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Abstract 

D-optimal designs are known to depend quite critically on the particular model that is as­

sumed. These designs tend to concentrate all the experimental runs on a small number of 

design points and are ideally suited for estimating the coefficients of the assumed model, 

but they provide little or no ability for model checking. To address this problem we use 

the notion of empirical models that have both important and potential terms. We propose 

within the Bayesian paradigm, a two-stage design strategy for planning experiments in the 

face of model uncertainty. In the first stage, the experimenter's prime interest is to highlight 

the uncertainties in the specification of the model in order to refine or modify the model(s) 

initially entertained. A design criterion is used that accounts for precision of the important 

terms but also facilitates the improvement of the proposed model(s) by detecting lack of fit. 

Data from the first stage provide model information enabling the second stage design to be 

chosen efficiently with reduced model uncertainty. The design in the second stage is obtained 

using a weighted criterion with weights being posterior model probabilities computed from 

first stage data. The criterion in the second stage also takes into account precise estimation 

of important terms as in the first stage but now attempts to minimize bias with respect to 

potential terms. Results from simulations show that the proposed two-stage strategy per­

forms well. The combined first and second stage design has good properties with respect to 

precision of important terms, lack of fit and also excellent bias properties with respect to a 

true assumed model in various simulation studies. 

Keywords: Bayesian two-stage procedures, GD-optimality, prior probabilities, posterior prob­

abilities, model-robustness, model-sensitive, bias, lack of fit 
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1 Introduction 

D-optimal designs are known to depend on the assumed model and spend all of the resources in 

precise estimation of the parameters of the assumed model. They make no explicit provisions for 

reducing the bias error in case departures from the assumed model occur and also for allowing 

the fit of higher order terms in case model inadequacy is diagnosed. There have been sev­

eral attempts to develop algorithms that retain the flexibility of the D-optimal approach whilst 

avoiding these common criticisms. Steinberg and Hunter (1984) provide a nice overview of the 

different approaches proposed to account for model uncertainty, ranging from model-robust to 

model-sensitive strategies. 

In a model-robust approach, designs are sought that will yield reasonable results for the proposed 

model even though it is known to be inexact. Box and Draper (1959) were the first authors 

to consider this problem in depth. They assumed that the true model comprises some primary 

(important) terms that will eventually be fitted and some potential (questionable) terms. They 

argue that a more appropriate criterion for comparing experimental designs is the integrated 

mean squared error (IMSE) over a region of interest. The IMSE can be decomposed as the sum 

of a bias component and a variance component. The problem with this and similar criterion is 

that the experimental design will depend on the parameters of the potential terms. 

DuMouchel and Jones (1994) (DMJ) illustrate a very practical use of Bayesian methods for de­

sign selection that preserves the flexibility of the D-optimal approach, whilst being less sensitive 

to the model assumptions. Based on the work of DMJ and Box and Draper (1959), Kobilinsky 

(1998) developed a design criterion combining bias and variance properties. In addition Neff 

(1996) and Ruggoo and Vandebroek (2002) demonstrate the advantage of the procedure of DMJ 

and illustrate a two-stage approach in which prior information is updated at the end of the first 

stage. The two-stage design approach they develop makes it possible to efficiently design exper­

iments when initial knowledge of the model is poor. This is accomplished by using a Bayesian 

D-optimality criterion in the first stage and the second stage design is then generated from an 

optimality procedure which incorporates the improved model knowledge from the first stage. 

In a model-sensitive design strategy, one looks for designs that facilitate the improvement of 

the model by detecting lack of fit. Such approaches, also referred to as model discrimination 

procedures, are elaborated by Atkinson and Donev (1992). The crucial idea of such designs 

centers around determination of lack of fit by maximizing the dispersion matrix somehow. 
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It would seem desirable to develop a design criterion that would account for both model-robust 

and model-sensitive aspects of a design. However as is often the case, a design strategy that for 

example involves protection against bias errors works counter to a strategy designed for mini­

mum variance. It is also seen that the minimum variance approaches like the D-optimal designs 

results in pushing the design points to the edge of the region whilst minimum bias designs require 

adequate placement of design points at a reasonable distance from the design center (See Myers 

and Montgomery (2002) for more details). It is imperative that any combined design strategy 

would result in a compromise design and not specifically suited for anyone specific aspect of a 

design. 

