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Abstract

In this paper we obtain the asymptotic distribution of restricted likelihood

ratio tests in mixed linear models with a fixed and finite number of random

effects. We explain why for such models the often quoted 50:50 mixture of

a chi-squared random variable with one degree of freedom and a pointmass

at zero does not hold. Our motivation is a study of the use of wavelets for

lack-of-fit testing within a mixed model framework. Even though wavelets

have received a lot of attention in the last say 15 years for the estimation of

piecewise smooth functions, much less is known about their ability to check the

adequacy of a parametric model when fitting the observed data. In particular

we study the testing power of wavelets for testing a hypothesized parametric

model within a mixed model framework. Experimental results show that in

several situations the wavelet-based test significantly outperforms the com-

petitor based on penalized regression splines. The obtained results are also

applicable for testing in mixed models in general, and shed some new insight

into previous results.

Keywords: Lack-of-fit test, likelihood ratio test, mixed models, one-sided test,

penalization, restricted maximum likelihood, variance components, wavelets.
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1 Introduction

The main aim of this paper is to construct test statistics based on wavelets for testing

a parametric null model against a nonparametric alternative model. The proposed

tests possess a similarity to the adaptive tests which use penalized spline regression

models in a mixed model framework. Our simulations show that the wavelet based

tests outperform the spline based tests in several situations, and are comparable in

other settings where the spline tests are known to perform well.

A second result in this paper is the extension to testing in mixed models in

general (not necessarily using wavelets). The asymptotic distribution that we obtain

explains the often reported simulation results which seemingly deviate significantly

from the assumed theoretical results. The asymptotic distribution for tests in mixed

models is often described to be a mixture of a chi-squared random variable with one

degree of freedom an a pointmass at zero. Pinheiro and Bates (2000), for example,

observed in simulations that the mixture coefficients were approximating the values

0.65 and 0.35, rather than 0.5 and 0.5. We obtain an asymptotic distribution where

the mixture proportions depend on the design of the fixed and random effects. In

the case of a growing number of random effects, the proportions converge to 0.5, but

not in general for testing with a fixed number of random effects.

The use of wavelets for lack-of-fit testing is advantageous for a multitude of rea-

sons. Due to their multiscale nature, one possible application is scale dependent

testing for random effects. Second, the test proposed in this paper detects piecewise

smooth alternatives, i.e., functions with jumps, sharp peaks or high frequency alter-

nations. This is in contrast to existing tests, which restrict themselves to smooth

alternatives. Tests assuming smoothness of the alternative comprise the orthogonal

series based tests with special emphasis on the order selection tests of Eubank and

Hart (1992), Hart (1997), Aerts et al. (1999, 2000) and the Neyman smooth type

tests, mainly used for goodness of fit testing for density functions of Ledwina (1994),

see also Fan (1996). In this latter paper a goodness-of-fit test based on wavelet

thresholding is proposed that builds further on the Neyman test. Spokoiny (1996)

studies the optimal rates for adaptive tests based on wavelets, using L2 distances.

Our proposed test is more in line with the restricted likelihood ratio tests used in

combination with penalized splines, see Crainiceanu and Ruppert (2004), Claeskens

(2004), and Crainiceanu et al. (2005). In order to test a parametric null hypothesis,

a semiparametric alternative model is constructed using the hypothesized model as

the parametric part and wavelet basis functions for the nonparametric part. This is

embedded in a mixed model framework where the parametric part is taken as the set

of fixed effects and where the wavelet coefficients are random effects. A thresholding

procedure is used to select a relevant subset of wavelet basis functions to be used

for the test. The particular advantage of constructing a mixed effects model is that
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the hypothesis test reduces to testing whether the single variance component of the

random effects, say σ2
w, is equal to 0. The test statistic is the restricted likelihood

ratio statistic comparing the semiparametric alternative model to the null model.

The use of wavelets and thresholding in the testing procedure is new. Because

of the thresholding step, which acts as a pre-test or variable selection procedure, the

distribution of the test statistic is different from that in case spline basis functions

are used. Thresholding is a non-linear procedure and requires a different asymptotic

theory. In addition to asymptotic distribution results, we use a bootstrap resampling

procedure to obtain P -values. Interestingly, the obtained distribution has a much

wider application area than testing lack of fit using wavelets.

2 A mixed effects wavelet model

In this first step we start with testing for polynomial models in one variable. Ex-

tensions to other settings are provided in Section 5. We wish to test using data

(yi, xi), i = 1, . . . , n whether the mean of Y given the covariate x is a polynomial of

degree q,

H0 : E(Y ) = β0 + β1x+ . . .+ βqx
q, (1)

where the coefficients β0, . . . , βq are left unspecified. A nonparametric lack-of-fit test

contrasts this null model with a semiparametric alternative model of the form

Yi = β0 + β1xi + . . .+ βqx
q
i + g(xi) + εi,

where the function g is unspecified. The constructed test statistic shall use wavelets

to estimate g. We first perform a wavelet transformation of g(·), employing the

residuals of the null model fit.

The wavelet decomposition of g(x) equals

g(x) =
2j0−1
∑

k=0

ĉj0,kφj0,k(x) +
J−1
∑

j=j0

2j−1
∑

k=0

d̂j,kψj,k(x)

where ĉj0,k and d̂j,k are, respectively, empirical scaling function coefficients and

wavelet coefficients obtained by a discrete wavelet transform (DWT) for a given

wavelet basis. The scaling functions φj0,k(x) with their coefficients constitute a coarse

scale, smooth approximation of the observations. Under the null hypothesis this part

is not significant (i.e., close to zero), as we are decomposing a residual g(x), and the

actual smooth approximation of the observations has been captured by the paramet-

ric part. Possible sharp transitions, jumps, peaks, are typically described by large

wavelet coefficients. This observation explains the usage of threshold procedures in
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wavelet based smoothing. Thresholding is used here to set up the design matrix Z

(in a data-adaptive fashion). This matrix is a submatrix of the full reconstruction

matrix in the perfect reconstruction:

[g(x1), . . . , g(xn)]T =







φj0,0(x1) . . . φj0,2j0−1(x1) ψj0,0(x1) . . . ψJ−1,2J−1(x1)
...

