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Abstract 

In the present paper we discuss various results related to moments and cumu­

lants of probability distributions and approximations to probability distributions. 

As the approximations are not necessarily probability distributions themselves, we 

shall apply the concept of moments and cumulants to more general functions. 

Recursions are deduced for the moments and cumulants of functions in the form 

Rk[a,b] as defined by Dhaene & Sundt (1994). We deduce a simple relation be­

tween the De Pril transform and the cumulants of a function. This relation is app­

lied to some classes of approximations to probability distributions, in particular the 

approximations of Hipp and De Pril. 
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1. Introduction 

1A. In the present paper we discuss various results related to moments and 

cumulants of probability distributions and approximations to probability distribu-

tions. 

In Section 2 we give some introductory remarks on moments and cumulants. 

As we are going to discuss approximations to probability distributions by functions 

which are not necessarily probability distributions themselves, we extend the defi-

nit ion of moments and cumulants to more general functions. 

In Section 3 we discuss recursions for moments of functions f on the non­

negative integers that satisfy a recursion in the form 

(x=l,2, ... ) (1.1 ) 

with f(O»O and f(x)=O for x<O; we allow k=rn. Probability distributions that 

satisfy a recursion in the form (1.1) were studied by Sundt (1992), and the analysis 

was extended to more general functions by Dhaene & Sundt (1994). 

It is easily seen that every function f on the non-negative integers with f(O» 

o satisfies a recursion in the form (1.1) with k=rn and ay=O for all y. The by'S are 

uniquely determined by f We call the function 'Pf defined by 'Pf(O)=O and 

'Pf(x)=bx (x=l,2, ... ) the De Pril transform of f The De Pril transform was defined 

for probability distributions by Sundt (1995), motivated by De Pril (1989) and 

Dhaene & De Pril (1994), and the definition was extended to more general functi­

ons by Dhaene & Sundt (1994). In Section 4 we shall deduce a relation between 

the cumulants and the De Pril transform of f As an application we deduce a recur­

sion for the cumulants of a function f that satisfies the recursion (1.1). 



-2-

In Section 5 we apply the results of Section 4 to some classes of approximati­

ons to probability distributions. In particular we discuss the approximations of 

Hipp (1986) and De Pril (1989). 

lB. In the present paper we shall identify a probability distribution on the 

integers by its discrete density. For convenience we shall therefore usually mean 

the discrete density when referring to a distribution. 

We denote by [the indicator function defined by I(A)=l if the condition A is 

true and Ji(A)=O if it is false. Furthermore, we shall interpret ~. b v· = 0 if a>b. 
1,=a 1, 

2. Moments and cumulants 

2A. Let 'P denote the class of probability distributions on the non-negative 

integers. We shall denote the jth order moment of jE'P by tt//), the jth order cumu­

lant by "'//)' the moment generating function by 'TI' and the cumulant generating 

function by e I' that is, 

(j=0,1, ... ) 

(j=0,1, ... ) 

In particular we have ttO(/)=l and "'0(/)=0. 

The moments can be obtained from the moment generating function by 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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dJ I 11- (/) = ~ Tj(S) 
J dsY s=o 

Cj=O,l, ... ) (2.5) 

and from the cumulants by the recursion 

(j=1,2, ... ) (2.6) 

which is obtained by (2.4), (2.5), and 

(2.7) 

By solving (2.6) with respect to Ki/) we obtain 

(.j=1,2, ... ) (2.8) 

for jE'P we have 11-0(/)=1. From (2.6) and (2.8) we see that for any positive integer 

r, there isa one-to-one relation between the moments of orders 1,2, ... ,r and the 

corresponding cumulants. 

2B. As we are going to discuss approximations to probability distributions 

by functions which are not necessarily probability distributions themselves, we 

shall now extend the definition of moments and cumulants to more general functi-

ons. 

Let J denote the class of functions on the non-negative integers. The definiti­

on (2.1) of moments is easily extended to functions JEJ when the summations exist. 

