ̃2(x). We rely on
standard results about scalar diffusion for the boundary classification, see
e.g. Davydov and Linetsky (2001).

5.1 SET lognormal Libor model

When β1 = 1 and β2 = 1, the time changed forward Libor rate Ln(τ) is a
SET diffusion with scale function s(x) = x and speed density m(x) = 2

σ̃2(x)
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where σ̃(x) = 1(x<x∗)σ(x− α1) + 1(x≥x∗)σ(x− α2). The spectrum is purely
continuous of multiplicity two, however, closed-form expression exists for
its transition density.

Proposition 4 Define φ(x) =
∫ x dz

σ̃(z)
such that φ(x∗) = 0, the transition

density of Ln(τ) is equal to p(t; x0, x) = pY (t;φ(x0), φ(x))/σ̃(y) where

exp
(−1

2
(y − y0) + 1

8
t
)
pY (t; y0, y)

=




pβ(t; y0, y) − (1 − β)γeγke
1
2
γ2terfc

(
γ
√
t/2 + k√

2t

)
, y < 0

pβ(t; y0, y) − βγeγke
1
2
γ2terfc

(
γ
√
t/2 + k√

2t

)
, y ≥ 0,

with k = |y|+ |y0|, pβ(t; y0, y) is the transition density of the skew Brownian

motion, γ = (2β−1)
2

and β = σ̃(x∗−)/σ̃(x∗−) + σ̃(x∗+).

5.2 Constant Elasticity of Variance SET Libor models

In case β1 < 1 and β2 > 1 the time changed forward Libor rate Ln(τ) is a
SET diffusion with purely discrete spectrum. The spectral representation
of its transition density reduces to the series expansion given in the next
Proposition.

Proposition 5 The functions φλ(r) and ψλ(r) defined in Theorem 2 cor-
responding to the transition density of the SET diffusion Ln(τ) are given
by

φλ(x) =
√
x+ α1Jγ1

(√
2λz1

)
ψλ(x) =

√
x+ α2Yγ2

(√
2λz2

)
where Jγ(x) is a Bessel function of first kind with parameter γ1 = 1

2|β1−1|
and z1 = 2α1

σ1
(x+α1)

β1−1 and Yγ(x) is a Bessel function of second kind with

parameter γ2 = 1
2|β2−1| and z2 = 2α2

σ2
(x+ α2)

β2−1.

Proof. The proof is a trivial application of Theorem 2, see Appendix A. �

5.3 Adding stochastic trading time

Joshi and Rebonato (2003) propose a stochastic volatility extension of the
(shifted) log-normal Libor market. Under those models, the coefficients of
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the parametrized volatility function γn(t) are driven by Ornstein-Uhlenbeck
processes. The spectral representation (14) separates the time and space
dependencies of the transition density p(t; x, y) and enables efficient imple-
mentation of stochastic volatility by random changes in time just as Carr
and Wu (2004) for option pricing under Lévy models. Assume that the
square root (CIR) process {a(t), t ≥ 0} solution of the SDE

da(t) = κ(θ − a(t))dt+ σ
√
a(t)dW (t), a(0) = a

models the instantaneous activity rate in the market. We specify the forward
rate dynamics by means of the following SDE

dLn(t) = σ̃ (Ln(t)) γ
∗
n(t)dWTn+1(t) (31)

where γ∗n(t) = γn(t)
√
a(t). Following e.g. Carr and Wu (2004), the contin-

uous and increasing process v∗(t) =
∫ t

0
γ∗

2

n (u)du defines a random clock and
the forward rates taken at τ ∗(t) = inf{s, v∗(s) > t} satisfies

dLn(τ(t)) = σ̃ (Ln(τ(t))) dW
∗
Tn+1

(t)

where {W ∗
Tn+1

(t), t ≥ 0} is a QTn+1−Brownian motion. In the simple case
where W is independent of WTn+1 , the transition density of the forward rate
Ln(t) can be easily expressed using the spectral representation (14):

pLn(t; x, y) = m(y)
+∞∑
n=0

Ea

[
e−λn

t
0
γ2

n(u)a(u)du
]
ϕn(x)ϕn(y).