. . .
...

...
. . .

...

φj0,0(xn) . . . φj0,2j0−1(xn) ψj0,0(xn) . . . ψJ−1,2J−1(xn)



























ĉj0,0

...

ĉj0,2j0−1

d̂j0,0

...

d̂J,2J−1





















.

As already mentioned, the scaling basis functions φj0,k(xi) are not part of the design.

Thresholding is applied to the empirical wavelet coefficients d̂j,k and Z contains in

its columns those wavelet basis functions corresponding to the empirical wavelet

coefficients above the threshold. The threshold used here is the universal threshold,

further detailed in Section 4. In the event that no wavelet coefficient survives the

threshold, a fixed, single wavelet basis function is selected.

The discussion in this paper is limited to orthogonal wavelet bases. Orthogonality

implies that wavelet coefficients of observational data with additive, normal, uncor-

related and homoscedastic noise are themselves homoscedastic, normal and uncorre-

lated (hence independent). We also impose that the wavelet basis is orthogonal to the

polynomial basis {1, x, ..., xq} of the parametric part of our model. This ensures that

the corresponding coefficients are independent. The orthogonality between wavelets

and polynomials is well known in the literature as the vanishing moments condition.

Vanishing moments are important in general applications for another reason: if the

smooth intervals of a function can be well approximated by a polynomial, then the

inner products of that function with wavelet basis functions are small, whenever the

support of the wavelet function does not contain a singular point (jump, peak). As

a consequence, most coefficients are close to zero, leading to a sparse representation

that can be easily compressed or denoised using thresholds for wavelet coefficients.

Daubechies (1988) proposed several different orthogonal wavelet families that have

compact support with various degrees of smoothness and numbers of vanishing mo-

ments, which can be used for our problem. They are called Daubechies wavelets,

Coiflets and Symlets. We choose a wavelet in the Daubechies families with at least

q + 1 vanishing moments.

This brings us to the following semi-parametric model

Yi = β0 + β1xi + . . .+ βqx
q
i +

Kn
∑

k=1

ukψk(xi) + εi, (2)
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or, in matrix notation, Y = Xβ+Zu+ε. The design matrices of fixed and random

effects are given by

X =







1 x1 . . . xq
1

...
...

. . .
...

1 xn . . . xq
n






, Z =







ψ1(x1) . . . ψKn
(x1)

...
. . .

...

ψ1(xn) . . . ψKn
(xn)







where ψk, k = 1, ..., Kn, are wavelet basis functions, and εi are independent identically

distributed N(0, σ2
ε ).

As explained above, the wavelet basis functions included in the matrix Z are

those for which the corresponding wavelet coefficients are larger than the threshold.

It is important to realize that both the choice of basis functions, as well as the

number Kn is random and chosen in a data-driven way. At this point the wavelet

model differs substantially from the spline model, where the spline basis functions

as well as their total number are fixed beforehand, not data-driven.

In the mixed regression wavelet model, we explicitly assume that the coefficients β

remain fixed, and that the wavelet coefficients uk are independent and identically dis-

tributed random variables having a normal distribution N(0, σ2
w). The introduction

of random effects on the uks results in equivalence of best linear unbiased predictors

and estimators obtained via generalized least squares (GLS). Angelini and Leblanc

(2003) show that the wavelet estimator in a mixed effect model coincides with the

solution to a certain regularization problem over a reproducing kernel Hilbert space.

3 Description of the test statistic

With respect to the polynomial-wavelet full mixed model (2), the reduced model

under the null hypothesis is the parametric polynomial

H0 : Y = β0 + β1x+ . . .+ βqx
q + ε.

Testing H0 against the two-sided alternative that the conditional mean response has

any different structure in the mixed model representation is equivalent with testing

the now one-sided hypothesis

H0 : σ2
w = 0 versus Ha : σ2

w > 0.

The mixed model formulation dramatically reduces the dimensionality of the

testing problem. Otherwise a nonparametric test in the same setting requires testing

whether all Kn wavelet coefficients are equal to 0, while now we can test whether

the single variance component σw equals zero.
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We shall employ the profile restricted log-likelihood ratio test. With λ = σ2
u/σ

2
ε ,

the restricted log-likelihood of the data under the alternative model Ha, with σ2
ε sub-

stituted by its restricted maximum likelihood (REML) estimator is, up to a constant

not depending on the data,

L(λ) = −
1

2
log |V λ| −

1

2
log |XT V −1

λ X| −
n− q − 1

2
log

[

Y T P (λ)T V −1
λ P (λ)Y

]

.

The projection matrix is defined as P (λ) = In − X(XT V −1
λ X)−1XT V −1

λ , with

V λ = In +λZIKn
ZT and Ia is an identity matrix of dimension a×a. The restricted

log-likelihood under H0 is obtained by setting λ = 0. The restricted profile likelihood

ratio statistic is Rn = 2{L(λ̂) − L(0)}.

