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Abstract

In this paper we present in a general setting lower and upper bounds for the stop-loss
premium of a (stochastic) sum of dependent random variables. Therefore, use is made of the
methodology of comonotonic variables and the convex ordering of risks, introduced by Kaas et
al. (2000) and Dhaene et al. (2002a, 2002b), combined with actuarial conditioning. The lower
bound approximates very accurate the real value of the stop-loss premium. However, the
comonotonic upper bounds perform rather badly for some retentions. Therefore, we construct
sharper upper bounds based upon the traditional comonotonic bounds. Making use of the
ideas of Rogers and Shi (1995), the first upper bound is obtained as the comonotonic lower
bound plus an error term. Next this bound is refined by making the error term dependent
on the retention in the stop-loss premium. Further, we study the case that the stop-loss
premium can be decomposed into two parts. One part which can be evaluated exactly
and another part to which comonotonic bounds are applied. As an application we study
the bounds for the stop-loss premium of a random variable representing the stochastically
discounted value of a series of cash flows with a fixed and stochastic time horizon. The
paper ends with numerical examples illustrating the presented approximations. We apply
the proposed bounds for life annuities, using Makeham’s law, when also the stochastic nature
of interest rates is taken into account by means of a Brownian motion.
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1 Introduction

An insurance risk is typically described by a random variable X ≥ 0. Here X can represent
for example a single insurance claim, an aggregate (discounted) value of future claims for an
individual contract or an aggregate value for a portfolio of insurance contracts over a given
period. One of the most important tasks of actuaries is to assess the degree of dangerousness
of a risk X — either by finding the (approximate) distribution or at least by summarizing its
properties quantitatively by means of risk measures to determine an insurance premium or a
sufficient reserve with solvency margin.

A stop-loss premium π(X, d) = E[(X − d)+] = E[max(0,X − d)] is one of the most important
risk measures. The retention d is usually interpreted as an amount retained by an insured (or
an insurer) while an amount X − d is ceded to an insurer (or a reinsurer). In this case π(X, d)
has a clear interpretation of a pure insurance (reinsurance) premium.

Another practical application of stop-loss premiums is the following: Suppose that a financial
institution faces a risk X to which a capital K is allocated. Then the residual risk R = (X−K)+
is a quantity of concern to the society and regulatories. Indeed, it represents the pessimistic
case when the random loss X exceeds the available capital. The value E[R] is often referred to
as the “expected shortfall”.

It is not always straightforward to compute stop-loss premiums. In the actuarial literature a lot
of attention has been devoted to determine bounds for stop-loss premiums in case only partial
information about the claim size distribution is available (e.g. De Vylder and Goovaerts (1982),
Jansen et al. (1986), Hürlimann (1996, 1998) among others).

Other types of problems appear in the case of sums of random variables S = X1 + · · ·+Xn when
full information about marginal distributions is recognized but the dependency structure is not
known. In Dhaene et al. (2002a, 2002b) it was shown that the upper bound S

c of the sum S in
so called stop-loss order sense can be derived by replacing the unknown copula of the random
vector (X1,X2, . . . ,Xn) by the most dangerous comonotonic copula. They propose also the
lower bound S

� obtained through conditioning. Such an approach allows to determine analytical
bounds for stop-loss premiums.

In practical applications the comonotonic upper bound seems to be useful only in the case of
a very strong dependency between summands. Even then the bounds for stop-loss premiums
provided by the comonotonic approximation are often not satisfactory. In this contribution we
present a number of techniques which allow to determine much more efficient upper bounds
for stop-loss premiums. Like in Deelstra et al. (2004) and Vanmaele et al. (2004b), we use on
one hand the method of conditioning as in Curran (1994) and in Rogers and Shi (1995), and
on the other hand the upper and lower bounds for stop-loss premiums of sums of dependent
random variables as derived in Dhaene et al. (2002a, 2002b). We provide a number of numerical
illustrations which reveal a significant improvement compared to the traditional comonotonic
approximations.

We show how to apply our results to the case of sums of lognormal distributed random variables.
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Such sums are widely encountered in practice, both in actuarial science and in finance. Typical
examples are present values of future cash-flows with stochastic (Gaussian) interest rates (see
Dhaene et al. (2002b), Asian options (see e.g. Simon et al. (2000) and Vanmaele et al. (2004b))
and basket options (see Deelstra et al. (2004) and Vanmaele et al. (2004a)). In the application
section we show how to adapt the bounds to the case of a single life annuity (cash flows with
a stochastic time horizon) and to the case of a diversified portfolio of life annuities (cash flows
with a deterministic time horizon).

The paper is organized as follows. We recapitulate the theoretical results of Dhaene et al.
(2002a) in Section 2. In Section 3 we apply the results of Rogers and Shi (1995) to get an
alternative upper bound for stop-loss premiums. Section 4 explains how these upper bounds can
be improved by decomposing stop-loss premiums. The application to the lognormal case and
the generalization to sums with a stochastic time horizon are presented in Section 5. Section 6
contains some numerical illustrations for the case of life annuities. Finally in Section 7 we insert
some concluding remarks.

2 Some theoretical results

In this section, we recall from Dhaene et al. (2002a) and the references therein the procedures for
obtaining the lower and upper bounds for stop-loss premiums of sums S of dependent random
variables by using the notion of comonotonicity. A random vector (Xc

1, . . . ,Xc
n) is comonotonic

if each two possible outcomes (x1, . . . , xn) and (y1, . . . , yn) of (Xc
1 , . . . ,Xc

n) are ordered compo-
nentwise.

In both financial and actuarial context one encounters quite often random variables of the type
S =

∑n
i=1 Xi where the terms Xi are not mutually independent, but the multivariate distribution

function of the random vector X = (X1,X2, . . . ,Xn) is not completely specified because one
only knows the marginal distribution functions of the random variables Xi. In such cases, to
be able to make decisions it may be helpful to find the dependence structure for the random
vector (X1, . . . ,Xn) producing the least favourable aggregate claims S with given marginals.
Therefore, given the marginal distributions of the terms in a random variable S =

∑n
i=1 Xi, we

shall look for the joint distribution with a smaller resp. larger sum, in the convex order (≤cx)
sense, which means that S1 ≤cx S2 ⇔ E[S1] = E[S2] and E[(S1 − d)+] ≤ E[(S2 − d)+] for all
d ∈ R. In short, the sum S is bounded below and above in convex order by the following sums
which will be defined in the subsequent sections:

S
� ≤cx S ≤cx S

u ≤cx S
c,

which implies by definition of convex order that

E[(S� − d)+] ≤ E[(S − d)+] ≤ E[(Su − d)+] ≤ E[(Sc − d)+]

for all d in R, while E[S�] = E[S] = E[Su] = E[Sc] and Var[S�] ≤ Var[S] ≤ Var[Su] ≤ Var[Sc]. We
recall that (x)+ = max{x, 0}.

2



2.1 Comonotonic upper bound

As proven in Dhaene et al. (2002a), the convex-largest sum of the components of a random
vector with given marginals is obtained by the comonotonic sum S

c = Xc
1 + Xc

2 + · · ·+ Xc
n with

S
c d=

n∑
i=1

F−1
Xi

(U),

where “ d=” means equality in distribution and where U denotes in the following a Uniform(0, 1)
random variable. The usual inverse of a distribution function, which is the non-decreasing and
left-continuous function F−1

X (p), is defined by

F−1
X (p) = inf {x ∈ R | FX(x) ≥ p} , p ∈ [0, 1] ,

with inf ∅ = +∞ by convention.

