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Abstract

We propose an information matrix test in which the covariance matrix
of the vector of indicators is estimated using the parametric bootstrap.
Monte Carlo results and heuristic arguments show that its small sample
performance is comparable with that of the efficient score form.
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1 Introduction

While the information matrix (IM) test introduced by White (1982) is well

known as a general test for misspecification of a parametric likelihood function,

its use in applied econometric research is still limited. A major drawback of the

IM test is that the asymptotic χ2 distribution is a very poor approximation to

the finite sample distribution of the test statistic. This seriously limits its useful-

ness in practice. Large deviations from the asymptotic distribution are typical

even in relatively large samples, as evidenced by the Monte Carlo experiments

reported in Taylor (1987), Orme (1990), Chesher and Spady (1991), Davidson

and MacKinnon (1992, 1998), and Horowitz (1994). Several approaches have

been proposed to overcome this problem. Chesher and Spady (1991) derive,

for specific models, critical values for the IM test statistic that are based on a

higher order Edgeworth expansion. Davidson and MacKinnon (1992) propose

a variant of the IM test based on double-length artificial regressions. Their

method, however, cannot be applied to models for discrete, censored, or trun-

cated data. Horowitz (1994) proposes bootstrap-based critical values for the IM

test. Despite these efforts, computing the correct critical value of an IM test

statistic for an arbitrary model is still not particularly easy.

Several versions of the IM test have been proposed that differ only in the

way the covariance matrix of the vector of indicators is estimated. In Section 2,

we propose a new form of the IM test, making use of the parametric bootstrap

to estimate the covariance matrix. Although this approach is based on simula-

tions, the computational demands are very modest and there are no analytical

requirements at all. The proposed method eliminates the approximation er-

rors that result in other IM tests from the use of asymptotic covariance matrix

formulae and from approximating expectations by sample averages. When a

fixed number of bootstrap simulations is used, the proposed test statistic has
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an asymptotic T 2 distribution.

In Section 3, we report Monte Carlo results for the linear model and the

probit model, showing that the new test performs very similarly to the efficient

score form of the IM test. Hence, it is a promising alternative to existing IM tests

in models where the efficient score form is not available. Section 4 concludes.

2 Estimating the covariance matrix of the IM
test

Consider a parametric model with log-density F (y; θ), where θ is a p× 1 vector

of parameters. Let Fi = [∂F/∂θi]θ=θ0 and Fij = [∂2F/∂θi∂θj]θ=θ0 , where θ0

maximizes E[F (y; θ)] with respect to θ and E[·] denotes expectation. The null
hypothesis underlying the class of IM tests is

H0 : E [FiFj + Fij ] = 0 (1 ≤ i, j ≤ p). (1)

Given a sample of observations y1, . . . , yn, define the indicators

D̂ij = n−1/2
n∑

t=1

(F̂iF̂j + F̂ij), (2)

where a hat indicates evaluation at yt and θ̂, the MLE of θ0. Most existing IM

tests are based on an asymptotically χ2
q distributed statistic of the form

ω = D̂′V̂ −1D̂, (3)

where D̂ is a q × 1 vector of appropriately selected indicators D̂ij and V̂ is a

consistent estimate of its covariance matrix under H0 (alternatively, under the

stronger assumption that F (y; θ) is the correct log-density).

Orme (1990) reviews many alternative choices of V̂ , including those leading

up to White’s (1982) form, the Chesher (1983) and Lancaster (1984) form, and

the efficient score form of the IM test 1. All these choices of V̂ are based on
1White’s (1982) estimator V̂ is consistent under H0; the other estimators V̂ mentioned

here are consistent under somewhat stronger assumptions.

2



equivalent analytical formulae for the asymptotic covariance matrix of D̂, the

differences arising essentially from replacing expectations with sample averages

in different parts of those formulae. Available Monte Carlo evidence, in settings

where F (y; θ) is the correct log-density, shows that the ensuing IM test statistics

have finite sample distributions that are poorly approximated by the χ2
q distri-

bution. Four sources of possible error may be involved in the approximation:

(i) the finite sample distribution of D̂ may be non-normal;

(ii) the finite sample covariance matrix of D̂, say Vn, may differ from its

asymptotic covariance matrix, V∞;

(iii) θ̂ is used in place of θ0 in formulae for V∞;

(iv) sample averages replace expectations in parts of formulae for V∞.