As a function in J does not necessarily sum to one like a probability distribution, 

the zeroth order moment becomes more interesting. 
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If we analogously extend the definition of cumulants by (2.2)-(2.4) to functi­

ons jE1, then existence become more problematic. We see that if /10(1)<0, then OJ 

does not exist in a neighbourhood around zero. This implies that even when the 

moments of orders 1,2, ... , r exist, the corresponding cumulants do not necessarily 

exist. This problem could be avoided by e.g. defining the cumulants by (2.8). 

However, when we discuss cumulants in later sections, we will have ILO(I»O so that 

we can stick to the definition by (2.2)-(2.4). The relations (2.5)-(2.8) still hold 

under this generalisation. 

Let jE1 and c be a positive constant. Then 

Tcj(S) = CTj(S) 0cj(S) = In c + 0j(s) 

IL/ cl) = cIL/1) (j=0,1, ... ) 

K/ cl) = I(j=O) In c + K/I) . (j=0,1, ... ) (2.10) 

From (2.10) we see that all cumulants except the one of order zero are invariant 

against scale transforms of the function. We notice that the zeroth order cumulant 

does not appear in the recursion (2.6). However, the correct scaling of the 

moments is ensured by the initial value ILO(I). 

3. Functions in the form Rk[a,b] 

3A. Let 1 a denote the class of all functions on the non-negative integers with 

a positive mass in zero and 'PO the class of probability distributions in 10, Sundt 

(1992) denoted by R~a,b] the distribution jE'PO defined by the recursion (1.1) with 

a=(a1, ... ,ak) and b=(b1, ... ,bk). More generally, Dhaene & Sundt (1994) defined a 

function jE1a to be in the form R~a,b] if it satisfies the recursion (1.1). In the 
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following we shall allow k to be finite or infinite unless stated otherwise. 

When analysing functions in the form Rk[a,b) we shall sometimes for conveni­

ence silently apply ay=by=O for y>k and y~O. 

3B. Let 1 + denote the class of functions on the positive integers and 'P + the 

class of distributions in 1 +. We shall now consider compound functions in the 

form pV h defined by 

x n* (pVh)(x) = ~n=O p( n)h (x) (x=O,I,2, ... ) (3.1) 

with hE1 + and PE10 in the form Rk[a,b). 

The following theorem was proved by Sundt (1992) in the special case when 

pE'P 0 and hE'P + . 

Theorem 3.1. IfhE1 + and PE10 is in the form Rk[a,b], then 

(pVh)(x) = ~y!1 (pVh)(x-y) ~i!1 [ai + ; ~l hZ"* (y) 

(pVh)(O) = p(O). 

(x=1,2, ... ) 

Proof Formula (3.3) follows immediately from the definition (3.1). 

Now let x be a positive integer. Then 

x n* x n [ b i] n* (pVh)(x) = ~n=1 p(n)h (x) = ~n=1 ~i=1 ai + n p(n-i)h (x) = 

[ b 'J * [b oj (0)* x X Z ° n _ x x Z n+ 2 
~i=1 ~n=i ai + n p(n-z)h (x) -~i=1 ~n=O ai + n+i p(n)h (x). 

From Lemma 6.1 in Dhaene & Sundt (1994) we obtain 

(3.2) 

(3.3) 
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Thus 

which proves (3.2). 

This completes the proof of Theorem 3.1. Q.E.D. 

We immediately obtain the following corollary to Theorem 3.1. 

Corollary 3.1. If hEJ + and pEJO is in the form R~a,bL then pVh is in the 

form Rm[c,d] with 

m = k sup {y: h(y»O} 

k y* 
ex = Ey=l ayh (x) 

k b * 
d = x E 1 ....J!. hY (x). x y= y 

(x=l, ... ,m) 

(x=l, ... ,m) 

(3.4) 

(3.5) 

3C. Before continuing with the general case, we shall in this subsection 

consider the special case k= 1. For a function in the form Rl [a, b], the recursion 

(3.2)-(3.3) reduces to 

(pVh)(x) = EY!l [a + b~] h(y)(pVh)(x-y) 

(pVh)(O) = p(O). 