Kaas et al. (2000) have proved that the inverse distribution function of a sum of comonotonic
random variables is simply the sum of the inverse distribution functions of the marginal dis-
tributions. Moreover, in case of strictly increasing and continuous marginals, the cumulative
distribution function (cdf) FSc(x) is uniquely determined by

F−1
Sc (FSc (x)) =

n∑
i=1

F−1
Xi

(FSc (x)) = x, F−1
Sc (0) < x < F−1

Sc (1). (1)

Hereafter we restrict ourselves to this case of strictly increasing and continuous marginals.

In the following theorem Dhaene et al. (2002) have proved that the stop-loss premiums of a
sum of comonotonic random variables can easily be obtained from the stop-loss premiums of the
terms.

Theorem 1 The stop-loss premium, denoted by πcub(S, d), of the sum S
c of the components of

the comonotonic random vector (Xc
1,X

c
2 , . . . ,Xc

n) at retention d is given by

πcub(S, d) =
n∑

i=1

E
[(

Xi − F−1
Xi

(FSc (d))
)

+

]
, (F−1

Sc (0) < d < F−1
Sc (1)).

If the only information available concerning the multivariate distribution function of the random
vector (X1, . . . ,Xn) are the marginal distribution functions of the Xi, then the distribution
function of S

c = F−1
X1

(U) + F−1
X2

(U) + · · · + F−1
Xn

(U) is a prudent choice for approximating the
unknown distribution function of S = X1 + · · ·+Xn. It is a supremum in terms of convex order.
It is the best upper bound that can be derived under the given conditions.

2.2 Improved comonotonic upper bound

Let us now assume that we have some additional information available concerning the stochastic
nature of (X1, . . . ,Xn). More precisely, we assume that there exists some random variable Λ
with a given distribution function, such that we know the conditional cumulative distribution
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functions, given Λ = λ, of the random variables Xi, for all possible values of λ. In fact, Kaas et
al. (2000) define the improved comonotonic upper bound S

u as

S
u = F−1

X1|Λ(U) + F−1
X2|Λ(U) + · · · + F−1

Xn|Λ(U),

where F−1
Xi|Λ(U) is the notation for the random variable fi(U,Λ), with the function fi defined by

fi(u, λ) = F−1
Xi|Λ=λ(u). In order to obtain the distribution function of S

u, observe that given the
event Λ = λ, the random variable S

u is a sum of comonotonic random variables. If the marginal
cdfs FXi|Λ=λ are strictly increasing and continuous, then FSu|Λ=λ(x) is a solution to

n∑
i=1

F−1
Xi | Λ=λ

(
FSu | Λ=λ(x)

)
= x, x ∈

(
F−1
Su | Λ=λ(0), F−1

Su | Λ=λ(1)
)

, (2)

and the cdf of S
u then follows from

FSu(x) =
∫ +∞

−∞
FSu|Λ=λ(x) dFΛ(λ).

In this case, we also find that for any d ∈
(
F−1
Su|Λ=λ

(0), F−1
Su |Λ=λ

(1)
)

:

E
[
(Su − d)+ | Λ = λ

]
=

n∑
i=1

E
[(

Xi − F−1
Xi|Λ=λ

(
FSu|Λ=λ(d)

))
+
| Λ = λ

]
,

from which the stop-loss premium at retention d of S
u, denoted by πicub(S, d,Λ), can be deter-

mined by integration with respect to λ over the real line.

2.3 Lower bound

Let X = (X1, . . . ,Xn) be a random vector with given marginal cdfs FX1 , FX2 , . . . , FXn . Assume
again that there exists some random variable Λ with a given distribution function, such that
we know the conditional distribution, given Λ = λ, of the random variables Xi, for all possible
values of λ. We recall from Kaas et al. (2000) that a lower bound, in the sense of convex order,
for S = X1 + X2 + · · · + Xn is

S
� = E [S | Λ] . (3)

This idea can also be found in Rogers and Shi (1995) for the continuous case.

Let us further assume that the random variable Λ is such that all E [Xi | Λ] are non-decreasing
and continuous functions of Λ, then S

� is a comonotonic sum. When in addition the cdfs of
the random variables E [Xi | Λ] are strictly increasing and continuous, then the cdf of S

� is also
strictly increasing and continuous, and we get analogously to (1) for all x ∈ (F−1

S� (0) , F−1
S� (1)

)
,

n∑
i=1

F−1
E[Xi|Λ] (FS�(x)) = x ⇔

n∑
i=1

E
[
Xi | Λ = F−1

Λ (FS�(x))
]

= x, (4)
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which unambiguously determines the cdf of the convex order lower bound S
� for S. In order to

derive the above equivalence, we used the fact that for a non-decreasing continuous function g,
we have

F−1
g(X)(p) = g(F−1

X (p)), p ∈ (0, 1).

Invoking Theorem 1, the stop-loss premium π�b(S, d,Λ) of S
� can be computed as:

π�b(S, d,Λ) =
n∑

i=1

E
[(

E [Xi | Λ] − E
[
Xi | Λ = F−1

Λ (FS�(d))
])

+

]
, (5)

which holds for all retentions d ∈ (F−1
S� (0) , F−1

S� (1)
)
.

So far, we considered the case that all E [Xi | Λ] are non-decreasing functions of Λ. The case
where all E [Xi | Λ] are non-increasing and continuous functions of Λ also leads to a comonotonic
vector (E [X1 | Λ] ,E [X2 | Λ] , . . . ,E [Xn | Λ]), and can be treated in a similar way but will not
be dealt with in this paper.

In case the cdfs of the random variables E [Xi | Λ] are not continuous nor strictly increasing or
decreasing functions of Λ, then the stop-loss premiums of S

�, which is not comonotonic anymore,
can be determined as follows :

π�b(S, d,Λ) =
∫ +∞

−∞

(
n∑

i=1

E [Xi | Λ = λ] − d

)
+

dFΛ (λ) .

3 Upper bounds based on lower bound plus error term

Following the ideas of Rogers and Shi (1995), we derive an upper bound based on the lower
bound. Indeed, applying the following general inequality for any random variable Y and Z from
Rogers and Shi (1995):

0 ≤ E
[
E [Y+ | Z] − E [Y | Z]+

] ≤ 1
2
E
[√

Var(Y | Z)
]

(6)

to the case of Y being S− d and Z being our conditioning variable Λ, we obtain an error bound

0 ≤ E
[
E [(S − d)+ | Λ] − (S� − d)+

]
≤ 1

2
E
[√

Var(S | Λ)
]
, (7)

which is only useful if the retention d is strictly positive.

Consequently, we find as upper bound for the stop-loss premium of S

π(S, d) ≤ πeub(S, d,Λ), (8)

with πeub(S, d,Λ) given by

πeub(S, d,Λ) = π�b(S, d,Λ) +
1
2
E
[√

Var(S |Λ)
]
. (9)

5



The second term on the right hand side takes the form

E
[√

Var(S |Λ)
]

= E
[(

E
[
S

2 | Λ
]− (E [S | Λ])2

)1/2
]

(10)

= E




 n∑

i=1

n∑
j=1

E [XiXj | Λ] −
(

S
�
)2




1/2

 ,

and once the distributions of Xi and Λ are specified and known, it can be written out more
explicitly.