Since the parameter of interest, σ2
w, under the null hypothesis is on the bound-

ary of its parameter space [0,∞), the classical result that Rn → χ2
1 in distribution

under H0 does not hold. Under certain independence assumptions that the response

variable vector can be partitioned into Jn independent identically distributed sub-

vectors with Jn → ∞, the asymptotic theory of Self and Liang (1987) and Stram

and Lee (1994) suggest that, under H0, the asymptotic distribution of a likelihood

ratio statistic is a 50:50 mixture between a χ2
0 and χ2

1, where χ2
0 means a point

mass at zero. In a setting of testing with penalised regression splines, Crainiceanu

and Ruppert (2004) found the distribution of Rn for finite samples to be different

from the asymptotic result. Claeskens (2004) obtained conditions for random spline

models under which those results apply. One assumption was that the number of

spline coefficients needs to increase to infinity at a rate o(n). This assumption does

not hold for this setting, where rather Kn goes to zero under the null hypothesis

as n grows. Neither do the results of Self and Liang (1987), nor the more general

results of Vu and Zhou (1997) directly apply. Both papers assume that the score

value converges to a normal random variable. In this paper we obtain the asymptotic

distribution of the restricted likelihood ratio test for mixed models with a fixed and

finite number of columns in the random effects matrix. The obtained results also

explain the different mixture proportions observed by simulations (see, for example,

Pinheiro and Bates, 2000) who observed in simulations that the mixture coefficients

were rather approximating the values 0.65 and 0.35. We show in Section 4 that the

exact proportions depend on the design matrices X and Z through the eigenvalues

of the matrix ZtP (0)Z. In case there is only one random effect (Z has only a single

column) then the mixing proportions are given by P (|N | ≤ 1) and P (|N | > 1) for

N ∼ N(0, 1), which are equal to about 0.68 and 0.32. When the number of columns

grows (Kn → ∞), the mixing proportions converge to the values 0.5, 0.5. The theo-

retical results in this paper are not only of interest to the specific case of hypothesis

testing with wavelets, but are of general interest in testing in mixed models with a

finite number of random effects where the results of Self and Liang (1987) and Vu

6



and Zhou (1997) are not applicable.

4 Asymptotic distribution theory

We first consider the case of the wavelet-based lack-of-fit test, which due to the

thresholding, asymptotically can be considered as a special case of testing in mixed

effects models with a single random effect. Next, we obtain the asymptotic distri-

bution of a test on the variance component when there are a finite number (not

depending on the sample size) of random effects.

4.1 Distribution of the wavelet-based lack-of-fit test

The thresholding scheme determines the columns to be selected in the matrix Z.

More precisely, for the universal threshold a column is selected if the corresponding

scaled empirical wavelet detail coefficient

d̂jk/σ̂ε >
√

2 log(n)

where we use as scale estimator

σ̂ε = med{|d̂J−1,k − med(d̂J−1,k)|}/0.6745

employing the coefficients at the finest level. Under the null hypothesis, by using

properties of extremes of normal random variables, the probability that a scaled

wavelet detail coefficients exceeds the threshold tends to zero if we apply the universal

threshold (Donoho, 1995). This “statistical upper bound” is often replaced by less

conservative methods, for instance, methods that control the false discovery rate

(Benjamini and Hochberg, 1995) or even methods that do not concentrate on false

positives but rather on the average squared error of the estimates reconstructed

from an inverse transform. These methods include SURE (Stein’s Unbiased Risk

estimator) (Donoho and Johnstone, 1995) and cross validation (Nason, 1996) or

generalised cross validation (Jansen et al., 1997).

We restrict the discussion in this paper to universal thresholds. As a consequence

of the above mentioned property on the scaled wavelet detail coefficients, the statistic

Rn would tend to zero in probability under the null hypothesis if we would not impose

the minimum number of one column to be selected. By restricting this number of

columns, under the null hypothesis, asymptotically the number of columns is equal

to one and a non-trivial limit distribution results. In a different context, a similar

construction happens with the data driven Neyman smooth tests (Ledwina, 1994) in

testing goodness of fit, where the consistent model selection method BIC (Schwarz,

1978) is not allowed to pick zero as model order, but rather any strictly positive
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integer. Thus the asymptotic distribution result is the same as that of when applying

a restricted likelihood ratio test in a mixed effects model with a nonzero random

effects matrix Z of dimension n× 1.

Theorem 1 In a normal linear mixed effects model, with a nonzero random effects

matrix Z obtained by wavelet thresholding using the universal threshold, under H0,

the statistic Rn converges in distribution to a mixture distribution which consists of

0.5(N2 − 1)2 where N ∼ N(0, 1), with probability P (|N | ≥ 1) and a point mass at

zero with the complementary probability P (|N | < 1).

This theorem can be seen as a special case of testing for the zeroness of one

variance component where the random effects design matrix Z has a fixed and finite

number K different columns, see Theorem 2, where also the proof can be found.

Thus, in a mixed model with a single random effect, when testing whether the

variance component is zero or positive, the asymptotic distribution is a mixture

containing a pointmass at zero with probability 0.68 = P (|N | < 1), which is much

larger than the value 0.5. The other component is not a chi-squared one random

variable, but rather a squared ‘normalized’ chi-squared variable. This component of

the mixture is associated with probability 0.32 = P (|N | ≥ 1), which is much less

than 0.5. The reason for not obtaining 0.5 turns out to be the fact that the score

(first derivative of the log likelihood) does not converge to a normal distribution for

growing sample size when the number of columns of Z is not growing to infinity with

n. For more details we refer to the proof of Theorem 2.