(x=1,2, ... ) (3.6) 

(3.7) 
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This recursion was deduced by Panjer (1981) for the case when PE'PO and hE'P +. 

Sundt & Jewell (1981) showed that for the distribution R1[a,b] we always 

have a<1, and that this distribution is binomial if a<O, Poisson if a=O, and nega­

tive binomial if O<a<l. As we shall need the binomial and negative binomial dis­

tributions later, we shall display the recursion (3.6)-(3.7) for each of these two 

cases. 

i) Binomial. 

Then 

71" a---
- 1-71" 

and we obtain 

ii) Negative binomial. 

Then 

a = 71" 

(x:=O,l...,t; t=1,2, ... ; 0<71"<1) (3.8) 

(3.9) 

(x:=1,2, ... ) 

(x:=0,1, ... ; a>O; 0<71"<1) (3.10) 
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and we obtain 

(pVh)(x) = ?r EY!l [1 + (fr-1)~] h(y)(pVh)(x-y) 

(pVh)(O) = (l-?r)a. 

(x=1,2, ... ) (3.11) 

3D. In this subsection we shall consider moments of functions in the form 

Rk[a,b]. 

For a vector V= (vl' .. 'vm) we introduce 

I v I = (I v11 , .. , I v m I) 

v~ = max(vx'O) 

v + = (v t , ... , v~) 
(x=1,2, ... ,m) 

and analogous to our notation for moments of a function 

(j=-l,O,l, ... ) 

The following lemma gives sufficient conditions for the moments of a function 

in the form Rk[a,b] to exist. 

Lemma 3.1. Let /EJO be in the form Rk[a,b] and n be a non-negative integer. 

If 

JLo( I al) < 1 

JLn( I al) < ill 

JLn_1(lbl) < ill} 

(3.12) 

(3.13) 

(3.14) 
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then /1n( I Jl )<Ill. 

Proof If a=b=O, the lemma trivially holds. We therefore consider the com-

plementary case. 

For some 

let 

(y=1,2, ... ,k) 

Then hE'P +' and from (3.12) and (3.15) we see that 0<71"<1. 

(3.15) 

(3.16) 

(3.17) 

Let 9 be a compound negative binomial distribution with severity distribution 

h and counting distribution given by (3.10) with. a and 71" given by (3.15) and 

(3.16). From (3.17), (3.13), and (3.14) we obtain 

and thus 

/1 (g) < Ill. n 
(3.18) 

We shall now prove by induction that 
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I/(x) I ~ £00 g(x). (x=0,1, ... ) (3.19) 

It is immediately seen that (3.19) holds for x=0. Let us now assume that it holds 

for x=O,I, ... ,z. By using in turn (1.1), (3.19), (3.16), (3.17), and (3.11) we obtain 

Thus (3.19) holds for x=0,1, ... 

From (3.18) and (3.19) we finally obtain 

Q.E.D. 

From the following lemma we see that if jE'P 0' then we can relax: the assump­

tions (3.12)-(3.14). 

Lemma 3.2. Let / be the distribution R~a,b] and n be a non-negative integer. 

1/ the inequalities 

(3.20) 

(3.13), and (3.14) are satisfied, then Jln(f)<rn. 

Proof Let gE10 be in the form Rk[a +,b +] with g(0)=/(0). Then Lemma 3.1 

gives that Jl (g)<rn. Utilising that / is non-negative, it is easily proved by induct i­
n 
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on that f(x)~g(x) for x=1,2, ... Thus Itn(fJ~ltn(g)<oo. Q.E.D. 

If JEJO is in the form Rk[a,b] with kfinite, then (3.13) and (3.14) are satisfied 

for all non-negative integers n, so that in this case the condition (3.12), or (3.20) if 

jEP 0' is a sufficient condition for the existence of moments of f of all orders. 