4 Bounds by conditioning through decomposition of the stop-

loss premium

4.1 Decomposition of the stop-loss premium

In this section we show how to improve the bounds introduced in Sections 2-3. By conditioning
S on some random variable Λ, the stop-loss premium can be decomposed in two parts, one
of which can either be computed exactly or by using numerical integration, depending on the
distribution of the underlying random variable. For the remaining part we first derive a lower
and an upper bound based on comonotonic risks, and another upper bound equal to that lower
bound plus an error term. This idea of decomposition goes back at least to Curran (1994).

By the tower property for conditional expectations the stop-loss premium π(S, d) with S =
n∑

i=1
Xi

equals
E[E[(S − d)+|Λ]],

for some conditioning variable Λ with cdf FΛ.

If in addition there exists a dΛ such that Λ ≥ dΛ implies that S ≥ d or such that Λ ≤ dΛ implies
that S ≥ d, it holds that

E[(S − d)+ | Λ] = E[S − d | Λ]
(3)
= (S� − d)+.

Note that in practical applications the existence of such a dΛ depends on the actual form of S

and Λ.

We now concentrate upon the decomposition in the first case, the second case can be treated in
a similar way with the appropriate integration bounds:

π(S, d) =
∫ dΛ

−∞
E[(S − d)+|Λ = λ]dFΛ(λ) +

∫ +∞

dΛ

E[S − d|Λ = λ]dFΛ(λ)

not= I1 + I2. (11)

The second integral can further be simplified to

I2 =
∫ +∞

dΛ

n∑
i=1

E[Xi|Λ = λ]dFΛ(λ) − d(1 − FΛ(dΛ)), (12)
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and can be written out explicitly if the bivariate distribution of (Xi,Λ) is known for all i.

Deriving bounds for the first part I1 in decomposition (11) and adding up to the exact part (12)
gives us the bounds for the stop-loss premium.

4.2 Lower bound

By means of Jensen’s inequality, the first integral I1 of (11) can be bounded below:

I1 ≥
∫ dΛ

−∞
(E[S | Λ = λ] − d)+dFΛ(λ) =

∫ dΛ

−∞

( n∑
i=1

E[Xi|Λ = λ] − d
)

+
dFΛ(λ). (13)

By adding the exact part (12) and introducing notation (3), we end up with the inequality of
Section 2.3:

π(S, d) ≥ π�b(S, d,Λ).

When S
� is a sum of n comonotonic risks we can apply (5) which holds even when we do not

know or find a dΛ.

When S
� is not comonotonic we use the decomposition

π�b(S, d,Λ) =
∫ dΛ

−∞
(

n∑
i=1

E[Xi|Λ = λ]−d)+dFΛ(λ)+
∫ +∞

dΛ

n∑
i=1

E[Xi|Λ = λ]dFΛ(λ)−d(1−FΛ(dΛ)).

4.3 Upper bound based on lower bound

In this section we improve the bound (8) by applying (6) to (13):

0 ≤ E
[
E[(S − d)+ | Λ] − (S� − d)+

]
=
∫ dΛ

−∞

(
E[(S − d)+ | Λ = λ] − (E [ S | Λ = λ] − d)+

)
dFΛ(λ)

≤ 1
2

∫ dΛ

−∞
(Var (S | Λ = λ))

1
2 dFΛ(λ) (14)

≤ 1
2
(
E
[
Var (S | Λ) 1{Λ<dΛ}

]) 1
2
(
E
[
1{Λ<dΛ}

]) 1
2

not= ε(dΛ), (15)

where Hölder’s inequality has been applied in the last inequality and where 1{Λ<dΛ} is the
indicator function, i.e. 1{c} = 1 if the condition c is true and 1{c} = 0 if it is not. We will denote
this upper bound by πdeub(S, d,Λ). So we have that

πdeub(S, d,Λ) = π�b(S, d,Λ) + ε(dΛ). (16)

We remark that the error bound (7), and hence also the upper bound πeub(S, d,Λ), is inde-
pendent of dΛ and corresponds to the limiting case of (14) where dΛ equals infinity. Obvi-
ously, the error bound (14) improves the error bound (7). In practical applications, the addi-
tional error introduced by Hölders inequality turns out to be much smaller than the difference
1
2E
[√

Var(S|Λ)
]
− ε(dΛ).
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4.4 Partially exact/comonotonic upper bound

We bound the first term I1 of (11) above by replacing S | Λ = λ by its comonotonic upper bound
S

u (in convex order sense):

∫ dΛ

−∞
E[(S − d)+ | Λ = λ]dFΛ(λ) ≤

∫ dΛ

−∞
E[(Su − d)+ | Λ = λ]dFΛ(λ). (17)

Adding (17) to the exact part (12) of the decomposition (11) results in the so-called partially
exact/comonotonic upper bound for a stop-loss premium. We will use the notation πpecub(S, d,Λ)
to indicate this upper bound.

It is easily seen that
πpecub(S, d,Λ) ≤ πicub(S, d,Λ),

while for two distinct conditioning variables Λ1 and Λ2 it does not necessarily holds that

πpecub(S, d,Λ1) ≤ πicub(S, d,Λ2).

5 Case of sum of lognormal random variables

In this section we further develop the expressions for the lower and upper bounds when the
random variables Xi in the sum S are lognormal.

We assume that Xi = αie
Zi with Zi ∼ N(E[Zi], σZi) and αi ∈ R, i.e.

S =
n∑

i=1

Xi =
n∑

i=1

αie
Zi . (18)

In this case the stop-loss premium with some retention di, namely π(Xi, di), is well-known from
the following lemma.

Lemma 1 Let X be a lognormal random variable of the form αeZ with Z ∼ N(E[Z], σZ) and
α ∈ R. Then the stop-loss premium with retention d equals for αd > 0

π(X, d) = sign (α) eµ+ σ2

2 Φ(sign (α) b1) − dΦ(sign (α) b2), (19)

where

µ = ln |α| + E[Z] σ = σZ

b1 =
µ + σ2 − ln |d|

σ
b2 = b1 − σ (20)

and where Φ stands for the cdf of a standard normal random variable. The cases αd < 0 are
trivial.

We now consider a normally distributed random variable Λ. The following results are analogous
to Theorem 1 in Dhaene et al. (2002b).
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Theorem 2 Let S be given by (18) and consider a normally distributed random variable Λ which
is such that (Zi,Λ) is bivariate normally distributed for all i. Then the distributions of the lower
bound S

�, the improved comonotonic upper bound S
u and the comonotonic upper bound S

c are
given by

S
� =

n∑
i=1

αie
E[Zi]+riσZi

Φ−1(V )+ 1
2(1−r2

i )σ2
Zi , (21)

S
u =

n∑
i=1

αie
E[Zi]+riσZi

Φ−1(V )+sign(αi)
√

1−r2
i σZi

Φ−1(U), (22)

S
c =

n∑
i=1

αie
E[Zi]+sign(αi)σZi

Φ−1(U), (23)

where U and V = Φ
(

Λ − E[Λ]
σΛ

)
are mutually independent uniform(0,1) random variables, Φ

is the cdf of the N(0, 1) distribution and ri, i = 1, . . . , n, are correlations defined by

ri = r (Zi,Λ) =
Cov [Zi,Λ]

σZiσΛ
.

When for all i sign(αi) = sign(ri) or for all i sign(αi) = −sign(ri) for ri 	= 0 then S� is
comonotonic.

5.1 Comonotonic upper bound

Since the cdfs FXi are strictly increasing and continuous, it follows from (1) and (23) that for
x ∈ (F−1

Sc (0), F−1
Sc (1)

)
, the cdf of the comonotonic sum FSc(x) can be found by solving

n∑
i=1

αie
E[Zi]+sign(αi)σZi

Φ−1(FSc(x)) = x.