In most circumstances, the error sources (i)-(iii) effectively apply to the IM tests

discussed so far. Moreover, the efficient score form is the only one not vulnerable

to (iv).

Rather than relying on an asymptotic covariance matrix formula, one may

choose V̂ to estimate the exact finite sample covariance matrix of D̂, denoted

Vn(θ0), since it typically depends on θ0. Although it is simple enough to write

Vn(θ0) as an integral, working out the integral analytically is bound to be im-

possible in all but the simplest models. A simple and feasible alternative is to

estimate Vn(θ0) by the parametric bootstrap, which involves the following steps:

0. compute the MLE θ̂;

1. for b = 1, . . . , B:

• generate an i.i.d. sample y1b, . . . , ynb from the density expF (·; θ̂);

• for this sample, compute the MLE θ̂b and the vector of selected in-

dicators D̂b;
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2. compute

V̂B =
1

B − 1

B∑
b=1

(D̂b − D̄)(D̂b − D̄)′, (4)

where D̄ = B−1
∑B

b=1 D̂b.

It is obvious that E[V̂B | θ̂] = Vn(θ̂) and that for fixed n, V̂B
a.s.→ Vn(θ̂) as

B → ∞. Thus, through the choice of the number of bootstrap replications B,

V̂B approximates Vn(θ̂) to any desired accuracy. Taking V̂ = V̂B in (3) yields

the IM test statistic

ωB = D̂′V̂ −1
B D̂. (5)

Under the assumption that F (y; θ) is the correct log-density, ωB has the follow-

ing limit behavior. As n → ∞ and B → ∞, ωB
d→ χ2

q, where
d→ denotes

convergence in distribution. For fixed B ≥ q + 1 and n → ∞,

ωB
d→ T 2

q,B−1 (6)

(Hotelling’s T 2), since D̂ d→ N(0, V∞(θ0)), (B − 1)V̂B
d→ W (V∞(θ0), B − 1)

(central Wishart), and D̂ and V̂B are asymptotically independent. Note that

(6) may also be stated as B−q
(B−1)qωB

d→ Fq,B−q . Using the IM test statistic ωB

and critical values from the T 2
q,B−1 distribution, (ii) is eliminated as a source

of approximation error. This IM test is closest in spirit to the efficient score

form of the IM test as it replaces V∞ with Vn in the latter. With finite B, Vn

is estimated with some noise, but the T 2 critical values correct for this. Since

the test based on ωB has less sources of error, we expect it in general to exhibit

smaller errors in rejection probability (ERP) 2 than the IM tests based on the

χ2
q approximation to ω already discussed. We note, however, that exceptions to
2The ERP of a test is the actual minus the nominal (i.e. chosen) probability of rejecting

the null hypothesis when it is true. The ERP often depends on the parameter that indexes
the distributions constituting the null hypothesis.
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this rule will almost certainly exist, because different errors may to some extent

counterbalance each other.

As Horowitz (1994) has shown, IM tests with smaller ERP do not necessarily

have better power properties, even when bootstrap-corrected critical values are

used. As an intuitive example of how this may occur, consider adding noise to

a severely biased estimate V̂ (i.e. biased for Vn(θ0)): this is likely to reduce

the ERP of the corresponding test, while it obviously also reduces the power

when appropriate critical values are used. As for V̂B, the only source of bias

is the fact that θ̂ 
= θ0, and the only noise stems from taking B finite. Thus,

for large enough B, we expect the power of the IM test based on ωB to be

no less than the power of the efficient score test, which, given the available

evidence, appears to be the most powerful of existing IM tests (Davidson and

MacKinnon, 1998). The efficient score test, however, requires calculating certain

expectations analytically and hence is only available for models where this has

proven feasible. For more complicated models, the test proposed here offers a

feasible, and presumably powerful, alternative.

We have two final remarks. First, the only computational requirement to ob-

tain ωB is that observations can be generated from the density expF and that

the vector of indicators can be computed. The latter can often be extracted

without effort from econometric software packages, either as the difference be-

tween two information matrix estimates, or as the difference between the inverses

of two estimates of the covariance matrix of the MLE. Thus, no analytical work

is required before the test can be applied. Second, although Monte Carlo results

show that the ERP of the newly proposed test is moderate, it may be advis-

able in situations with few observations to use bootstrap-based critical values,

as suggested by Horowitz (1994) in the context of the IM test. Although this

requires a nested bootstrap – the inner bootstrap serves to calculate V̂B – this is

nowadays quite feasible: 50 inner and 99 outer bootstrap replications will often
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suffice.