The expectation is nothing else but the price of a zero-coupon bond under
a simple extended square root interest rate model, see Jamshidian (1995).
For the sake of completeness, we recall that

Ea

[
e−λ

T
t γ2

n(u)a(u)du
]

= exp

(
−λ
∫ T

t

BT (s)κθγ2
n(s)ds−BT (t)

)
(32)

where BT (t) satisfies

B′
T (t) = λ(κγ2

n(t) − 2γn(t)γ
′
n(t))BT (t) +

1

2
σ2λ2γ4

n(t)B
2
T (t) − 1,

and BT (t) = 0, we refer to Jamshidian (1995) for a complete account on
that class of tractable square root models.
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The stochastic volatility Libor rate dynamic (31) is as tractable as the
deterministic model starting from the spectral representation of Ln(τ

∗). In
order to check the consistency of Libor and swap markets, we also need
narrow approximations for the price of swaptions. In what follows, we show
that the method proposed by Andersen and Andreasen (2000) still applies.
A swap contract is the agreement to exchange the floating interest rate
payment δjLj(Tj) with the fixed amount δjθ between the start-date Ts and
end-date Te (s ≤ j < e ≤ N + 1). The holder of a swaption has the right
to enter a swap agreement at maturity date Ts. Using Black’s formula for
swap, we deduce the payoff generated by a swaption at maturity Ts(

1 − P (Ts, Te) − θ

e−1∑
j=s

P (Ts, Tj+1)

)
+

. (33)

Define the swap rate R as the value of θ that makes the value of the under-
lying swap equal to zero,

R(t) =
P (t, Ts) − P (t, Te)

C(t)

where C(t) is the accrual factor C(t) = δsP (t, Ts+1)+ . . .+ δe−1P (t, Te), the
payoff (33) can written in a form that suggests C(t) as numéraire

C(Ts)(R(Ts) − θ)+.

Under the measure QS induced by that choice of numéraire, the swap rate
is a martingale driven by the SDE

dR(t) =

e−1∑
j=s

∂R(t)

∂Lj(t)
dLj(t).

We now assume as suggested by Andersen and Andreasen (2000) that the
ratio σ̃(Lj(t))/σ̃(R(t)) is constant and we make the following approximation

dR(u) ≈ σ̃(R(u))
√
a(u)

e−1∑
j=s

ωj(t)γj(u)dWQS
(u)

= σ̃(R(u))γ∗R(u)dWQS
(u), u ≥ t (34)

where

ωj(t) =
∂R(t)

∂Lj(t)

σ̃(Lj(t))

σ̃(R(t))

γ∗R(u) =
√
a(u)

e−1∑
j=s

ωj(t)γj(u), u ≥ t (35)
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and {WQS
(t), t ≥ 0} is a Brownian motion under the measure QS . Equiva-

lently, the time-change process R(τ ∗) where τ ∗(t) = inf{s, ∫ s
0
γ∗

2

R (u)du > t}
is a linear diffusion with scale function s(x) = x and speed density m(x) =
2/σ̃2(x). The risk-neutral price of a swaption

S(t) = C(t)EQS
[
(R(Ts) − θ)+

]
can then easily be approximated using the spectral representation of the
transition density of R(τ ∗).

6 Assessing SET interest rates models

6.1 Numerical illustrations

In this section, we illustrate the convergence of the series expansions for the
SET vasicek and SET Cox-Ingersoll-Ross models. We use Matlab together
with the routines from the Web page http://ceta.mit.edu/comp spec func to
evaluate the special functions. Figure 1 presents the series expansions with
k terms for the transition probability of a SET diffusion with two Vasicek
regimes. With k = 15 terms we obtain an accurate approximation. Figure
1 clearly illustrates the bimodal feature of SET diffusions. The bimodal
behavior is a consequence of the split up mean reverting effect.

−0.05 0 0.05 0.1 0.15
−10
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20
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Spot rate

Transition density of the SET Vasicek 

k=5
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k=15
k=20

Figure 1: Eigenfunctions expansions with k terms of the transition density for the SET
Vasicek, κ1 = 0.25, θ1 = 0.03 and σ1 = 0.015; κ2 = 0.3, θ2 = 0.07 and σ2 = 0.01;
r∗ = 0.045 and t = 3.