Theorem 3.2. Let ./Elo be in the form Rk[a,b] and n a positive integer. If 

(3.12) (or (3.20) if ./EPO)' (3.13), and (3.14) are satisfied, then the moments of f of 

order j=1,2, ... ,n exist, are finite, and satisfy the recursion 

(3.21) 

Proof For j=1,.2, ... ,n we have 

It (fJ = E 00 1 xi f ( x) = E 00 1 xi E ~ 1 [a +~] f ( x-y) = J x= x= y- y x 

E ~1 a E 00 xif(x-y) + E ~1 b E 00 ,)-1 f(x-y) = 
~ y x=y ~ y x=y 

E ~1 a E 00 0 (x+y)jf(x) + E ~1 b E 00 0 (x+y)j-1 f (x) = y- y x= y- y x= 
E 00 a E 00 E) [~] iJ-if(x) + E 00 b E 00 Ei:-1 [f.1] iJ-1-if (x) = 

y=l ~ x=0 ~=O ~ Y y=l Y x=0 FO ~ Y 

E) 0 [~ It.( a) It . {fJ + Ei:-01 [f.1] It.(b)lt· . l(fJ = 
~= ~~ J-~ ~= ~ ~ J-~-

ItO ( a) It (fJ + E) 1 [i:-11] [2 It.( a) + It· l(b)] It· .(fJ, J ~= ~- ~~ ~- J-~ 

from which we obtain (3.21). Q.E.D. 

Theorem 3.3. Let pEJO be in the form R~a,b] with k<oo, hEP +' and n a posi­

tive integer. If ItO ( I al )<1 (or 1t0(a +)<1 if ./EPO) and Itn(h) <00, then the moments of 

pVh of order j=1,2, ... ,n exist, are finite, and satisfy the recursion 
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1 . [. 1] [ . ] Jt~pVh) = 1 () E'~l ~1 ~Jt~e) + Jt. l(d) Jt . .(pVh) J -JtOa 1,- 1,- 1, 1, 1,- J-1, 
(3.22) 

with 

tde) = E k a J.LlhY*) 
. '6' , y=l y~' 

( i=O,l, ... ,n) 

Proof By insertion of e and d defined by (3.4) and (3.5) in (3.21) we obtain 

the recursion (3.22) with 

( ) ro i k y*( ) k ~ y*) jl~ e = E 1 x E _ • a h x = E 1 a_J.L h 
. 'b' ' x- y=l. Y , y= y '[, , 

ro i+ 1 k ~ y* k ~ y* Jt.(d) = E 1 x E -1 h (x) = E -1 Jt·+l(h). 
1, x= y- y y- y 1, 

so that the theorem is proved if we can show that Jto(lel)<l (or JtO(e+)<l if JEPO 

and Jto(a+)<l), Jtn(lel)<ro, and Jtn_1(ldl)<ro. We have 

if Jto(a+)<l, we analogously show that lLo(e+)<l. Furthermore, 

This completes the proof of Theorem 3.3. Q.E.D. 
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Theorem 3.3 could have been stated more generally, but then the regularity 

conditions would have become more cumbersome. 

Let us now return to the special case k=1. From Lemma 3.1 we see that the 

moments of all orders of a function in the form R1 [a, b] exist and are finite if 

I al <1, and from Lemma 3.2 that if JEPO' then it is sufficient that a<1. As menti­

oned above, for a distribution R1 [a,b] we always have a<1, and thus such distribu­

tions have finite moments of all orders. Now let p be the distribution R1[a,b] and 

hEP + with /1n(h) <!D. Then Theorem 3.3 gives that the moments of pVh of order 

j=1,2, ... ,n exist, are finite, and satisfy the recursion 

This recursion was derived by De Pril (1986). 