3 ERP and power: Monte Carlo evidence

Here we report comparative Monte Carlo results on the finite sample properties

of the statistic ωB, White’s (1982) IM test statistic ωW , Chesher (1983) and

Lancaster’s (1984) IM test statistic ωCL, Orme’s (1990) ω3, here ωO, and the

efficient score IM test statistic ωEFF . Without ambiguity, we refer to ωB, ωW ,

etc. as IM test statistics and IM tests, with the understanding that ωB is used

with T 2
q,B−1 critical values, and the other statistics with χ2

q critical values. We

study the ERP under the null of correct specification as well as the power

against a heteroskedastic alternative, both in the linear model and in the probit

model. Throughout, the IM tests are based on the maximum number of linearly

independent indicators. Published Monte Carlo results show that ωW and ωCL,

and to a lesser extent ωO and ωEFF , suffer from substantial ERPs in these

models and that, after bootstrap-correcting the critical values, ωEFF is the

most powerful. Our results confirm this and add ωB to the picture. It turns

out that ωB offers an improvement on ωEFF in terms of smaller ERP, and that

it is very close to ωEFF in terms of power. These findings support the intuitive

arguments advanced in Section 2.

3.1 The normal linear regression model

The conditional density in this model is φ
(
(yt − x′tβ)/σ

)
, with φ the standard

normal density, xt a k × 1 vector of given regressors, and parameters β (k × 1)

and σ > 0. Hall (1987) shows that the IM test is a combined test against het-

eroskedasticity (White, 1980), conditional skewness, and non-normal kurtosis.

We use the following Monte Carlo design. The regressor matrix X , which

is kept fixed across Monte Carlo replications, consists of a vector of ones and

independent drawings fromN(0, 1) elsewhere. We note that all IM test statistics
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Figure 1: Linear model: p-value plots for (a) n = 100, k = 2; (b)
n = 100, k = 4
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are invariant under non-singular linear transformations of the rows of X (i.e.

transformations X → XA with A non-singular). Therefore the results extend

to any case where the k − 1 non-constant regressors are generated from a non-

singular (k − 1)-variate normal distribution. We set σ and all elements of β

equal to one. However, since all statistics considered are pivotal under the null,

the results concerning ERP are valid for any β and σ. We implement a full

factorial design with k = 2, 3, 4, 5 and n = 50, 100, 250, 500, 1000. Throughout,

B = 50. All results are based on 10000 Monte Carlo replications.

The ERP is displayed using p-value plots (Davidson and MacKinnon, 1998).

A p-value plot graphs the empirical distribution function of the p-values of the

test statistics generated under the null by Monte Carlo experimentation. The

p-values are derived from the approximating distribution, T 2
q,B−1 or χ2

q in our

case. Thus, a p-value plot gives the (estimated) actual rejection probability

(RP) of a test as a function of the nominal RP. On the 45◦ line actual and

nominal RP agree, so one would hope to see a p-value plot close to the 45◦ line.

In Figure 1 the p-value plots for n = 100 and k = 2, 4 are given. The
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ERP is largest for ωW and ωCL. This is in fact true for all design points 3.

The performance of ωB is in general comparable with that of ωEFF , although

overall ωB has the smallest ERP of all tests considered. The behavior of ωO

is better than that of ωW and ωCL, although its convergence to the 45◦ line

as n grows is remarkably slow. The IM test is a good example of how bad a

first-order asymptotic approximation can work: even for n = 1000 the ERP of

ωW , ωCL, ωO and even ωEFF is too large to use these tests in practice. The

T 2
q,B−1 approximation to the distribution of ωB, on the other hand, works fine

for larger sample sizes. Since the statistics are pivotal, all the tests considered

can be turned into exact tests using bootstrap-based critical values.