Figure 2 plots the price of the zero-coupon bond as a function of the time
to maturity together with the corresponding yield curve. We observe that
the convergence pattern of eigenfunction expansions is opposite to Monte
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Carlo simulation. As the time to maturity decreases, more terms in the
series have to be added to obtain the same accuracy. For maturities shorter
than 2 years much more than 20 terms are needed. A solution to this
numerical problem is provided in Decamps, De Schepper and Goovaerts
(2004) and is based on the stochastic representations derived in section 3.1
and on the theory of comonotonic risks, see Dhaene et al. (2002).
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Figure 2: Eigenfunctions expansions with 20 terms of the term structure for the SET
Vasicek, κ1 = 0.25, θ1 = 0.03 and σ1 = 0.015; κ2 = 0.3, θ2 = 0.07 and σ2 = 0.01;
r = 0.045

Finally, figure 3 illustrates the convergence of series expansions for the
transition probability of a SET diffusion with two CIR regimes.
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Figure 3: Eigenfunctions expansions with k terms of the transition density for the SET
Vasicek, κ1 = 0.12, θ1 = 0.03 and σ1 = 0.05; κ2 = 0.1, θ2 = 0.06 and σ2 = 0.04; r∗ = 0.04
and t = 3.
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6.2 Calibration of SET factor models

In this section, we calibrate a SET Vasicek model to the U.S. bond market.
The data set consists of 15 STRIPS bond prices obtained from Datastream
on 14/12/2003. We minimize the root squared error between the STRIPS
yield curve and the model yield curve2. The optimization procedure pro-
vides the parameter estimates κ1 = 0.3999, θ1 = 0.0606 and σ1 = 0.0105;
κ2 = 0.197, θ2 = 0.097 and σ2 = 0.0284; r∗ = 0.0813 for the SET Vasicek
and κ = 0.2563, θ = 0.0654 and σ = 5.119e−5 for the Vasicek model. Figure
4 compares the STRIPS yield curve with the Vasicek and the SET Vasicek
yield curves (with k = 120 terms). The SET vasicek model improves signif-
icantly the fit to the current term structure. The volatility estimate of the
Vasicek model is almost zero which is consistent with low levels of the U.S.
short-term rate rate but in contradiction with higher regimes. Figure 5 plots
the state-price density of the SET Vasicek and illustrates the contribution of
each regime to the bond price. Finally, we draw the same conclusions than
Pfann, Schotman and Tschering (1996), the U.S. short-term rate have two
distinct regimes with a discontinuity of the volatility around 8.5 percent.
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Figure 4: U.S. zero-yield curve on 14/12/2003, Datastream
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A Proofs

A.1 Proof of Theorem 1

We start by transforming the process {X(t), t ≥ 0} into a unit volatility
process {Y (t) = φ(r(t)), t ≥ 0}. Applying Lemma 1 to the process Y , we
obtain that

dY (t) =

(
µ(X(t))

σ(X(t))
− 1

2
σ′(X(t))

)
dt+ dW (t)

+

(
1

2

(
σ(x∗−) − σ(x∗+)

σ(x∗−)σ(x∗+)

)
+ (2α− 1)

(
σ(x∗−) + σ(x∗+)

σ(x∗−)σ(x∗+)

))
dLx

∗
t (X).

If we define µY (y) = µ(φ−1(y))
σ(φ−1(y))

− 1
2
σ′(φ−1(y)), as Ly

∗
t (Y ) satisfies

Ly
∗
t (Y ) =

1

2

(
L
y∗+
t (Y ) + L

y∗−
t (Y )

)

=
L
x∗+
t (X)

2σ(x∗+)
+
L
x∗−
t (X)

2σ(x∗−)
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=
σ(x∗+) + σ(x∗−)

2σ(x∗+)σ(x∗−)
Lx

∗
t (X),

we finally obtain that Y is a solution of the stochastic differential equation

dY (t) = µY (Y (t))dt+ dW (t) + (2β − 1)dLy
∗
t (Y )

where Ly
∗
t (Y ) is the symmetric local time of Y .

Step 1 - We first consider the case where IY = (−∞,+∞). For every set
A ∈ B(IX)

PA(x0, t) = Ex0

[
1(X(t)∈A)

]
= Ey0

[
1(φ−1(Y (t))∈A)

]
.

We define the measure P by the Radon-Nikodym derivative

Z(t) :=
dQ

dP
(t) = e−

1
2

t
0 µ

2
Y (Y (s))ds+ t

0 µY (Y (s))dW (s).