4.2 Restricted likelihood ratio tests in mixed models

Consider a general linear mixed model, represented by the following matrix form

Y = Xβ + Zu + ε,

where the n × (q + 1) design matrix X contains all the fixed effects (including the

intercept and not necessarily restricted to only polynomials in x), and the n × K

matrix Z contains all random effects of the model (wavelet basis function are one

example, splines are another, it can also be person-specific effects in a clinical trial,

etc.). Assume that the random effects follow a normal distribution with mean zero

and variance σ2
u. Denote by Rn the restricted likelihood ratio statistic for testing

H0 : σ2
u = 0 versus Ha : σ2

u > 0,

thus Rn contrasts the fixed effects model with the full random effect model. Its

asymptotic distribution is given by the next theorem.
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Theorem 2 Assume a normal linear mixed effects model, with a n× (q+ 1) design

matrix X contains all the fixed effects (including the intercept) and a nonzero random

effects matrix Z of dimension n × K and full rank K < n − q − 3. Denote by ξk
(k = 1, . . . , K) the eigenvalues of the matrix limn→∞ ZtP (0)Z and consider for

k = 1, . . . , K, Nk ∼ N(0, 1) all independent of each other.

Then, under H0, the statistic Rn converges in distribution to a mixture distribu-

tion which consists of the random variable

0.5{
∑K

k=1 ξk(N
2
k − 1)}2

∑K
k=1 ξ

2
k

with probability P (
∑K

k=1 ξk(N
2
k − 1) ≥ 0), and a point mass at zero with the comple-

mentary probability P (
∑K

k=1 ξk(N
2
k − 1) < 0).

Proof. We start with a spectral decomposition of the restricted likelihood ratio

statistic (see Claeskens, 2004, Lemma 1) and take the first two derivatives with

respect to λ. Under H0,

L′(0) = −
1

2

K
∑

k=1

ξk +
1

2
(

K
∑

k=1

ξkN
2
k )(1 + oP (1)),

L′′(0) =
1

2

K
∑

k=1

ξ2
k −

{

K
∑

k=1

ξ2
kN

2
k −

1

2

1

n− q − 1
(

K
∑

k=1

ξkN
2
k )2

}

(1 + oP (1)).

It follows that for n tending to infinity E{L′(0)} = 0 and E{(L′(0))2} = 1
2

∑K
k=1 ξ

2
k.

Further,

E{−L′′(0)} =
1

2

1

n− q − 1
{(n− q − 3)

K
∑

k=1

ξ2
k − (

K
∑

k=1

ξk)
2}.

By Chebychev’s inequality, this quantity is strictly positive as long as n > K+ q+3.

For n → ∞, E{−L′′(0)} − E{(L′(0))2} → 0. For the remainder of the proof we

follow Vu and Zhou (1997) with the exception that their conditions (B2) and (B5)

do not hold. Condition (B2) requires that the Fisher information value converges to

infinity, while in our case it converges to a strictly positive constant. This is, however,

sufficient for the proof since only the positive definiteness is required. Their condition

(B5) requires convergence to a standard normal random variable of the standardized

score value

Un,K = L′(0)/[E{(L′(0))2}]1/2,

which in our case with fixed K has a different limit distribution. This means that

we diverge from the proof of their Theorem 2.2 starting from their equation (4.18),

to arrive at the representation

Rn = |Un,K |2 − inf
λ∈[0,∞)

|Un,K − λ|2 + oP (1).
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For the computation of the asymptotic distribution we need to consider two possibili-

ties. Either Un,K ≥ 0, in which case Rn = U2
n,K +oP (1), or Un,K < 0 and Rn = oP (1).

The event that Rn → 0 in probability happens with probability P (Un,K < 0) as

claimed. 2

In case K = Kn does not remain fixed but diverges to infinity, Theorem 1 of

Claeskens (2004) formulates conditions under which sequences of the form Un,Kn

converge to a standard normal random variable. In such case the theory of Vu and

Zhou (1997) is applicable and the resulting distribution is an equal mixture of a

χ2
1 distribution and a point mass at zero. The theorems above give the asymptotic

distribution in case the approximation by a normal random variable is not appropri-

ate. The mixing probabilities can either be simulated or computed via algorithms

such as that of Davies (1980). This also clearly points out the connection with the

exact likelihood ratio test of Crainiceanu et al. (2005) where the simulation starts

directly from the representation of the test statistic in terms of the eigenvalues ξk
and standard normal random variables.

As an example we apply Theorem 2 to the real dataset Machines of Pinheiro and

Bates (2000) and look at the mixing proportions in the asymptotic distribution of

the test statistic Rn under H0. We expect for K > 1 the pointmass at zero to occur

with a probability within the interval (0.5, 0.68) for the random variables consisted

in Rn.

We model a fixed effect βj for each type of machine or Machine factor and a

random effect bi for each worker or Worker factor. Because the workers represent

a random sample from the population of interest, any interaction terms modeling

difference between workers in changing from one machine to another will also be

expressed as random effects bij . We further assume that all the random effects have

the same variance matrix. The model can be written as

Yijk = βj + bi + bij + εijk, i = 1, ..., 6, j = 1, ..., 3, k = 1, ...3,

bi, bij ∼ N (0, σ2
b ), εijk ∼ N (0, σ2).

To express this model in its matrix/vector representation as described in the begin-

ning of this subsection, we can define the formulae that generate design matrices X

and Z as model input matrices. To be more specific, We define X to be 54 × 3

fixed-effects design matrix and Z to be the 54 × 18 random-effects design matrix.