4. Cumulants and the De Pril transform 

4A. The De Pril transform cP f of a function jE10 is defined by the recursion 

(x=0,1, ... ) ( 4.1) 

By solving (4.1) with respect to f(x) we obtain 

(x=1,2, ... ) ( 4.2) 

From (4.1) and (4.2) we see that the De Pril transform determines the function up 

to a multiplicative constant, that is, the set of all functions in 10 with De Pril 
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transform cP f is the set of functions cf where c is a positive constant. A distributi­

on /EPO is uniquely determined by its De Pril transform by the scale condition 

/loU) = 1. 

From (4.2) we see that any function /E10 can be represented in the form 

R [O,b] with b =CPf(x) (x=1,2, ... ) 
OJ x 

4B. The following theorem gives a relation between the cumulants and the 

De Pril transform of a function /E10. 

Theorem 4.1. Let n be a non-negative integer and /E1o with 

( 4.3) 

Then the cumulants off of order j=O), ... ,n exist and are finite and given by 

K, U) = 1(j=0) In f(O) + E OJ 1 J-1cpf(x). 
J X= 

( 4.4) 

Proof From Lemma 1 in Dhaene & De Pril (1994) we obtain 

[ ¥7AX)] 
/loU) = f(O) exp E:1 7 . ( 4.5) 

We see that /loU»O, and thus our definition of cumulants can be applied. As 

K,oU) = In /loU), we see that (4.4) holds for j=0. 

From Theorem 3.2 follows that the moments of f of orders 1,2, .. ,r exist, are 

fini te, and satisfy the recursion 
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(j=1,2, ... ,n) ( 4.6) 

As the moments are finite, the cumulants are also finite, and comparison of (4.6) 

with (2.6) gives that (4.4) is also satisfied for j=1,2, ... ,n. 

This completes the proof of Theorem 4.1. Q.E.D. 

Dhaene & Sundt (1994) showed that the De Pril transform of a function f in 

the form Rk[a,b] satisfies the recursion 

(X=1,2, ... ) (4.7) 

We shall now apply this recursion to obtain a sufficient condition for the condition 

(4.3) in Theorem 4.1 in the case when f is in the form R~a,bl with k<m. 

Theorem 4.2. If jEJ 0 is in the form R,Ja,b] with k<m and J.LO( I al )<1, then 

J.L/ I CPt )<m for all j. 

Proof For g(0) sufficiently large, we can choose a function gEJ ° in the form 

Rk[ial,O] such that ICPf(x)I<g(x) for x=1,2, ... ,k. Then it is easily shown by 

induction that this inequality is also satisfied for x=k+l,k+2,... This implies that 

J.L/ I CPt )SJ.L/g) for all positive integers j. By Lemma 3.1 J.L}g)<m for all j, and thus 

the theorem is proved. Q.E.D. 

We sawthat the condition J.LO( I al )<1 in Lemma 3.1 could be relaxed to 

J.LO(a +)<1 if jE'PO' Such a modification of Theorem 4.2 is not possible. Let f be 

the distribution Rl [a,b]. From (4.7) we easily obtain 
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(x=l,2, .. ) ( 4.8) 

We see that for this distribution and any j J.L/ I 'P} )<m if and only if I al <1. For 

a<-l J.L/ I 'P} )=m for all j although the moments of all orders of this distribution 

exist. From (3.9) we see that in this case f is the binomial distribution (3.8) with 

1 
7r>2' 

4C. In Theorem 3.2 we deduced a recursion for the moments of a function in 

the form Rk[a,b). Let us now apply Theorems 4.1-2 and the recursion (4.7) to de­

duce a similar recursion for the cumulants. For simplicity we restrict to the case 

k<m. 

Theorem 4.3. Let fE10 be in the form R~a,b) with k<m and J.La( I al )<1. Then 

the cumulants off oj all orders exist) are finite) and satisfy the recursion 

K-U) = 1 1() [J.L(a) + J.L. l(b) + Ef-11 [i-.1]J.L{a)K- . .(f)]. (,1=1,2, ... ) (4.9) J -J.La a J ]- 2= 2 2 ]-2 

Proof From Theorem 4.2 follows that the cumulants exist and are finite. 