From Girsanov’s Theorem, Y is a skew BM under the measure P, thus

Ey0
[
1(Y (t)∈B)

]
= Ey0

[
1(Xβ(t)∈B)Z(t)

]
where the set B = φ(A) ∈ B(IY ) and Z satisfies, according to Lemma
1, the relation

Z(t) = e−
1
2

t
0 µ

2
Y (Xβ(s))ds+ t

0 µY (Xβ(s))dW (s)

= e
− 1

2
t
0 µ

2
Y (Xβ(s))ds+ t

0 µY (Xβ(s))dXβ (s)−(2β−1)
µY (y∗+)+µY (y∗−)

2
Ly∗

t (Xβ)

= e
Xβ (t)

Xβ(0)
µY (z)dz

e−
t
0
λY (Xβ(s))ds−γLy∗

t (Xβ).

If we define Φ(t; y0, y) = Ey0
[
Z(t)|Xβ(t) = y

]
, then

Ey0
[
1(Y (t)∈B)

]
=

∫
I

1(y∈B)Φ(t; y0, y)p
β(t; y0, y)dy.

By identification with equation (12), we obtain the following repre-
sentation for the transition density of the process Y

pY (t; y0, y) = e
y
y0
µ(z)dz

pβ(t; y0, y)

×Ey0
[
e−

t
0 λY (Xβ(s))ds−γLy∗

t (Xβ )|Xβ(t) = y
]
.

We finally deduce the expression for the transition density ofX through
the formula

p(t; x0, x) = pY (t;φ(x0), φ(x))φ′(x).
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Step 2 - We briefly discuss the case where IY = (0,+∞). If we decompose the

regular part of the drift of Y into the sum µY (y) =
(
µY (y) − 1

y

)
+ 1
y
, we

can reduce the process Y to the process Rβ using Girsanov’s Theorem.
We obtain the results with similar calculations as for the case I =
(−∞,+∞) using Lemma 1 and the decomposition

dW (t) = − 1

Rβ(t)
dt− (2β − 1)dLy

∗
t (Rβ) + dRβ(t).

A.2 Proof of Theorem 2

Following Lemma 1 in Linetsky (2004), it exists a unique (to some multi-
plicative constant) continuous solution ηλn(x) with continuous scale deriv-
ative to the ODE

−1

2
σ2(x)u′′(x) − µ(x)u′(x) + r(x)u(x) = λnu(x) (36)

on the interval I = (e1, e2) which is m−square integrable in a neighborhood
of e1 and satisfies the appropriate condition at the boundary e1. As the
eigenfunction ϕn(x) is also m−square integrable in a neighborhood of e1 and
satisfies the appropriate condition at the boundary e1, ϕn(x) must be equal
to ηλn(x) up to a constant. Similarly, we can deduce that ϕn(x) is also equal
to ξλn(x) (up to a constant) where ξλn(x) is the unique solution of the Sturm
Liouville equation (36) that is m−square integrable in a neighborhood of
e2 and satisfies the appropriate condition at the boundary e2. We conclude
that it exists a non-zero constant An such that ηλn(x) = Anξλn(x). The
Wronskian is defined by

ω(λ) := ηλ(x)
ξλ
ds

(x) − ξλ(x)
ηλ
ds

(x),

it is easy to check that ω(λ) depends only on λ as ηλ(x) and ξλ(x) are
both continuous solutions of −(Gu) = λu. Moreover, ηλn(x) = Anξλn(x)
implies that w(λ) = 0 for λ = λn. From Theorem 5 in Linetsky (2004),
we know that ||ηλn(x)|| = Anω

′(λn) and thus, ϕn(x) is continuous at x∗

and ||ϕn(x)|| = 1. Finally we observe that ηλn(x) is equal to φλn(x) on the
interval (e1, x

∗] and that ξλn(x) is equal to ψλn(x) on the interval [x∗, e2).
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A.3 Proof of Proposition 1

The function φλ(r) of Theorem 2 for the transition density is solution of the
ODE

−1

2
σ2

1u
′′ − κ1(θ1 − r)u′ = λu, r ∈ (−∞, r∗]. (37)

We look for solutions in the form u(r) = ez
2
1/4v(z1) with z1 =

√
2κ1

σ1
(θ1 − r).