So K equals 18 in this case. To apply Theorem 2, it is straight forward to obtain

the eigenvalues of the matrix ZtP (0)Z as well as the generated normal random

variables Nk ∼ N(0, 1) for k = 1, . . . , K. We can therefore calculate the probability

P (
∑K

k=1 ξk(N
2
k − 1) < 0) via simulations. The result shows that the probability is

0.5742 after 10,000 simulations, which is within the interval (0.5, 0.68) as expected,

and differs from the value 0.5.
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5 Extensions

5.1 Testing with additive alternatives

The wavelet mixed model can be easily extended to additive models. In such case

an alternative model is built as

Y = Xβ + Z1u1 + . . .+ Zaua + ε.

The simplest case is under the assumption that all random vectors uj are independent

with the same variance component σ2
u. Thresholding can be applied to each additive

component. Theorem 1 still applies if we restrict the number of columns of all random

effect matrices Zj under the null hypothesis to be at least one. In a more general

case, we could restrict all the random effects matrices Zj to have the same dimension

n × K with K ≥ 1, which means that, for example, we allow the wavelet basis

function to be different for the different additive components, but keep their column

numbers the same. From lemma 1 of Claeskens (2004) follows that the relevant

eigenvalues ξk are the non-zero eigenvalues of the matrix limn→∞{ZT
1

P (0)Z1 + . . .+

ZT
a

P (0)Za}. The mixture distribution of 0.5{
∑K

k=1 ξk(N
2
k − 1)}2/

∑K
k=1 ξ

2
k where

Nk ∼ N(0, 1) with probability P (
∑K

k=1 ξk(N
2
K − 1) ≥ 0) and a point mass at zero

with the complementary probability P (
∑K

k=1 ξk(N
2
K − 1) < 0) holds asymptotically

as in Theorem 2.

5.2 Testing for more than one variance component

When building the wavelet mixed effects model, we assumed an equal distribution of

all wavelet coefficients. This had the advantage of circumventing the multiple or joint

testing problem and reducing it to a single hypothesis test. In some circumstances

this might not be optimal. Wavelet coefficients corresponding to coarse scales might

have a different variance than those belonging to finer scales. One could even con-

sider a different variance for each scale. We then have a set of variance components

σ2
u1
, . . . , σ2

ua
which are all set to zero under a null hypothesis. The alternative hy-

pothesis then consists of the mixed effects model with at least one non-zero variance

component.

Another example is a mixed effect model with random effects both on the level

of the hospital and the patient, there might also be a random patient-by-hospital

interaction, resulting in three variance components. A relevant null hypothesis of

interest might be whether all three random effects are zero, which could lead to

simplifying the model.

For such examples an extension of the results above is required. As with bound-

ary testing problems in general, the complexity dramatically increases when testing
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for the zeroness of more than one variance component. Again, the main point of

deviation with existing proofs is the lack of normality of the score statistic. Consider

the linear mixed model

Y = Xβ + Z1u1 + . . .+ Zaua + ε,

with independent random effects uj ∼ N(0, σ2
uj

I). The fixed effects design matrix

X has dimension n× (q+ 1), and includes a possible intercept. The design matrices

Zj of the random effects have dimension n×Kj . The null hypothesis is

H0 : σ2
u1

= . . . = σ2
ua

= 0.

This is contrasted with the alternative hypothesis that at least one of the σ2
uj
> 0.

Let λj = σ2
uj
/σ2

ε . The matrix representation of the first derivative of the restricted

log likelihood with respect to the λj ’s, that is, the score vector, is obtained as

∂L

∂λj

= −
1

2
tr(ZjZ

T
j V −1

λ P (λ)) +
n− q − 1

2
·
Y T P (λ)V −1

λ ZjZ
T
j V −1

λ P (λ)Y

Y T P (λ)V −1
λ P (λ)Y

,

for j = 1, . . . , a where V λ = In +
∑a

j=1 λjZjZ
T
j and P (λ) is as defined in Section 3.

Note that V 0 = In. What is needed is the standardised score vector under the null

hypothesis. After calculations similar to those needed for the proof of Theorem 2,

this leads to a study of the following vector Vn with components

Vn,j =
1
2
UT P (0)TZjZ

T
j P (0)U − 1

2

∑Kj

k=1 ξj,k

{1
2

∑Kj

k=1 ξ
2
j,k}

1/2
,

where for each j = 1, . . . , a the ξj,k’s are the non-zero eigenvalues of the matrix

ZT
j P (0)Zj and U is a vector of standard normal random variables. Similar as in the

one variance component models, this score vector needs to be projected on the cone

defined by the boundary constraints. First, define the information matrix

Gn,ℓk = E{
∂L

∂λℓ

(0, 0)
∂L

∂λk

(0, 0)} =
1

2
tr{(ZT

ℓ P (0)Zk)(Z
T
ℓ P (0)Zk)

T}.

Since all variance components need to be non-negative, the parameter space for

(λ1, . . . , λa) is given by Ω = [0,+∞)a. We now define the finite sample cone

CΩn
=

{

(λ̃1, . . . , λ̃a)
T = GT/2

n · (λ1, . . . , λa)
T : (λ1, . . . , λa)

T ∈ Ω
}

,

where GT/2
n is the Cholesky square root matrix of Gn.

In the case of one variance component, CΩ,n is simply equal to [0,+∞). For

the case of two variance components, a limit version of this cone can be explicitly
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obtained, see Claeskens (2004), Section 5.2. In that case, with s the limit of sn =

Gn,12

/
√

det(Gn), the limiting cone is given by

CΩ =
{

(λ1, λ2)
T : λ1 − sλ2 ≥ 0, λ2 ≥ 0

}

.