Combination of Theorem 1 and Lemma 1 yields the following expression for the stop-loss pre-
mium of S

c at retention d with F−1
Sc (0) < d < F−1

Sc (1):

πcub(S, d) =
n∑

i=1

αie
E[Zi]+

σ2
Zi
2 Φ

[
sign(αi)σZi

− Φ−1(FSc(d))
]
− d (1 − FSc(d)) .

5.2 Improved comonotonic upper bound

We now determine the cdf of S
u and the stop-loss premium πicub(S, d,Λ), where we condition on

a normally distributed random variable Λ or equivalently on the uniform(0, 1) random variable
introduced in Theorem 2:

V = Φ
(

Λ − E [Λ]
σΛ

)
.

The conditional probability FSu|V =v(x) also denoted by FSu(x | V = v), is the cdf of a sum of
n comonotonic random variables and follows for F−1

Su|V =v(0) < x < F−1
Su|V =v(1), according to (2)
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and (22), implicitly from:

n∑
i=1

αie
E[Zi]+riσZi

Φ−1(v)+sign(αi)
√

1−r2
i σZi

Φ−1(FSu (x|V =v)) = x. (24)

The cdf of S
u is then given by

FSu(x) =
∫ 1

0
FSu|V =v(x)dv.

We now look for an expression for the stop-loss premium at retention d with F−1
Su|V =v(0) < d <

F−1
Su|V =v(1) for S

u:

πicub(S, d,Λ) =
∫ 1

0
E
[
(Su − d)+ | V = v

]
dv =

n∑
i=1

∫ 1

0
E
[(

F−1
Xi|Λ(U | V = v) − di

)
+

]
dv

with di = F−1
Xi|Λ (FSu(d | V = v) | V = v) and with U a random variable which is uniformly

distributed on (0, 1). Since sign(αi)F−1
Xi|Λ(U | V = v) follows a lognormal distribution with

mean and standard deviation:

µv(i) = ln |αi| + E [Zi] + riσZiΦ
−1(v), σv(i) =

√
1 − r2

i σZi ,

one obtains that

di = αi exp
[
E [Zi] + riσZiΦ

−1(v) + sign(αi)
√

1 − r2
i σZiΦ

−1
(
FSu|V =v(d)

)]
.

The well-known formula (19) then yields

E
[
(Su − d)+ | V = v

]
=

n∑
i=1

[
sign(αi)eµv(i)+

σ2
v(i)

2 Φ(sign(αi)bi,1) − diΦ(sign(αi)bi,2)
]

,

with, according to (20),

bi,1 =
µv(i) + σ2

v(i) − ln |di|
σv(i)

, bi,2 = bi,1 − σv(i).

Substitution of the corresponding expressions and integration over the interval [0, 1] leads to the
following result

πicub(S, d,Λ) =
n∑

i=1

αie
E[Zi]+

1
2
σ2

Zi
(1−r2

i )
∫ 1

0
eriσZi

Φ−1(v) ×

× Φ
(

sign(αi)
√

1 − r2
i σZi − Φ−1

(
FSu|V =v(d)

))
dv − d (1 − FSu(d)) .

(25)
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5.3 Lower bound

In this subsection, we study the case that, for all i, sign(αi) = sign(ri) when ri 	= 0. For simplicity
we take all αi ≥ 0 and assume that the conditioning variable Λ is normally distributed and has
the right sign such that the correlation coefficients ri are all positive. These conditions ensure
that S

� is the sum of n comonotonic random variables. The case that, for all i, sign(αi) =
−sign(ri) when ri 	= 0 can be dealt with in an analogous way.

Since by our assumptions E[Xi | Λ] is increasing, we can obtain FS�(x) according to (4) and (21)
from

n∑
i=1

αie
E[Zi]+riσZi

Φ−1(FS�(x))+ 1
2(1−r2

i )σ2
Zi = x. (26)

Moreover as S
� is the sum of n lognormally distributed random variables, the stop-loss premium

at retention d(> 0) can be expressed explicitly by invoking Theorem 1 and Lemma 1:

π�b(S, d,Λ) =
n∑

i=1

αie
E[Zi]+

1
2
σ2

Zi Φ
[
riσZi − Φ−1 (FS�(d))

]− d (1 − FS�(d)) . (27)

5.4 Upper bound based on lower bound

From (10) we obtain that

E
[√

Var(S |Λ)
]

=
∫ +∞

−∞




n∑
i=1

n∑
j=1

E [XiXj | Λ = λ] − (E[S | Λ = λ])2




1
2

dFΛ(λ).
(28)

Now consider the first term in the right hand side of (28). According to the properties of
lognormally distributed random variables, the product of lognormals is again lognormal, and
conditioning a lognormal variate on a normal variate yields a lognormally distributed variable.

We can proceed by denoting Zij = Zi + Zj with E[Zij ] = E[Zi] + E[Zj ] and

σ2
Zij

= σ2
Zi

+ σ2
Zj

+ 2σZiZj ,

where σZiZj stands for Cov(Zi, Zj). Note that

rij =
Cov(Zij ,Λ)

σZijσΛ

=
Cov (Zi,Λ)

σZijσΛ
+

Cov (Zj ,Λ)
σZijσΛ

=
σZi

σZij

ri +
σZj

σZij

rj .

Conditionally, given Λ = λ, the random variable Zij is normally distributed with parameters

µ(ij) = E [Zij] + rij
σZij

σΛ
(λ − E [Λ]) and σ2(ij) =

(
1 − r2

ij

)
σ2

Zij
. Hence, conditionally, given

11



Λ = λ, the random variable eZij is lognormally distributed with parameters µ(ij) and σ2(ij).
As E

[
eZij | Λ = λ

]
= eµ(ij)+ 1

2
σ2(ij), we find

E
[
eZij | Λ

]
= e

E[Zij ]+rijσZij
Φ−1(V )+ 1

2(1−r2
ij)σ2

Zij ,

where the random variable V = Φ
(

Λ−E[Λ]
σΛ

)
is uniformly distributed on the interval (0, 1).

Thus, the first term in (28) equals

n∑
i=1

n∑
j=1

E[XiXj | Λ] =
n∑

i=1

n∑
j=1

αiαj exp
(

E[Zij ] + rijσZijΦ
−1(V ) +

1
2
(1 − r2

ij)σ
2
Zij

)
,

(29)

while the second term consists of (21). Hence (28) can be written out explicitly and by using
(9) we have that the upper bound (8) is given by

πeub(S, d,Λ) =
n∑

i=1

αie
E[Zi]+

1
2
σ2

Zi Φ
[
riσZi − Φ−1 (FS�(d))

]− d (1 − FS�(d)) +

+
1
2

∫ 1

0

{
n∑

i=1

n∑
j=1

αiαje
E[Zij ]+rijσZij

Φ−1(v)+ 1
2
(1−r2

ij)σ
2
Zij−

−
(

n∑
i=1

αie
E[Zi]+riσZi

Φ−1(v)+ 1
2(1−r2

i )σ2
Zi

)2 } 1
2

dv.

5.5 Bounds by conditioning through decomposition of stop-loss premium

In this subsection we apply the theory of Section 4 to the sum of lognormal random variables
(23). We only give here the analytical expressions for the two upper bounds πdeub(S, d,Λ) and
πpecub(S, d,Λ). For more details concerning the calculation of the bounds the reader is referred
to Appendix A and B.

The following auxiliary result is needed in order to write out the bounds explicitely.