For ,1=1,2, ... , we have 

m . 1 m' 1[ k ] K- (f) = E 1 ~ 'Pf(x) = E 1 xr xa + b + E -1 a 'Pj(x-y) = J x= X= x x y- y 

J.L(a) + J.L. l(b) + E ~1 a E m1 'Pf(x)(x+ y)j--1 = 
J ]- Y- Y X= 

( ) ( ) k m () j-1 [f 1] i i-i-1 /lll.a + J.L. 1 b + E -1 a E 1 'Pf x E '-0 . Y X' = J ]- Y- Y x= 2- 2 

( ) () j-1 ff1l kim i-i-1 () J.Lia + J.Lj--1 b + Ei=O i Ey=l Y ay EX=l X' 'Pf x = 
. 1 '1 

J.L (a) + J.L. l(b) + E~O 1-. J.L.(a)K- . .(f), J ]- 2= 2 2 ]-2 
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from which we obtain (4.9). Q.E.D. 

From (4.9) we obtain that if a=O, then K,/./)=fl~l(b) (j=1,2, .. ). This result 

is obvious as in this case bx=lfJf(x) (x=1,2, ... ). 

In particular we obtain from Theorem 4.3 

For the case /E'Po' these expressions were given by Sundt (1992). 

Analogous to the deduction of Theorem 3.3 we can deduce from Theorem 4.3 

and Corollary 3.1 a recursion for the cumulants of a compound function with 

counting function in the form Rk[a,b] with k<rn and severity function in 1 + with a 

finite support. 

5. Approximations to distributions 

SA. The De Pril transform can be a practical tool for evaluation of distributi­

ons in 'PO. We have already discussed some of its properties for distributions in the 

form R~a,b]. More generally, the following two theorems were proved within the 

context of distributions by Sundt (199S) and extended to more general functions by 

Dhaene & Sundt (1994). 

Theorem 5.1. The convolution of a finite number of functions in 10 is a functi­

on in 101 and its De Pril transform is the sum of the De Pril transforms of these 

functions. 
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Theorem 5.2. If PE10 and hEl +' then 

x 'Pp( y) y* 
'PpVh(x) = x Ey=l -y- h (x). 

Theorem 5.2 can also be obtained from Corollary 3.1 with a=O and k=m. 

Unfortunately, although results like Theorems 5.1 and 5.2 may seem conveni-

ent, numerical evaluations may sometimes be rather time-consuming, and it is 

therefore of interest to study more computationally convenient approximations to 

De Pril transforms. Dhaene & Sundt (1994) discussed error bounds related to such 

approximations. Theorem 4.1 gives us another way to assess the quality of the 

approximation; we can compare the cumulants of the approximation with the 

cumulants of the exact distribution. 

5B. We want to approximate JEPo by a function l' El0. We see that one way 

to reduce the time-consumption related to application of De Pril transforms, is to 

let 'P1'(x)=O for x greater than some positive integer r. 

For all positive integers r, let l~ r) denote the class of all functions gEl0 for 

which cpix)=O for x>r. A function 9El~r) is uniquely determined by the r+1 

quantities g(O) and cp i 1), ... ,cp i r). 

The condition (4.3) of Theorem 4.1 is obviously satisfied for 9El~r). Thus the 

cumulants and moments of 9 of all orders exist, and we have 

K ~g) = I(j=O) In g(O) + E r1 ~lcp (x). 
J x= 9 

(j=0,1, .... ) (5.1) 

Dhaene & Sundt (1994) discuss some classes of approximations l' El~ r) to f 

A simple and natural choice is to let l' = j( r) defined by 
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j(r\O) = j(O) 

ifJj(r)(X) = ifJj(x)I(x5.r). (x=1,2, ... ) 

By considering (4.1) and (4.2) we see that the approximation j( r) can be interpret­

ed as if we determine j(r)(O) and ifJ ( )(x) for x=l, ... ,r so that the approximation 
j r, 

is exact for j(x) for x=O,l, ... ,r. 