In this respect, DeFeo and Myers (1992) propose a new criterion for design robustness that brings 

together protection against the use of an oversimplified model and detection through lack of fit, 

for a class of designs called 'rotated designs'. A more recent development in the area is the new 

criterion developed by Goos, Kobilinsky, O'Brien and Vandebroek (2002), henceforth referred 

to as GKOV. Their criterion accounts for both model-robust and model-sensitive aspects of a 

design by combining efficiency in estimating the primary terms, protection against bias caused 

by the potential terms and ability to test for lack of fit and thereby increasing the knowledge on 

the true model. They term their new design criterion, the Generalized D-optimal (GD) crite­

rion and show that the new criterion perform well with respect to bias and detection of lack of fit. 

The overall objective of the present paper is to develop two-stage designs which incorporate 

both model-robust and model-sensitive aspects in the design criterion. More specifically, we 

propose to extend the Bayesian two-stage strategy developed by Neff (1996) and also studied by 

Ruggoo and Vandebroek (2002) and incorporate the GD criterion of GKOV in both stages. The 

incorporation of the GD criterion in a two-stage procedure is intuitively very appealing: In the 

first stage the true model is unknown and the experimenter's prime interest is to highlight the 

uncertainties in the specification of the model in order to refine or modify the model initially 

entertained. The GD criterion is used that accounts for precision of the primary terms but also 

facilitates the improvement of the proposed models by detecting lack of fit. At the end of the 

first stage, the experimenter will thus have more information on the true model. The criterion in 

the second stage should also take into account precise estimation of important terms but most 

importantly, provide protection against bias induced by an incorrect primary model specification. 

3 



The paper will be organized as follows. In Section 2, the design criterion introduced by GKOV 

will be reviewed. In Section 3, we set the notation to be used in the paper and our two-stage 

approach is developed including the prior and posterior formulations on the model space. The 

approach of Neff (1996) to develop the Bayesian two-stage D-D optimal design is briefly reviewed 

in Section 4 and we show that her approach is a special case of our more general two-stage strat­

egy. In Section 5, we propose an alternative approach for generating the first stage design that 

explicitly utilizes prior probabilities as weights in the optimality criterion. We discuss the analy­

sis strategy of the two-stage approaches in Section 6, followed by an illustration of the two-stage 

procedures in Section 7. Our procedures are then evaluated relative to classical unique stage 

approaches and the two-stage designs of Neff (1996) in Section 8, and we end with a conclu­

sion in Section 9. We show that our two-stage approaches produce designs with significantly 

smaller bias errors compared to standard designs used in the literature. They also improve the 

coverage over the factor space and still have very good variance properties of the assumed model. 

2 The G D criterion 

In this section we review the GD criterion developed by GKOV. We use a slightly different 

notation and we shall extend their approach in a two-stage design strategy in Sections 3 and 5. 

Let us assume that the linear model that will be fitted by the experimenter is of the form 

(1) 

with Xpri being a p-dimensional vector of powers and products of the factors and 13pri the p­

dimensional vector of unknown parameters attached to the primary terms. Suppose that the 

expected response was misspecified so that the true model is actually of the form 

(2) 

where Xpot is the q-dimensional vector containing powers and products of the factors not included 

in the fitted model and 13pot is the q-dimensional vector associated with the potential terms. We 

shall refer to X'pri13pri as the primary terms and to X~ot13pot as the potential terms. To simplify 

the notation, we will assume that the model has been reparametrized in terms of the orthonormal 

polynomials with respect to a measure J-t on the design region. The orthonormalization ensures 

that the effects are well separable and independent so that a simple prior distribution on the 

potential terms can be used. 
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If X pri is the n x p model matrix for the primary terms and Xpot the n x q model matrix for the 

potential terms, then under the assumption of orthonormal polynomials, it can be shown that 

the expression for the IMSE, suggested by Box and Draper (1959) reduces to 

IMSE = f3~ot [A' A + Iq] f3 pot + (T2 trace (X~riXpri) -1, 

where A = (X~riXpri) -1 X~riXpot is the alias matrix which essentially transcribes bias errors 

to parameter estimates, 13pri' By conceiving a prior distribution of the form f3pot ~ N(O, T2(T2Iq) 

proposed by DMJ, GKOV establish that 

The parameter T2 is the common prior variance of the potential terms' coefficients, measured in 

units of the random error variance (T2. The approach above aims at finding designs that yield 

precise estimates of primary terms and ensures protection against the existence of potential 

terms. The possibility of testing for lack of fit is not made explicit. Atkinson and Donev (1992) 

consider this problem and combine the D-optimality criterion for the primary model and the 

DB-optimality criterion for the potential terms. The Ds-optimality criterion for the potential 

terms is related to the non-centrality parameter, 0. Using the same prior distribution on the 

potential terms as before, GKOV show that 

Ef3 [0] = T2 trace [L] , 

where L = X~otXpot - X~otXpri (X~riXPTi) -1 X~riXpot, and is usually referred to as the dis­

persion matrix. 