Substituting u(r) in equation (37), we obtain that v(z) satisfies the Weber-
Hermite equation

v′′ +
(

1

2
+ ν1 − z2

4

)
v = 0, z ∈ [√2κ1(θ1 − r∗)/σ1,+∞)

with ν1 = λ/κ1. The solution m−square integrable in a neighborhood of
+∞ is the parabolic cylinder function Dν1(z1). With similar arguments, we
find that ψλ(r) = ez

2
2/4Dν2(−z2) is the unique solution of

−1

2
σ2

2u
′′ − κ2(θ2 − r)u′ = λu, r ∈ [r∗,+∞)

that is m−square integrable in a neighborhood of +∞.
The function φλ(r) of Theorem 2 for the state-price density is solution

of the ODE

−1

2
σ2

1u
′′ − κ1(θ1 − r)u′ + ru = λu, r ∈ (−∞, r∗]. (38)

We look for solutions in the form u(r) = ez
2
1/4v(z1) with z1 =

√
2κ1

σ1
(θ1 − r).

Substituting u(r) in equation (38), we obtain that v(z) satisfies the Weber-
Hermite equation

v′′ +
(

1

2
+ µ1 − (α1 − z2)

4

)
v = 0, z ∈ [√2κ1(θ1 − r∗)/σ1,+∞)

with µ1 = σ2
1/2κ

3
1+(λ1−θ1)/κ1 and α1 = σ2

1

√
2/κ3

1. The solutionm−square
integrable in a neighborhood of +∞ is the parabolic cylinder functionDµ1(−
(α1 − z1)). With similar arguments, we find that ψλ(r) = ez

2
2/4Dµ2(α2 − z2)

is the unique solution of

−1

2
σ2

2u
′′ − κ2(θ2 − r)u′ + ru = λu, r ∈ [r∗,+∞)

that is m−square integrable in a neighborhood of +∞.
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A.4 Proof of Proposition 2

The function φλ(r) of Theorem 2 for the transition density is solution of the
ODE

−1

2
σ2

1ru
′′ − κ1(θ1 − r)u′ = λu, r ∈ (0, r∗]. (39)

We look for solutions in the form u(r) = r
−κ1θ1r

σ2
1 e

κ1r

σ2
1 v(z1) where z1 =

2κ1r/σ
2
1. Substituting u(r) in equation (39), we obtain that v(z) satisfies

the Whittaker equation

v′′ +
(
−1

4
+
k1

z1
−

1
4
−m2

1

z2
1

)
v = 0, z ∈ (0, 2κ1r

∗/σ2
1]

The solution m−square integrable in a neighborhood of 0 is the Whit-
taker function Mk1,m1(z). With similar arguments, we find that ψλ(r) =

r
−κ2θ2

σ2
2 e

κ2r

σ2
2

Wk2,m2 (2κ2r/σ
2
2) is the unique solution of

−1

2
σ2

2ru
′′ − κ2(θ2 − r)u′ = λu, r ∈ [r∗,+∞)

that is m−square integrable in a neighborhood of +∞.
The function φλ(r) of Theorem 2 for the state-price density is solution

of the ODE

−1

2
σ2

1ru
′′ − κ1(θ1 − r)u′ + ru = λu, r ∈ (0, r∗]. (40)

We look for solutions in the form u(r) = r
−κ1θ1r

σ2
1 e

κ1r

σ2
1 v(z1) where z1 =

2γ1r/σ
2
1. Substituting u(r) in equation (40), we obtain that v(z) satisfies

the Whittaker equation

v′′ +
(
−1

4
+
k3

z1
+

1
4
−m2

1

z2
1

)
v = 0, z ∈ (0, 2κ1r

∗/σ2
1 ]

The solution m−square integrable in a neighborhood of 0 is the Whit-
taker function Mk3,m1(z). With similar arguments, we find that ψλ(r) =

r
−κ2θ2

σ2
2 e

κ2r

σ2
2

Wk4,m2 (2κ2r/σ
2
2) is the unique solution of

−1

2
σ2

2ru
′′ − κ2(θ2 − r)u′ + ru = λu, r ∈ [r∗,+∞)

that is m−square integrable in a neighborhood of +∞.
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A.5 Proof of Proposition 4

The proof is a direct application of Theorem (3.1). The transformed process
Y = φ(X) is a solution of the stochastic differential equation

dY (t) = −1

2
dt+ dW (t) + (2β − 1)dL0

t (Y ), Y (0) = φ(x0) = y0.

According to Theorem (3.1), the transition density of Y satisfies

e−
1
2
(y−y0)+ 1

8
tpY (t; y0, y) = pβ(t; y0, y)Ey0

[
e−γL

0
t (Xβ )|Xβ(t) = y

]
.