Considering Theorem 4.1, it seems natural to introduce another approximati­

on i r) EJ~ r) where we instead of matching the probabilities up to r match the 

moments (or, equivalently, the cumulants) of orders O,l, ... ,r, that is, ;;,}fJ= 

;;, (j (r)) (r-"-0.1, ...• r). Thus (f) I ) is determined by the r linear equations J' - ,. . ., . j-\ r 

(j=l, ... ,r) (5.2) 

and as we should have J.Lo(i r))=1, we obtain from (4.5) 

(5.3) 

5C. In this subsection we shall look at the special case when j is the Bernoul­

li distribution defined by 

j(O) = 1-1f j(l) = 7r. (5.4) 

From (3.9) and (4.8) we obtain 

(x=l,2, ... ) (5.5) 
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Insertion of f.L/fJ=7r (j=1,2, ... ) in (2.8) gives 

K, (fJ = 7r {I - Ej-II [t-II] K, '(fJ}, J 2= 2- 2 
(j=1,2, ... ) 

from which we easily see by induction that K,/fJ can be expressed as a polynomial 

in 7r of order j. The following theorem gives a closed form expression for K,if). 

Theorem 5.3. For any positive integer r, the cumulants of order j=1,2, ... ,r of 

the Bernoulli distribution f given by (5.4) are given by 

(5.6) 

Proof From (4.4) and (5.5) we obtain for j=1,2, ... ,r 

which gives 

K,ffJ = E m 7rYE y J-I(_I)X+I[Y-I]. J' y=1 x=1 x-I (5.7) 

We have earlier pointed out that K, (fJ can be expressed as a polynomial in 7r of 
J , 

order j. Thus, in (5.7) the coefficient of 7rY must be equal to zero for all y> r, that 

is, 

K, ffJ = E r 7rY E Y J-I(_I)X+I[Y-I] J' y=1 x=1 x-I' 
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from which we obtain (5.6) by interchanging the order of summation. Q.E.D. 

By letting r=j in (5.6) we obtain 

K (f) = E j j-1( _1)x+1 E ~ 7rY[Y-1]. 
J x=1 y-x x-1 (j=l,2, ... ) 

We shall now consider the approximations j(r) and 'j (r) of f For the former 

approximation, insertion of (5.5) in (5.1) gives 

(j=l,2, ... ,r) 

By comparing (5.2) and (5.6) we easily see that 

( ) _ ( )x+1 r Y[Y-1] _ ()x+1 r 7rY[Y] ( ) 'Pi r) x - -1 Ey=x 7r x-1 - -1 x Ey=x Y x' x=l,2, ... ,r (5.8) 

This gives 

'P,.Jr) (x) y y [ ] 
Err = E r (_1)x+1 E r !!.-[y] = E r !!.- E Y (_1)x+1 Y = 

x=1 x x=1 y=x Y x y=l Y x=1 x 

r 7rY E -y=l Y , 

and by insertion in (5.3) we obtain 

(5.9) 

5D. We shall now consider approximations to compound distributions by 
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approximating the counting distribution and keeping the severity distribution un~ 

changed. 

Let PE1'O and hE l' +. We want to approximate pVh by qVh with qE1~r). From 

Theorem 5.2 we obtain 

In (y) .'* _ r r q\ J if 
i.pqVh(x) - x E y=l-y- h (X). (x=1,2, ... ) (5.10) 

This gives 

which is finite if the moments of h up to order n are finite. In that case we obtain 

from (5.10) and Theorem 4.1 

cp (y) * 
/'i, ( qVh) = E r -q- It (hY ). J' y=l Y J 

U=1,2, ... ,n) (5.11) 

Furthermore, we have 

(5.12) 

The moments and cumulants of qVh can also be found from the moments and 

cumulants of q and h. 