In general, the Cholesky square root matrix is easy to compute in practice, but

it is more difficult to state simple formulae. The asymptotic distribution of the

restricted likelihood ratio test is now obtained by computing the limiting distance of

the standardised score vector Vn to the limiting cone CΩ. For finite sample results, we

can compute the distance of Vn to CΩ,n. The main difference between this result and

those obtained earlier in literature, is that Vn does not have a multivariate normal

distribution. For an example of the special case where the score vector is bivariate

normal in the limit, see Claeskens (2004), Theorem 2. Other examples are provided

by Self and Liang (1987), see also Vu and Zhou (1997).

6 Simulation study

In this section, we first consider the empirical distribution of our proposed lack-of-fit

test statistic Rn using the mixed wavelet model through an intensive Monte Carlo

study. Next, we investigate the power properties of the test statistic and compare

the results with those obtained by applying the bootstrap. We compare our test

with the test based on penalized splines by Crainiceanu and Ruppert (2004) and

Claeskens (2004), both in terms of size under the null and power.

As examples we considered testing the null hypothesis of a normal linear regres-

sion model Y = µ(x)+ε with the true µ(x) = 8x+3. We generated data according to

this model with sample sizes equal to 64 and 128 and the covariates xi (i = 1, . . . , n)

are equidistant on the interval [0,1]. We use two types of wavelet basis functions, the

Haar wavelet and Daubechies’ wavelet with four vanishing moments. The primary

resolution level for the wavelet transformation is set at j0 = 1. To avoid the number

of columns Kn of the random effects matrix Z to be zero after the thresholding pro-

cedure, we arbitrarily select the 10th column of the inverse discrete wavelet transform

matrix and include it in the construction of Z matrix whenever Kn would be zero

after thresholding.

For comparison, we also include the spline based test. In the penalized spline

mixed model, we used a truncated linear spline basis where ψj = max{(x − κj), 0}

for knots κj with 35 knots at sample quantiles. The test statistic for the penalized

spline model is denoted by Rns.
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6.1 Empirical distribution

We simulated 50,000 sets of Y ’s from the above polynomial null model, and obtained

the corresponding restricted likelihood ratio statistics Rn and for the spline based

test, Rns.

Under the null hypothesis, we found that the empirical distributions of the test

statistics Rn by using different wavelet bases are almost the same, therefore we only

present the histogram of Rn with the Daubechies 4 basis in Figure 1. Also included

is the corresponding histogram of Rns, both for sample size 64.
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Figure 1: Histograms of test statistics Rnn and Rns under the null hypothesis when

the sample size is 64. The wavelet based test uses the Daubechies 4 basis function,

while the spline based test uses a truncated linear spline basis with 35 knots.

We first discuss the spline based test. Crainiceanu and Ruppert (2004) already

pointed out the discrepancy between the expected 0.50: 0.50 mixture of a pointmass

at zero and a chi-squared random variable with one degree of freedom. Indeed,

we observe that the null distribution of the restricted likelihood ratio statistic Rns

obtained from the simulation has P0 = 0.6592 probability mass at zero which is close

to the 65:35 mixture of a point mass at zero and a χ2
1 distribution as suggested by

Pinheiro and Bates (2000). The 0.90, 0.95, and 0.99 quantiles of this distribution

are approximately q0.9 = 0.9225, q0.95 = 1.8666 and q0.99 = 4.2957.
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The histogram of Rn has two peaks, with one higher peak at the value zero and

the other one around 5. Seemingly it does not follow the mixture distribution between

0.5(N2 −1)2 with probability 0.68 and a point mass at zero with the complementary

probability 0.32 as we expect from Theorem 1. The explanation for this is that one

of the conditions required by Theorem 1, namely that the random effects matrix Z is

of dimension n× 1, is not always satisfied in our finite sample simulation. It is only

asymptotically that the probability that a scaled wavelet detail coefficients exceeds

the universal threshold goes to zero. In practice, also under the null hypothesis, it

happens that there is more than one column in the resulting Z matrix, which in turn

gives large values of Rn and contributes to the second peak in the histogram.
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Figure 2: Histogram of the values of the test statistics Rn using the Daubechies 4

wavelet basis with sample size 64, only considering the cases where Kn = 0 after

thresholding with the universal threshold.

Figure 2 presents the histogram of the wavelet-based test Rn that is constructed

by only considering 31,742 out of 50,000 cases where the corresponding number of

columns of the Z matrix is exactly zero after thresholding under the null hypothesis.

In this case, Theorem 1 immediately applies. The observed probability mass at zero

is 0.6823, coming very close to the theoretical value of 0.6827 = P (|N | ≤ 1), even

with this small sample size of 64. For increasing sample size we observed that the

proportion of times that Kn = 0 under the null hypothesis, also increases.

In order to investigate the level of the test, in addition to the critical values

obtained from the asymptotic distribution, we also use the empirical critical values,

obtained from 50,000 simulated sets of data under the null hypothesis. We obtain
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these values for the wavelet based test Rn (for both types of wavelet basis functions)

as well as for the spline based test Rns. The nominal α levels of the lack-of-fit tests

are set at 1%, 5% and 10%.

We now use 10,000 and 1000 independently simulated sets of data from the above

models and calculate the test statistics Rn and Rns. Tables 1 and 2 report the

frequencies of exceeding the 1− α quantile at different α levels by using our wavelet

mixed model as well as the penalized spline model.

Table 1 shows that with this small sample size, the approximation of the as-

ymptotic distribution in the tail is not working quite well. Simulations with bigger

sample sizes (results not shown) indicate only slow convergence to the nominal val-

ues for the wavelet-based test, which might have its main reason in properties of the

thresholding procedure. Using the empirical critical values obtained from the large

simulation study of size 50,000 does give good results for all three nominal levels of

0.10. 0.05 and 0.01, and for both types of wavelet basis functions.