The r.h.s. expression of the previous relation is precisely the transition
density of the skew Brownian motion elastically killed at 0 computed in
Decamps, De Schepper and Goovaerts (2004).

A.6 Proof of Proposition 5

The function φλ(x) of Theorem 2 for the transition density of Ln(τ) is
solution of the ODE

−1

2
σ2

1(x− α1)
2β1u′′ = λu, x ∈ (0, x∗]. (41)

We look for solutions in the form u(x) =
√
x+ α1v

(√
2λz1

)
with z1 =

2α1

σ1
(x+ α1)

β1−1, we obtain that v(z) satisfies the Bessel equation

z2v′′ + sv′ − (γ2
1 − 2λz2) = 0, z ∈ (0,

2α1

σ1
(x∗ + α1)

β1−1]

with parameter γ1 = 1
2|β1−1| . The solution m−square integrable in a neigh-

borhood of 0 is the Bessel funcion of first kind Jγ1(
√

2λz). With similar

arguments, we find that ψλ(x) =
√
x+ α2Yγ2

(√
2λz1

)
is the unique solu-

tion of

−1

2
σ2

2(x− α2)
2β2u′′ = λu, x ∈ (x∗,+∞). (42)

that is m−square integrable in a neighborhood of +∞.
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[18] Itô K., McKean H.P. (1974): “Diffusion processes and their Sample
Paths”, Springer, Berlin.

[19] Jamshidian F. (1997): “Libor and swap market models and measures”,
Finance and Stochastics, vol. 1, p.293-330.

[20] Jamshidian F. (1995): “A simple class of square-root interest-rate mod-
els”, Applied Mathematical Finance, vol. 2, p.61-72.

[21] Jensen B., Poulsen R. (2002): “Transition densities of diffusion
processes: numerical comparison of approximation tecniques”,The
Journal of Derivatives, p.18-32.

[22] Joshi M., Rebonato R. (2003): “A stochastic-volatility, displaced-
diffusion extension of the Libor market model”, Quantitative Finance,
p.458-469.

[23] Harrison J.M., Shepp L.A. (1981): “On skew Brownian motion”, Ann.
Probab., vol.9, p.309-313.

34



[24] Le Gall J.F. (1982): “Temps locaux et equations differentielles sto-
chastiques”, Lectures Notes in Math. 986, Berlin, New-York: Springer-
Verlag.

[25] Lejay A. (2003): “On the decomposition of excursions measures
of processes whose generators have coefficients discontinuous at one
point”, Markov Processes and Related Fields, vol. 8, p.177-138.

[26] Lewis A. (1998): “Applications of eigenfunction expansion in
continuous-time finance”, Mathematical Finance, vol. 8, p.349-383.

[27] Linetsky V. (2004): “The spectral decomposition of the option value”,
International Journal of Theoretical and Applied Finance , vol.7(3),
p.337-384.

[28] Lipton A. (2001): “Mathematical Methods for Foreign Exchange”,
World Scientific, Singapore.

[29] Lipton A. (2002): “The volatility smile problem”, RISK, February,
p.61-65.

[30] Mercurio F. (2004): “Pricing the smile in a forward Libor market
model”, Quantitative finance, to appear.

[31] Miltersen K., Sandmann K., Sondermann D. (1997): “Closed-form so-
lutions for term structure derivatives with lognormal interest rates”,
Journal of Finance, vol. 52, p.409-430.

[32] Musiela M. (1995): “General framework for pricing derivatives securi-
ties”, Stochastic Differential Equation,vol. 55, p.227-251.

[33] Ouknine Y. (1991): “Skew Brownian motion and derived processes”,
Theory of Probability and Applications, vol. 35,p.163-169.

[34] Pfann G.A., Schotman P.C. and Tschering R. (1996): “ Nonlinear in-
terest rate dynamics and implications for the term structure”, Journal
of Econometrics, vol. 74, p.149-176.

[35] Revuz D., Yor M. (1998): “Continuous martingales and Brownian mo-
tion”, Third edition, Springer-Verlag.

[36] Vasicek O.A. (1977): “An equilibrium characterization of the term
structure”, Journal of Financial Economics, vol.5, p.177-188.

35



[37] Walsh J. (1978): “Diffusion with discontinuous local time”, Astérisque,
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