GKOV combine the three aspects: precise estimation of the primary model, minimization of the 

bias caused by potential terms and possibility to test for lack of fit into one criterion. They 

specify weights 0<2 and 0<3 to attach more or less importance on the different properties. They 

propose to find designs that minimize the GD criterion 

For 0<2 = 0<3 = 0 the GD-optimality criterion produces the D-optimal design for the primary 

model. For 0<3 = 0, 0<2 = ~ and T2 = 00, we obtain the D-optimal design for the full model. 

Setting 0<3 = 0, 0<2 = ~ and for finite values for T2, the Bayesian D-optimal designs introduced 

by DMJ are obtained. 
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3 Development of the two-stage approach 

In a two-stage strategy, data from the first stage is used to generate parameter information 

which is subsequently used to select the remaining second stage experimental runs with max­

imum efficiency. We shall consider the same framework as in Section 2 and set the notation 

and assumptions to be used in the development of our two-stage designs. Let us assume that 

Yi!,8 ~ N(Xi ,8,0'2I) for each stage i (i = 1,2) with nl and n2 observations in the first and 

second stage respectively so that the total number of observations in the combined stage is 

n = nl + n2. X is the extended design matrix of dimension n x (p + q) for the combined 

stages, so that X' = [ Xl X 2 J. Xl = [ Xpri(l) Xpot(l) 1 is of dimension nl x (p + q) and 

X 2 = [ X pri (2) X pot (2) 1 is of dimension n2 x (p + q) and represent the first and second stage 

designs expanded to full model space. Xpri(i) and Xpot(i) correspond to the primary and po­

tential terms respectively for each stage i (i = 1,2). Finally X~ri = [ X~ri(l) X~ri(2) 1 is of 

dimension n x p and X~ot = [ X~ot(l) X~ot(2) 1 is of dimension n x q and are respectively the 

combined first and second stage design matrices for the primary and potential terms models only. 

3.1 Selection and Analysis of first stage design 

In the first stage, the experimenter believes that the plausible model comprises primary terms 

but at the same time would like some knowledge about possible incorrect model specification. In 

other words he/she would wish to be able to test for lack of fit thereby increasing the knowledge 

on the true model whilst at the same time ensuring precise estimation of the primary terms. The 

first stage design is thus obtained by finding Xl = [ Xpri(l) Xpot(l) 1 which minimizes the GD 

criterion of GKOV with a large weight placed on the lack of fit component and setting 0<3 = 0 

in (3). We obtain 

GD1: min {~IOg I (X~ri(l)Xpri(l)) -11 + ~2 log I ( Ll + !~ ) -ll} , (4) 

Before observing the first stage data, the experimenter has a model with (p + q) regressors. The 

total number of plausible models is m = 2Q • Consequently each candidate model Mi contains 

all primary terms and a subset of qi (0:::; qi :::; q) potential terms. Once the data from the first 

stage has been collected, the information from the analysis can be used as prior information to 

reduce model uncertainty in the next stage. Model knowledge can be updated by scoring each 
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of the plausible candidate models using posterior probabilities indicating the likelihood that a 

particular candidate model is actually predicting the response adequately. These resulting scores 

or posterior probabilities can then be incorporated as weights in a second stage criterion. 

Box and Meyer (1993) propose a general way for calculating the posterior probabilities of dif­

ferent candidate models within the framework of fractionated screening experiments. Given the 

first stage data Yl, the posterior probability of the model Mi given Yl is 

(5) 

where p(Mi) is the prior probability of model Mi and !(Y1IMi ) is the predictive density of Yl 

given model Mi. 

To develop our prior probabilities p(Mi)'s, we use the approach based on model building as­

sumptions used for factor screening experiments suggested by Bingham and Chipman (2002). 

They consider screening experiments when prior information about the significance of some of 

the effects are known from expert knowledge. They classify the regression effects as a require­

ment set of effects that should be estimated and a negligible set of effects thought to be less 

important. In our context, this is akin to our regression effects being classified as the primary 

and potential effects. For a design with r factors, we consider only first and second order effects 

of a factor. We separate effects into three groups: linear, quadratic and interaction effects. 