Lemma 2 For any constant a ∈ R and any normally distributed random variable Λ
∫ dΛ

−∞
eaΦ−1(v)dFΛ(λ) = e

a2

2 Φ(d∗Λ − a), (30)

where d∗Λ = dΛ−E[Λ]
σΛ

, V = Φ
(

Λ−E[Λ]
σΛ

)
is uniformly distributed on the unit interval and thus,

Φ−1(V ) = Λ−E[Λ]
σΛ

is a standard normal variable.

5.5.1 Lower bound

In view of the remark that the lower bound via the decomposition equals the lower bound
without the decomposition, we refer for an expression for it in the lognormal and comonotonic
case to Section 5.3.
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5.5.2 Upper bound based on lower bound

The upper bound (16) can be written out explicitly as follows

πdeub(S, d,Λ) =
n∑

i=1

αie
E[Zi]+

1
2
σ2

Zi Φ
[
riσZi − Φ−1 (FS�(d))

]− d (1 − FS�(d)) +

+
1
2
Φ(d∗Λ)1/2

{
n∑

i=1

n∑
j=1

αiαje
E[Zij ]+

1
2
(σ2

Zi
+σ2

Zj
)×

×Φ
(
d∗Λ − (riσZi + rjσZj

)) (
e
σZiZj − e

σZi
σZj

rirj
) } 1

2

.

5.5.3 Partially exact/comonotonic upper bound

The partially exact/comonotonic upper bound of subsection 4.4 is given by

πpecub(S, d,Λ) =
n∑

i=1

αie
E[Zi]+

1
2
σ2

Zi
(1−r2

i )
{

e
r2
i σ2

Zi
2 Φ(riσZi − d∗Λ) +

∫ Φ(d∗Λ)

0
eriσZi

Φ−1(v)×

× Φ
(

sign(αi)
√

1 − r2
i σZi − Φ−1

(
FSu|V =v(d)

))
dv

}
−

−d

(
1 −
∫ Φ(d∗Λ)

0
FSu|V =v(d)dv

)
.

5.6 Choice of the conditioning variable

If X ≤cx Y , and X and Y are not equal in distribution, then Var[X] < Var[Y ] must hold. An
equality in variance would imply that X

d= Y . This shows that if we want to replace S by the less
convex S

�, the best approximations will occur when the variance of S
� is ’as close as possible’

to the variance of S. Hence we should choose Λ such that goodness-of-fit expressed by the ratio
z = Var(S�)

Var(S) is as close as possible to 1. Of course one can always use numerical procedures to
optimize z but this would outweigh one of the main features of the convex bounds, namely that
the different relevant actuarial quantities (quantiles, tailvars, stop-loss premiums) can be easily
obtained. Having a ready-to-use approximation that can be easily implemented and used by all
kind of end-users is important from a business point of view.

We propose here three conditioning random variables. The first two are linear combinations of
the random variables Zi:

Λ =
n∑

i=1

γi Zi, (31)

for particular choices of the coefficients γi.
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Kaas, Dhaene and Goovaerts (2000) propose the following choice for the parameters γi when
computing the lower bound S

�:

γi = αie
E[Zi], i = 1, . . . , n.

This choice makes Λ a linear transformation of a first order approximation to S. This can be
seen from the following derivation:

S =
n∑

i=1

αie
E[Zi] +(Zi−E[Zi]) ≈

n∑
i=1

αie
E[Zi] (1 + Zi − E [Zi])

≈ C +
n∑

i=1

αie
E[Zi]Zi, (32)

where C is the appropriate constant. Hence S
� will be “close” to S, provided (Zi − E(Zi)) is

sufficiently small, or equivalently, σ2
Zi

is sufficiently small. One intuitively expects that for this
choice for Λ, E(Var[S | Λ]) is “small” and since Var(S) = E(Var[S | Λ]) + Var(S�) this exactly
means that one expects the ratio z = Var(S�)

Var(S) to tend to one.

A possible decomposition variable is in that case given by

dΛ = d − C = d −
n∑

i=1

αie
E[Zi] (1 − E [Zi]) .

Using the property that ex ≥ 1 + x and (32), we have that Λ ≥ dΛ implies that S ≥ d.

A second conditioning variable is proposed by Vanduffel, Hoedemakers and Dhaene (2004) for
which the first order approximation of Var(S�) is maximized. They take in expression (31) for
Λ the parameters γi equal to

γi = αie
E[Zi]+

1
2
σ2

Zi , i = 1, . . . , n.

For this ‘maximal variance’ conditioning variable a possible choice for dΛ is given by

dΛ = d −
n∑

i=1

αie
E[Zi]+

1
2
σ2

Zi

(
1 − E [Zi] − 1

2
σ2

Zi

)
.

A third conditioning variable is based on the standardized logarithm of the geometric average
G = (

∏n
i=1 S)1/n as in Nielsen and Sandman (2002)

Λ =
ln G − E[ln G]√

Var(ln G)
=
∑n

i=1(Zi − E[Zi])√
Var(

∑n
i=1 Zi)

.

Using the fact that the geometric average is not greater than the arithmetic average, a possible
decomposition variable is here given by

dΛ =
n ln
(

d
n

)−∑n
i=1 E[Zi]√

Var(
∑n

i=1 Zi)
,

so that Λ ≥ dΛ implies that S ≥ d.

In the remainder of this paper, the choice of Λ will be dependent on the time horizon n. To
indicate this dependence, we introduce the notation Λn for the used conditioning variable Λ.
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5.7 Generalization to sums of lognormals with a stochastic time horizon

Suppose that S is a sum of lognormal variables with a stochastic time horizon T

S =
T∑

i=1

αie
Zi ,

with αi ∈ R, T a stochastic variable with life time probability distribution FT (t) and Zi ∼
N(E[Zi], σZi) independent of T . Using the tower property for conditional expectations, we can
calculate the stop-loss premium of S as follows

π(S, d) = E
[
(S − d)+

]
= E


( T∑

i=1

αie
Zi − d

)
+




= ET


E


( T∑

i=1

αie
Zi − d

)
+

|T





=
∞∑

j=1

Pr(T = j)E


( j∑

i=1

αie
Zi − d

)
+




=
∞∑

j=1

Pr(T = j) π(Sj, d), (33)

with

Sj =
j∑

i=1

αie
Zi .

Remark that in practical applications the infinite time horizon is often replaced by a finite
number. It is straightforward to obtain a lower bound, denoted as π�b(S, d,Λ), by looking at
the combination

π�b(S, d,Λ) =
∞∑

j=1

Pr(T = j) π�b(Sj, d,Λj),

with Λ = Λ1,Λ2, . . . and π�b(Sj , d,Λj) given by (27) for n = j. The same reasoning can
be followed for obtaining the comonotonic upper bound πcub(S, d), the improved comonotonic
upper bound πicub(S, d,Λ) and the partially exact/comonotonic upper bound πpecub(S, d,Λ).

For each term π(Sj, d) in the sum (33) we can take the minimum of two or more of the above
defined upper bounds. We propose two upper bounds based on this simple idea.

The first bound takes each time the minimum of the error term (7) independent of the retention
and the error term (15) dependent on the retention. Combining this with the stop-loss premium
of the lower bound S

� results in the following upper bound

πemub(S, d,Λ) = π�b(S, d,Λ) +
∞∑

j=1

Pr(T = j)min
(

1
2
E
[√

Var[Sj|Λj ]
]

, ε(dΛj )
)

.
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Calculating for each term the minimum of all the presented upper bounds

πmin(S, d,Λ) =
∞∑

j=1

Pr(T = j)min
(
πcub(Sj , d), πicub(Sj , d,Λj), πpecub(Sj , d,Λj), πemub(Sj, d,Λj)

)
,

will of course provide the best possible upper bound.
Remarkt that πemub(Sj , d,Λj) = π�b(Sj , d,Λj) + min

(
1
2E
[√

Var[Sj|Λj ]
]
, ε(dΛj )

)
.