As the moments of orders O,l, ... ,r of the approximation p(r) to p are exact, 

we obtain that also the moments of orders O,l, ... ,r of the approximation p(r)Vh to 



-23 -

pVh are exact. Analogously we have that the probabilities up to r of the approxi­

mation p(r)Vh to pVh are exact. 

5E. It is often convenient to interpret a distribution in 'PO as a compound 

Bernoulli distribution with severity distribution in 'P +' that is, we represent the 

distribution jE'P 0 by pV h with 

p( 0) = 1-7f = f (0) 

h(x) = fiE 7f 

p(l) = 7f 

(x=1,2, ... ) 

Vve can approximate f by approximating p with a distribution in :F~r) and 

keeping h unchanged. 

Let us first consider the approximation p( r). Insertion of (5.5) in 

(5.10)-(5.12) gives 

r l[7f]YY* cp () (x) = -x E -1 - -1 h (x) 
p r vh Y- Y 7f-

(x=1,2, ... ) 

K, .(p(r)Vh) = - E r 1 1: [ 7f1] Y /l (hY*) 
J Y= Y 7f- J 

(j=1,2, ... ,n) 

K, (p(r)Vh) = K, (p(r)) = In (1-7f) - E r 1: [~J Y. o 0 x=1 Y 7f-1 

The approximation p(r)Vh of f is the rth order De Pril approximation-introduced 

by De Pril (1989). 

We now turn to the approximation p(r). Insertion of (5.8) in (5.10) gives 

cp () (x) = x E ~1 (-1)y+1 hY*(x) E ~ 7fZ[z], (x=1,2, ... ) p r V h Y- z-Y Z Y 
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and by rewriting this expression as 

r z (_1)y+1 [z] z y* 
I{J () (x) = x ~ -1 ~ -1 7r h (x) (x=l,2, ... ) 

N r h z- y- z y p Y 

and comparing this formula and (5.9) with formula (54) in Dhaene & De Pril 

(1994), we see that the approximation p(r)Yh of f is the rth order Hipp approxima­

tion introduced by Hipp (1986). 

From our deductions follows in particular that the rth order Hipp approxima­

tion gives exact match of cumulants (and hence moments) of orders O,l, ... ,r, when 

these cumulants exist. This property has also been shown by Dhaene, Sundt, & De 

Pril (1995). However, with our present deduction we have given a more extensive 

characterisation of the Hipp approximation. Like Hipp (1986) we represented the 

original distribution f as a compound distribution with B~rnoulli counting distri­

bution p and severity distribution h. Then, in our approximation we kept the seve-

rity distribution h unchanged, but approximated the counting distribution p with 

p( r), that is, the only approximation in J~ r) that gives exact match for the 

moments of orders O,l, ... ,r. 

We can give an analogous characterisation of the rth order De Pril approxi­

mation. The difference is that there we approximate the counting distribution p 

with p( r), that is, the only approximation in J~ r) that gives exact match for the 

probabilities up to r. 

These characterisations show that the Hipp approximation js related to 

matching of moments whereas the De Pril approximation is related to matching of 

probabilities. This may indicate that the approximations may be appropriate in 

different situations; the De Pril transform when we are primarily interested in the 

approximated probabilities, the Hipp approximation when the approximated 
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moments are more important. 

As indicated in subsection SD, we can apply the same principles when appro­

ximating compound distributions with other counting distributions. 

SF. In the previous subsection we deduced the approximations of Hipp and 

De Pril as approximations of One distribution in ·PO. These approximations are 

usually presented in the more general framework of approximating a convolution of 

distributions in 'PO. The convolution is appproximated by approximating each of 

the distributions by the rih order Hipp resp. De Pril approximation. For further 

discussions and comparisons between these two classes of approximations we refer 

to De Pril (1989) and Dhaene & De Pril (1994). 
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