We investigated the power of the IM tests against a heteroskedastic alter-

native with density φ
(
(yt − x′tβ)/ |x′tβ |1/2

)
. In order to correct the power for

ERP, we plot power as a function of actual RP under the null 4 (Davidson and

MacKinnon, 1998). For a test based on pivotal statistics, a power curve is ob-

tained as follows. Run R Monte Carlo replications under the null and under the

alternative hypothesis. Order the R test statistics obtained under the null from

high to low to obtain ω0
1 ≥ . . . ≥ ω0

R. The power at actual RP k/(R+1) is then

estimated as the fraction of test statistics generated under the alternative that

are larger than ω0
k. To reduce experimental error, we took the same streams of

standard normal drawings under the null and under the alternative.

Figure 2 gives the power curves for n = 100 and k = 2, 4. From the results

at these and other design points, the following patterns emerge. The tests ωW

and ωCL have similar power, and are in most cases dominated by ωO
5. The

tests ωEFF and ωB have very similar power, with ωEFF being slightly better.

These tests always outperform the others. We note that taking B larger would
3Detailed results are available from the authors.
4Any serious power comparison should of course only compare powers of tests with (nearly)

correct RP under the null.
5In some cases (e.g. n = 50 and k = 5), however, ωO has power smaller than actual RP.

Horowitz (1994) also observed this for ωO in the tobit model.
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Figure 2: Linear model: power curves for (a) n = 100, k = 2; (b)
n = 100, k = 4
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increase the power of ωB, but a relatively small B already yields a powerful test.

3.2 The probit model

In this model yt is binary with conditional mean Pr[yt = 1] = Φ(x′tβ), where Φ is

the standard normal distribution function. The IM test is sensitive to misspec-

ification of Pr[yt = 1] as a function of xt. Orme (1988) gives the efficient score

form of the IM test. In the Monte Carlo experiment, we set β = (0.5, 1, . . . , 1)′

and choose X,n, k,B, and the number of Monte Carlo replications as in the

linear model. None of the IM statistics is pivotal, so the results are specific

to the choice of β. A further consequence is that the bootstrap-based critical

values are not exact anymore, although their use ensures that the ERP vanishes

quickly as the sample size gets larger (Horowitz, 1994).

Figure 3 gives the p-value plots for n = 100 and k = 2, 4. More or less

the same patterns are observed as in the linear model: ωW and ωCL severely

overreject; ωO, ωEFF , and ωB have much smaller ERP, although for small n and
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Figure 3: Probit model: p-value plots for (a) n = 100, k = 2; (b)
n = 100, k = 4
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large k it may still be substantial; and most of the time ωB has the smallest

ERP.

We studied the power of the IM tests against the heteroskedastic probit

Pr[yt = 1] = Φ
(
x′tβ/ | x′tβ |1/2

)
. We have noted already that the statistics are

not pivotal. This has an implication for the construction of the power curve,

because now it matters from which null distribution the statistics are gener-

ated. We follow Horowitz (1994), Horowitz and Savin (2000), and Davidson

and MacKinnon (1996), and generate the test statistics under the pseudo-true

null (rather than any null, as in the linear model) and then proceed to construct

power curves as outlined above. The pseudo-true values are computed as the

solution of

max
β∗

n∑
t=1

[
Φ

(
x′tβ

|x′tβ |1/2

)
logΦ(x′tβ∗) +

(
1− Φ

(
x′tβ

|x′tβ |1/2

))
log

(
1− Φ(x′tβ∗)

)]
,

(7)

which is solved by numerical optimization.

Figure 4 displays the power curves for n = 100 and k = 2, 4. The powers

of ωB and ωEFF are in all design points extremely close to each other, and
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Figure 4: Probit model: power curves for (a) n = 100, k = 2; (b)
n = 100, k = 4
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well above the power of ωW , ωCL and ωO. The power of ωCL is in many cases

smaller than its actual RP, a fact also observed by Stomberg and White (2000)

in a somewhat different setting. We also find that ωO has smaller power than

actual RP in small samples.

4 Conclusion

We have introduced an alternative IM test, which uses the parametric bootstrap

to estimate the covariance matrix of the indicator vector. The new test is

easy to compute using standard econometric software and requires no analytical

derivations. Its analytical simplicity comes of course at a cost, namely it requires

a limited number of simulations. When one wants to use bootstrap-based critical

values, a nested bootstrap becomes necessary. In the models analyzed here, its

performance was found to be comparable to that of the efficient score form of

the IM test. Therefore, the IM test proposed here offers a valuable alternative

to existing IM tests in more complex models for which the efficient score form

of the IM test is not available.
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