6 Application to life contingencies

In this section, we will adapt the different lower and upper bounds presented above, to the
case of life contingencies, and we will compare the performance in a numerical illustration. We
consider the random variable Sn which is defined as the present value of a series of n deterministic
non-negative payment obligations α1, α2, . . . , αn due at times 1, 2, . . . , n, respectively:

Sn =
n∑

i=1

αie
−Y (i) not=

n∑
i=1

αie
Zi . (34)

where the stochastic variables Y (i) are defined as Y (i) := Y1+Y2+· · ·+Yi. The random variables
Yi represent the stochastic continuous compounded rate of return over the period [i − 1, i] and
e−Y (i) is the random discount factor over the period [0, i].

We will assume that the yearly returns Yi are i.i.d. normally distributed with mean µ = 0.07
and volatility σ = 0.1. Notice that Sn is a random variable of the general type defined in (18).

In order to compute the lower and upper bounds for the stop-loss premia, we consider as con-
ditioning random variable Λn =

∑n
i=1 γi Zi, with in the ‘Taylor-based’ case γi given by

γi = αie
E[Zi], i = 1, . . . , n

and in the ‘maximal variance’ case γi given by

γi = αie
E[Zi]+

1
2
σ2

Zi , i = 1, . . . , n.

The corresponding decomposition variables are respectively equal to d−∑n
i=1 αie

E[Zi] (1 − E [Zi])

and d −∑n
i=1 αie

E[Zi]+
1
2
σ2

Zi

(
1 − E [Zi] − 1

2σ2
Zi

)
. For the numerical illustrations in this section

we present each time the one which provides the best result.

Notice that E[Zi], σ2
Zi

and ri are given by

E[Zi] = −iµ,

σ2
Zi

= iσ2

and

ri =

∑i
j=1

∑n
k=j γk√

i
∑n

j=1

(∑n
k=j γk

)2
.
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Remark that the correlation coefficients ri are positive, so that the formulae (26) and (27) can
be applied.

The ‘maximal variance’ conditioning variable with γi = αie
E[Zi]+

1
2
σ2

Zi performs better far in the
tail. So for high values of d the different bounds based on this conditioning variable approximate
more accurate the real value of the stop-loss premium than the approximations using the ‘Taylor-
based’ conditioning variable. The ‘geometric average’ conditioning variable performs in general
sligthly worse in comparison with the two other random variables for this kind of applications.

Now we will compare the performance of the different bounds that were presented in Sections 2, 3
and 4: the lower bound π�b(Sn, d,Λ) (LB), the comonotonic upper bound πcub(Sn, d) (CUB), the
improved comonotonic upper bound πicub(Sn, d,Λ) (ICUB), the upper bound based on the lower
bound πeub(Sn, d,Λ) (EUB) and πdeub(Sn, d,Λ) (DEUB) and the partially exact/comonotonic
upper bound πpecub(Sn, d,Λ) (PECUB). For applications with a stochastic time horizon N we
also consider the two combination bounds πemub(SN , d,Λ) (EMUB) and πmin(SN , d,Λ) (MIN).

We will compare the different lower and upper bounds for the stop-loss premiums with the
values obtained by Monte-Carlo simulation (MC). The simulation results are based on generating
50×1 000 000 paths. For each estimate we computed the standard error (s.e.). As is well-known,
the (asymptotic) 95% confidence interval is given by the estimate plus or minus 1.96 times
the standard error. The estimates obtained from this time-consuming simulation will serve as
benchmark. The random paths are based on antithetic variables in order to reduce the variance
of the Monte-Carlo estimates.

We will apply the above derived bounds for two kind of life insurance applications. A life annuity
may be defined as a series of periodic payments where each payment will actually be made only
if a designated life is alive at the time the payment is due. Let us consider a person aged x
years, also called a life aged x and denoted by (x). We denote his or her future lifetime by Tx.
Thus x + Tx will be the age of death of the person. The future lifetime Tx is a random variable
with a probability distribution function

Gx(t) = Pr[Tx ≤ t] = tqx, t ≥ 0.

The function Gx represents the probability that the person will die within t years, for any fixed
t. We assume that Gx is known. We define Kx = 
Tx�, the number of completed future years
lived by (x), or the curtate future lifetime of (x), where 
.� is the floor function, i.e. 
x� is the
largest integer less than or equal to x. The probability distribution of the integer valued random
variable Kx is given by

Pr(Kx = k) = Pr(k ≤ Tx < k + 1) = k+1qx − kqx = k|qx, k = 0, 1, . . . .

Further, the ultimate age of the life table is denoted by ω, this means that ω − x is the first
remaining lifetime of (x) for which ω−xqx = 1, or equivalently, G−1

x (1) = ω − x.
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We assume in this section that the distribution of the remaining lifetime belongs to the Gompertz-
Makeham family. Analytic life tables are defined for all ages x ≥ 0. In Makeham’s model1 lx,
the number of persons alive at age x, is given by

lx = asxgcx
, (35)

where a > 0, 0 < s < 1, 0 < g < 1 and c > 1. Makeham’s life table results from the force of
mortality function

µξ = α + βcξ, (36)

where α is a constant component, interpreted as capturing accident hazard, and βcξ is a variable
component capturing the hazard of aging. The relationship between (35) and (36) is given by

a := l0e
β

log c , s := e−α and g := e
− β

log c . (37)

See Bowers et al. (1996) for more details.

For generating one random variate from Makeham’s law, we use the composition method (De-
vroye, 1986) and perform the following steps

(a) Generate G from the Gompertz’s law by the well-known inversion method
(b) Generate E for the exponential(1) distribution
(c) Retain T = min(E/α,G),

where α = − log s, see (37).

In the remainder of this paper, we will always use the standard actuarial notation:

Pr[Tx > t] = tpx, Pr[Tx > 1] = px, Pr[Tx ≤ t] = tqx, Pr[Tx ≤ 1] = qx.

First we consider a whole life annuity on a life (x) which pays an amount of 1 at the end of each
year, provided the insured is still alive at that time. Assume that the discounting is performed
with a random interest rate. The present value at policy issue of the future payments is denoted2

by S
policy
x and equals the sum of the present values of the payments in the respective years:

S
policy
x =

�ω−x�∑
i=1

1{Tx>i}e−Y (i) =
Kx∑
i=1

e−Y (i),

where 1{.} denotes the indicator function.

1we use the Belgian analytic life tables MR and FR for life annuity valuation, with corresponding constants
for l0, the number of newborns, equal to 1 000 000. For males: a = 1000 266.63, s = 0.999441703848, g =
0.999733441115, c = 1.101077536030, and for females: a = 1000 048.56, s = 0.999669730966, g = 0.999951440171,
c = 1.116792453830.

2in literature denoted by aK , K ≥ 0.
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The stop-loss premium for S
policy
x can be calculated as

E
[(

S
policy
x − d

)
+

]
=

�ω−x�∑
i=1

i|qxE
[(

S̃i − d
)

+

]
,

where S̃i is a special case of Si defined in (34) for unit payments ((α1, . . . , αi) = (1, . . . , 1)). We
will approximate E[(S̃i − d)+] by one of the derived bounds.