For the results of the spline based test, in Table 2, we include the rejection propor-

tion under the assumption that Rns follows the 50χ2
0 : 50χ2

1 mixture distribution. We

observe that for these models the simulated rejection proportions tend to their nom-

inal values when based on the empirical distributions, but deviate from the assumed

asymptotic 50:50 mixture distribution in the penalized spline model.

Table 1: Simulated rejection probabilities under the null hypothesis for the test in the

mixed wavelet model.

Wavelet basis nRuns Quantiles of test statistics Rn % Reject (Emp.Distr Kn = 0) a % Reject (Asym.Distr) b

0.90 0.95 0.99 0.10 0.05 0.01 0.14 0.10 0.05

Haar 50000 11.5501 15.7995 24.8890 – – – 0.1389 0.1256 0.1211

Haar 10000 11.3974 15.7794 24.1571 0.0974 0.0499 0.0086 0.1388 0.1252 0.1208

Haar 1000 12.7089 15.5370 25.5231 0.1160 0.0480 0.0110 0.1250 0.1044 0.0997

Daubechies4 50000 11.5168 15.6165 24.7621 – – – 0.1417 0.1296 0.1244

Daubechies4 10000 11.8182 16.0044 24.6747 0.1053 0.0534 0.0098 0.1420 0.1304 0.1238

Daubechies4 1000 11.5248 16.2152 26.5490 0.1010 0.0570 0.0170 0.1352 0.1254 0.1189

a compare with empirical distribution (50,000 runs)
b compare with 0.68 ∗ (0.5 ∗ (χ1 − 1)2) + 0.32 ∗ 0 distribution for Rn when its corresponding Kn = 0 after thresholding.
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Table 2: Simulated rejection probabilities under the null hypothesis for

the test in the penalized spline mixed model

nRuns Quantiles of test statistics Rns Reject (Emp.Distr) a % Reject (Asym.Distr)b

0.90 0.95 0.99 0.10 0.05 0.01 0.10 0.05 0.01

50000 0.9225 1.8666 4.2957 – – – 0.0585 0.0285 0.0048

10000 0.9225 1.8946 4.3232 0.1000 0.0510 0.0103 0.0593 0.0286 0.0053

1000 1.1480 2.2792 4.0764 0.1160 0.0630 0.0090 0.0740 0.0390 0.0030

50000 0.9225 1.8666 4.2957 – – – 0.0585 0.0285 0.0048

10000 0.9424 1.9462 4.3375 0.1026 0.0528 0.0105 0.0618 0.0305 0.0053

1000 1.1480 2.2792 4.0764 0.1160 0.0630 0.0090 0.0740 0.0390 0.0030

a compare with empirical distribution (50,000 runs)
b compare with 0.5 ∗ χ2

1
+ 0.5 ∗ 0 distribution

6.2 Testing power

In this section, we present the results of comparative simulations whose purpose

was to investigate the power properties of the tests using Rn and Rns. Our test

functions are the familiar wavelet test functions, Donoho and Johnstone’s (1994)

‘Blocks’,‘Bumps’,‘Doppler’, and ‘Heavisine’ function, as well as the cosine function

0.4 cos(πjxi) for j = 0, 0.1, . . . , 9. The last function is included since it is expected

that the spline based test will perform well for this alternative function. Data are

generated under an alternative model of the form Y = µ(x)+b ·g(x)+ε where g(·) is

one of the test functions above, and µ(·) is the null hypothesis linear model. We use

the same null model described in the previous section, and obtain simulated rejection

probabilities under a sequence of alternative models with increasing coefficients or

frequencies of the test functions (constant b in the above model).

The following wavelets bases are used, Daubechies 4 for ‘Bumps’, ‘Doppler’, ‘Co-

sine’, Haar wavelets for ‘Blocks’ and Symmlet 8 for ‘HeaviSine’.

Simulated power curves, based on 1000 simulated data sets, are depicted in Fig-

ures 3–5. Simulated power curves are shown using the critical values obtained from

the empirical distribution under the null hypothesis based on 50,000 simulated data

sets. This guarantees a fair comparison of the methods.

In Figure 3 we clearly observe that the new test in the wavelet mixed model

has higher power than that in the penalized spline model for ‘Blocks’ and ‘Bumps’

functions which have high frequency alternations or sharp peaks. Results are very

comparable for the doppler function, where the power curves are nearly identical.

Wavelet based tests are, as expected, to perform less well for low frequency alterna-

tives such as the ‘HeaviSine’ function and ‘Cosine’ function, as shown in Figures 4

and 5.
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Figure 3: Simulated power curves of wavelet and spline based tests for the Blocks

and Bumps alternative functions, using critical values from both the empirical and

bootstrapped distribution.

As an alternative to working with the asymptotic distribution of the test statistic,

we turn to bootstrap methods introduced by Efron (1979). For a review, see Davison

and Hinkley (1997), and Efron and Tibshirani (1993). Large values of the restricted

likelihood ratio (RLRT) statistic Rn supply evidence against H0 and the level of

evidence is measured by the P-value p = P (RLRT ≥ tobs|H0), where tobs is the

observed value of RLRT. A bootstrap value for p is obtained by comparing tobs to

the bootstrap distribution of RLRT under H0. Hall and Wilson (1991) advocate

resampling in a way that reflects the null hypothesis. For our testing situation this

translates to first obtaining the residuals of the null model fit. Bootstrapping is then

carried out by resampling these residuals, for which different procedures are possible.