Consider a 65-years old male person. The different lower and upper bounds for the stop-loss
premium of a whole life annuity due of 1 payable at the end of each year (annuity-immediate)
while (65) survives are compared in Table 1. For the retentions d = 5, 10 and 15 the upper
bound πmin(Spolicy

x , d,Λ) really improves the comonotonic and improved comonotonic upper
bound. For the extreme cases the values are more or less the same. The lower bound is very
close to the real stop-loss premium.

d = 0 d = 5 d = 10 d = 15 d = 20 d = 25 d = 30

LB 9.3196 4.6191 1.2269 0.1737 0.0207 0.0026 0.0004
MC 9.3196 4.6191 1.2304 0.1739 0.0216 0.0026 0.0004
(s.e. × 105) (8.49) (5.48) (0.51) (0.19) (0.01) (0.002)
ICUB 9.3196 4.6238 1.3277 0.2530 0.0454 0.0088 0.0019
CUB 9.3196 4.6244 1.3389 0.2610 0.0480 0.0095 0.0021
EMUB 9.3196 4.6197 1.2400 0.2145 0.0718 0.0545 0.0522
PECUB 9.3196 4.6219 1.2839 0.2381 0.0451 0.0088 0.0019
MIN 9.3196 4.6195 1.2385 0.2070 0.0444 0.0088 0.0019

Table 1: Approximations for stop-loss premia with retention d of S
policy
x .

In a second application we consider a portfolio of N0 homogeneous life annuity contracts for
which future lifetimes of the insureds T

(1)
x , T

(2)
x , . . . , T

(N0)
x are assumed to be independent. Then

the insurer faces two risks: mortality risk and investment risk. Note that from the Law of Large
Numbers the mortality risk decreases with the number of policies N0 while the investment
risk remains the same (each of the policies is exposed to the same investment risk). Thus for
sufficiently large N0 the stop-loss premium of the portfolio can be expressed as follows

E




�ω−x�∑

i=1

Nie
−Y (i) − d




+


 = E


N0


�ω−x�∑

i=1

Ni

N0
e−Y (i) − d

N0




+




≈ N0E




�ω−x�∑

i=1

ipxe−Y (i) − d

N0




+


 ,

where Ni denotes a number of survivals after i-th year. Hence in the case of large portfolios of
life annuities it suffices to compute stop-loss premiums of an “average” portfolio S

average
x given

by

S
average
x =

�ω−x�∑
i=1

ipxe
−Y (i),
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what has exactly the form of (34) with αi = ipx (i = 1, . . . , 
ω − x�).

Table 2 shows the results for the stop-loss premium E[(Saverage
x − d)+] with different retentions

d. Again the lower bound approach approximates the exact stop-loss premiums extremely well.
The results for the upper bounds are in line with the previous ones. Note that for very high
values of d the differences become larger, however these cases don’t represent any practical
importance.

d = 0 d = 5 d = 10 d = 15

LB 9.3196 4.3200 0.5533 0.0193
MC 9.3196 4.3200 0.5543 0.0197
(s.e. × 105) (0.37) (0.13) (0.035)
ICUB 9.3196 4.3227 0.7076 0.0523
CUB 9.3196 4.3233 0.7217 0.0559
EUB 9.3751 4.3755 0.6090 0.0749
DEUB 9.3196 4.3202 0.5784 0.0744
PECUB 9.3196 4.3219 0.6515 0.0522

Table 2: Approximations for stop-loss premia with retention d of S
average
x .

Remark that only for EUB the error term is independent of the retention and therefore in both
tables all values for d = 0, except these for EUB, are identical and equal to 9.3196. This follows
from the fact that in this case the expected value of S

policy
x equals the expected value of S

average
x .

Note also that the values in Table 1 are typically larger than the corresponding values in Table
2. This is not surprising. From Hoedemakers et al. (2004) (Example 1) it immediately follows
that S

average
x ≤cx S

policy
x and hence for any retention d > 0 one has

E[(Saverage
x − d)+] ≤ E[(Spolicy

x − d)+].

7 Summary and conclusions

In this paper we generalized some methodologies for estimating the stop-loss premiums of
strongly dependent random variables. We started with the comonotonic approximations of
Dhaene et al. (2002a) and the upper bound obtained by adding an error term to the lower
bound of Rogers and Shi (1995). We explained how these bounds can be improved by decom-
posing an integral formula for the stop-loss premium into two parts: one can be easily solved
analytically, the other part can be approximated by one of the comonotonic upper bounds.

We apply all the methods to an average portfolio of life annuities (when mortality risk is assumed
to be fully diversified) and to a single life annuity. In the latter case it is possible to decompose
the value of the stop-loss premium by conditioning and apply the best (smallest) upper bound
on each of the component separately. We provide a number of numerical illustrations which
show that the decomposition significantly improves the bounds.
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Appendix

A - Upper bound based on lower bound

In the following we shall derive an easily computable expression for (15).

The second expectation term in the product (15) equals, when denoting by FΛ(·) the normal
cumulative distribution function of Λ,

E[1{Λ<dΛ}] = 0 · P (Λ ≥ dΛ) + 1 · P (Λ < dΛ) = FΛ(dΛ) = Φ(d∗Λ). (38)

The first expectation term in the product (15) can be expressed as

E
[
Var (S|Λ) 1{Λ<dΛ}

]
= E

[
E[S2|Λ]1{Λ<dΛ}

]− E
[
(E[S|Λ])21{Λ<dΛ}

]
. (39)

Now consider the second term of the right-hand side of (39)

E
[
(E[S|Λ])21{Λ<dΛ}

]
=
∫ dΛ

−∞
(E[S|Λ = λ])2dFΛ(λ). (40)

According to (21) and using the notation Zij introduced in Section 5.4 we can express (40) as

E
[
(E[S|Λ])21{Λ<dΛ}

]

=
∫ dΛ

−∞

(
n∑

i=1

E[Xi|Λ = λ]

)2

dFΛ(λ)

=
∫ dΛ

−∞

(
n∑

i=1

αie
E[Zi]+riσZi

Φ−1(v)+ 1
2(1−r2

i )σ2
Zi

)2

dFΛ(λ)

=
∫ dΛ

−∞

n∑
i=1

n∑
j=1

αiαje
E[Zij ]+(riσZi

+rjσZj
)Φ−1(v)+ 1

2 (1−r2
i )σ2

Zi
+(1−r2

j)σ2
Zj dFΛ(λ)

=
n∑

i=1

n∑
j=1

αiαje
E[Zij ]+

1
2 (1−r2

i )σ2
Zi

+(1−r2
j)σ2

Zj

∫ dΛ

−∞
e
(riσZi

+rjσZj
)Φ−1(v)

dFΛ(λ). (41)

Next, applying Lemma 2 to (41) with a = riσZi + rjσZj yields

E
[
(E[S|Λ])21{Λ<dΛ}

]

=
n∑

i=1

n∑
j=1

αiαje
E[Zij ]+

1
2
(σ2

Zi
+σ2

Zj
+2rirjσZi

σZj
)
Φ
(
d∗Λ − (riσZi + rjσZj

))
. (42)

Now consider the first term of the right-hand side of (39), E
[
E[S2|Λ]1{Λ<dΛ}

]
. The term E[S2|Λ]
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is given by (29). By applying (30) with a = rijσZij = riσZi + rjσZj , and simplifying, we obtain

E
[
E[S2|Λ]1{Λ<dΛ}

]

=
n∑

i=1

n∑
j=1

∫ dΛ

−∞
αiαje

E[Zij ]+rijσZij
Φ−1(v)+ 1

2(1−r2
ij)σ2

Zij dFΛ(λ)