The parametric bootstrap employs the conventional estimate of the error variance

σ̂ε
2 and resamples bootstrap errors ε∗ with replacement from the normal distribution

N(0, σ̂ε
2), see Efron (1979) and Freedman (1981). For residual resampling (Efron and

Tibshirani, 1986), in order to reflect the situation of the null hypothesis, bootstrap

observations are constructed as Y ∗
i = Xiβ̂ + ε∗i , i = 1, . . . , n, where ε∗i are the

resampled null model residuals. Fitting the hypothesized model to the bootstrap

data (y∗1, . . . , y
∗
n) yields the bootstrap test statistics. The entire process is then
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Figure 4: Simulated power curves of the wavelet and spline based tests for the

Doppler and HeaviSine alternative functions, using the empirical critical values.
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Figure 5: simulated power curves of the wavelet and spline based tests for the Cosine

alternative function, using the empirical critical values.
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repeated B times to obtain B test statistics. Finally, for a test with significance

level α, we compare the original sample statistic to the (1− α)Bth percentile of the

ordered bootstrap statistics.

A similar but smaller simulation study is performed to investigate the power

properties of the test statistics under the bootstrapped distribution. We now run

1000 simulations each with 100 bootstrap runs to check the rejection probabilities.

We implemented the residual bootstrap for the ‘Blocks’ function and the parametric

bootstrap for the ‘Bumps’ function. The simulated power curves are shown in Fig-

ure 3. From the graph, we observe that the simulated power curves obtained from

the bootstrap distribution and the empirical distribution are not distinguishable.

7 Discussion

The results on the asymptotic distribution of the likelihood ratio test in mixed linear

models helps providing the ‘missing link’ in explaining the difference between simula-

tion results and assumed theoretical results. While this paper is restricted to testing

lack-of-fit in linear mixed models, it is expected that the results can be extended to

nonlinear mixed models, or generalised linear mixed models.

The method of wavelets has shown to be quite fruitful in gaining testing power for

situations which are not perfectly smooth (such as the blocks or bumps alternative).

We believe that it might serve as an attractive companion to the penalised spline-

based tests. Also for estimation purposes, this method looks promising. Studying

estimation properties, however, is beyond the scope of this paper.

References

Aerts, M., Claeskens, G., and Hart, J. D. (1999). Testing the fit of a parametric

function. J. Am. Statist. Ass., 94:869–879.

Aerts, M., Claeskens, G., and Hart, J. D. (2000). Testing lack of fit in multiple

regression. Biometrika, 87:405–424.

Angelini, C., D. C. D. and Leblanc, F. (2003). Wavelet regression estimation in

nonparametric mixed effect models. J. Multiv. Anal., 85:267–291.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. Royal Statist. Soc., Ser.

B, 57(1):289–300.

Claeskens, G. (2004). Restricted likelihood ratio lack of fit tests using mixed spline

models. J. Royal Statist. Soc., Ser. B, 66:909–926.

20



Crainiceanu, C., Ruppert, D., Claeskens, G., and Wand, M. P. (2005). Exact likeli-

hood ratio tests for penalised splines. Biometrika, 92(1):91–103.

Crainiceanu, C. M. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed

models with one variance component. J. Royal Statist. Soc., Ser. B, 66:165–85.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Comm.

Pure Appl. Math., 41:909–996.

Davies, R. B. (1980). The distribution of a linear combination of χ2 random variables

(algorithm as 155). Appl. Statist., 29:323–333.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap methods and their application.

Cambridge University Press.

Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on In-

formation Theory, 41(3):613–627.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation via wavelet

shrinkage. Biometrika, 81:425–455.

Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via

wavelet shrinkage. J. Am. Statist. Ass., 90:1200–1224.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist.,

7:1–26.

Efron, B. and Tibshirani, R. J. (1986). Bootstrap methods for standard errors,

confidence intervals, and other measures of statistical accuracy. Statist. Science,

1:54–75.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Cambridge

University Press, Cambridge.

Eubank, R. L. and Hart, J. D. (1992). Testing goodness-of-fit in regression via order

selection criteria. Ann. Statist., 20:1412–1425.

Fan, J. (1996). Test of significance based on wavelet thresholding and neyman’s

truncation. J. Am. Statist. Ass., 91:674–688.

Freedman, D. A. (1981). Bootstrapping regression models. Ann. Statist., 9:1218–

1228.

Hall, P. and Wilson, S. R. (1991). Two guidelines for bootstrap hypothesis testing.

Biometrics, 47:757–762.

21



Hart, J. D. (1997). Nonparametric Smoothing and Lack-of-fit Tests. Springer-Verlag,

New York.

Jansen, M., Malfait, M., and Bultheel, A. (1997). Generalized cross validation for

wavelet thresholding. Signal Processing, 56(1):33–44.

Ledwina, T. (1994). Data-driven version of Neyman’s smooth test of fit. J. Am.

Statist. Ass., 89:1000–1005.

Nason, G. P. (1996). Wavelet shrinkage using cross validation. J. Royal Statist. Soc.,

Ser. B, 58:463–479.

Pinheiro, J. and Bates, D. (2000). Mixed-Effects Models in S and S-PLUS. Springer-

Verlag, New York.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6:461–464.

Self, S. G. and Liang, K. Y. (1987). Asymptotic properties of maximum likelihood

and likelihood ratio tests under nonstandard conditions. J. Am. Statist. Ass.,

82:605–610.

Spokoiny, V. G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist.,

24(6):2477–2498.

Stram, D. O. and Lee, J. W. (1994). Variance component testing in the longitudinal

mixed effects model. Biometrics, 50:1171–1177.

Vu, H. T. V. and Zhou, S. (1997). Generalization of likelihood ratio tests under

nonstandard conditions. Ann. Statist., 25:897–916.

22