=
n∑

i=1

n∑
j=1

αiαje
E[Zij ]+

1
2(1−r2

ij)σ2
Zij

∫ dΛ

−∞
e
rijσZij

Φ−1(v)
dFΛ(λ)

=
n∑

i=1

n∑
j=1

αiαje
E[Zij ]+

1
2(1−r2

ij)σ2
Zij

+
r2
ijσ2

Zij
2 Φ(d∗Λ − rijσZij)

=
n∑

i=1

n∑
j=1

αiαje
E[Zij ]+

σ2
Zij
2 Φ(d∗Λ − (riσYi + rjσYj )). (43)

Combining (43) and (42) into (39), and then substituting (38) and (39) into (15) we get the
following expression for the error bound ε(dΛ) (15):

ε(dΛ) =
1
2
(Φ(d∗Λ))

1
2




n∑
i=1

n∑
j=1

αiαj

[
eE[Zij ]+

σ2
Zij
2 Φ

(
d∗Λ − (riσZi + rjσZj

))

−e
E[Zij ]+

1
2
(σ2

Zi
+σ2

Zj
+2rirjσZi

σZj
)
Φ
(
d∗Λ − (riσZi + rjσZj

))]} 1
2

=
1
2
(Φ(d∗Λ))

1
2 ×

×



n∑
i=1

n∑
j=1

αiαje
E[Zij ]Φ

(
d∗Λ − (riσZi + rjσZj

))(
e

1
2
(σ2

Zi
+σ2

Zj
+2σZiZj

) − e
1
2
(σ2

Zi
+σ2

Zj
+2rirjσZi

σZj
)
)


1
2

=
1
2
(Φ(d∗Λ))

1
2 ×

×



n∑
i=1

n∑
j=1

αiαje
E[Zij ]+

1
2
(σ2

Zi
+σ2

Zj
)
Φ
(
d∗Λ − (riσZi + rjσZj

)) (
e
σZiZj − e

σZi
σZj

rirj
)

1
2

.
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B - Partially exact/comonotonic upper bound

Applying Lemma 2 with a = riσZi , and using (21), we can express the second term I2 in (11)
in closed-form:∫ +∞

dΛ

E[S − d | Λ = λ]dFΛ(λ)

=
∫ +∞

dΛ

E[S | Λ = λ]dFΛ(λ) − d(1 − FΛ(dΛ))

=
n∑

i=1

αie
E[Zi]+

1
2(1−r2

i )σ2
Zi

∫ +∞

dΛ

eriσZi
Φ−1(v)dFΛ(λ) − d(1 − Φ(d∗Λ))

=
n∑

i=1

αie
E[Zi]+

σ2
Zi
2 Φ(riσZi − d∗Λ) − dΦ(−d∗Λ). (44)

Substituting (22) in (17) we end up with the following upper bound of I1 similar to (25) but
now with an integral from zero to Φ(d∗Λ):

∫ dΛ

−∞
E[(S − d)+ | Λ = λ]dFΛ(λ)

≤
∫ dΛ

−∞
E[(Su − d)+ | Λ = λ]dFΛ(λ)

=
∫ Φ(d∗Λ)

0
E[(Su − d)+|V = v] dv

=
n∑

i=1

αie
E[Zi]+

1
2
σ2

Zi
(1−r2

i )
∫ Φ(d∗Λ)

0
eriσZi

Φ−1(v)Φ
(

sign(αi)
√

1 − r2
i σZi − Φ−1

(
FSu|V =v(d)

))
dv

− d

(
Φ(d∗Λ) −

∫ Φ(d∗Λ)

0
FSu|V =v(d)dv

)
. (45)

where we recall that d∗Λ is defined as in (30), and the cumulative distribution FSu(d) is, according
to (24), determined by

n∑
i=1

αie
E[Zi]+riσZi

Φ−1(v)+sign(αi)
√

1−r2
i σZi

Φ−1(FSu (d|V =v)) = d.

Finally, adding (45) to the exact part (44) of the decomposition (11) results in the partially
exact/comonotonic upper bound.

24



References

[1] Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A. and Nesbitt, C.J. (1986). Actuarial
mathematics. Schaumburg, Ill.: Society of Actuaries.

[2] Curran, M. (1994). Valuing Asian and portfolio options by conditioning on the geometric
mean price. Management Science, 40(12), 1705-1711.

[3] De Vylder, F. and Goovaerts, M.J. (1982). Upper and lower bounds on stop-loss premi-
ums in case of known expectation and variance of the risk variable. Mitt. Verein. Schweiz.
Versicherungmath., 149-164.

[4] Deelstra, G., Liinev, J. and Vanmaele, M. (2004). Pricing of arithmetic basket options by
conditioning, Insurance: Mathematics and Economics. 34(1), 55-77.

[5] Devroye, L. (1986). Non-Uniform random variate generation, Springer-Verlag, New York.

[6] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vyncke, D. (2002a). The concept
of comonotonicity in actuarial science and finance: theory. Insurance: Mathematics and
Economics, 31(1), 3-33.

[7] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vyncke, D. (2002b). The concept of
comonotonicity in actuarial science and finance: applications. Insurance: Mathematics and
Economics, 31(2), 133-161.

[8] Hoedemakers, T., Darkiewicz, G., Dhaene, J. and Goovaerts, M.J. (2004). On the Distribu-
tion of Life Annuities with Stochastic Interest Rates. Proceedings of the Eighth International
Congress on Insurance: Mathematics and Economics, Rome.

[9] Hürlimann, W. (1996). Improved analytical bounds for some risk quantities. ASTIN Bul-
letin, 26(2), 185-199.

[10] Hürlimann, W. (1998). On best stop-loss bounds for bivariate sums by known marginal
means, variances and correlation. Mitt. Verein. Schweiz. Versicherungmath., 111-134.

[11] Jansen, K., Haezendonck, J. and Goovaerts, M.J. (1986). Upper bounds on stop-loss pre-
miums in case of known moments up to the fourth order. Insurance: Mathematics and
Economics, 5(4), 315-334.

[12] Kaas, R, Dhaene, J. and Goovaerts, M.J. (2000). Upper and lower bounds for sums of
random variables. Insurance: Mathematics and Economics, 27(2), 151-168.

[13] Nielsen, J.A. and Sandmann, K. (2003). Pricing bounds on Asian options. Journal of Fi-
nancial and Quantitative Analysis, 38(2).

[14] Rogers, L.C.G. and Shi, Z. (1995). The value of an Asian option. Journal of Applied Prob-
ability, 32, 1077-1088.

[15] Simon, S., Goovaerts, M.J. and Dhaene, J. (2000). An easy computable upper bound for
the price of an arithmetic Asian option. Insurance: Mathematics and Economics, 26(2-3),
175-184.

25



[16] Vanduffel, S., Hoedemakers, T. and Dhaene, J., 2004. Comparing approxima-
tions for risk measures of sums of non-independent lognormal random variables.
www.kuleuven.ac.be/insurance, publications.

[17] Vanmaele, M., Deelstra, G. and Liinev, J. (2004a). Approximation of stop-loss premiums
involving sums of lognormals by conditioning on two random variables. Insurance: Mathe-
matics and Economics, 35(2), 343-367.

[18] Vanmaele, M., Deelstra, G., Liinev, J., Dhaene, J. and Goovaerts M.J. (2004b). Bounds
for the price of discrete arithmetic Asian options. Journal of Computational and Applied
Mathematics, accepted.

26