Under the effect inheritance assumption, an interaction is more likely to be important if one 

or more of its parent factors are also important. Let PX,Xj,o::; Px,xj,l::; Px,xj,2 denote the 

conditional probabilities that interaction XiXj is active, given 0, 1, 2 of main effects Xi and Xj 

being active. Let Px~,o::; Px~,l denote the conditional probabilities that the quadratic effect Xi 2 

is active given that the corresponding linear effect Xi is absent or present in the model. 

In our model formulation, primary terms are always present in all m = 2q plausible models, so 

that we can assign a probability one for their occurrence in all m models. For effects in the 

potential set, we set the prior probability of a significant main effect to ¢ = 0.2 and for the 

interactions and quadratic effects to be 

{ 
0.01¢ if 8 = 0 

PX,Xj,S = 0.5¢ if 8 = 1 

¢ if 8=2 

and 2 = { 0.01¢ if s = 0 
Px , ,8 ¢ if s = 1 

(6) 

as suggested by Bingham and Chipman (2002). Given these prior probabilities, the prior prob-
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ability of a particular model, P(Mi)' (i = 1,2, ... , m) can be computed as the product of the 

probability of each individual effect being in the model. These definitions above also imply that 

the event that a linear effect in a model is independent of the event that any other factor's 

linear effect is in the model. For a given set of linear effects being in the model, the inclusion 

of second order effects in the model are independent of each other (Chipman, 1996). The prior 

probabilities, p(Mi)'s can then be scaled so that they sum to one. 

Since the primary terms are likely to be active and no particular directions of their effects are 

assumed, the coefficients of the primary terms are specified to have a diffuse prior distribution 

- that is an arbitrary prior mean and prior variance tending to infinity. On the other hand, po­

tential terms are unlikely to have huge effects and the assumption f3pot ~ N(O, T2(T2Iq) proposed 

by DMJ and also used by GKOV is appropriate. Following our orthonormalization procedure, 

which ensures that the effects are well separable and independent, the joint prior distribution 

assigned to f3pri and f3pot is N(O, (T2T2K-1) where K is a (p+q) x (p+q) diagonal matrix, whose 

first p diagonal elements are equal to zero and the remaining q diagonal elements are equal to 

one. Since we have assumed a normal linear model, the probability density of Y1 given Mi and 

f3i is given by 

The resulting posterior probability for model Mi given YI can then be obtained along the lines 

shown in Box and Meyer (1993) and (5) becomes 

(7) 

where Xi is the first stage design in model Mi space and 

K _ [Opx p Opx q,] ,- , 
0q,xp Iqixqi 

/3i = (X;Xi + ~i) -1 X;Y1 = E(f3iIY1), assuming model Mi , 

S(/3i) = (Y1 - X i/3;)'(Y1 - X i /3i) = Residual Sum of Squares for model Mi 

and finally C is the normalization constant that forces all probabilities to sum to one. 

With our choice of the parameters a2 and aa in the first stage, we expect the first stage design, 

Xl to have the power to diagnose any model inadequacy and reflect knowledge on the true 
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model. The Box and Meyer probabilities in (7) will also capture model importance and the true 

model will 'enjoy' the highest posterior probability. 

3.2 Selection of second stage design 

We shall now incorporate all the improved model information from the first stage in selecting 

the second stage design. Since f3 contains all (p + q) parameters of the full model, we can extend 

the approach of Neff (1996) so that a Bayesian second stage GD optimal design for the full 

model is found by choosing X 2 = [ X pTi (2) X pot (2) 1 so as to minimize 

GD2 : min [~log I (X~Ti(I)XPTi(l) + X~Ti(2)XPTi(2)) -11 

+ ~2 log I ( L2 + !~ ) -11 + ~3 log IA;A2 + Iq I], (8) 

where 

L2 [ (X~ot(I)Xpot(l) + X~ot(2)Xpot(2)) - (X~ot(I)XPTi(l) + X~ot(2)XPTi(2)) X 

(X;"'i(I)XPTi (l) + X~Ti(2)XPTi(2)) -1 (X~Ti(I)Xpot(l) + X~Ti(2)Xpot(2)) ], 

and 

A2 = (X~Ti(I)XPTi(l) + X~Ti(2)XPTi(2)) -1 (X~Ti(I)Xpot(1) + X~Ti(2)Xpot(2)) . 

However, the full model is only one of the candidate models and in most cases not the most 

appropriate. Based on our judicious choice of 0<2 and 0<3 in the first stage, we expect the design 

at the end of the first stage to be able to discriminate between the different plausible models and 

hence reflect the most likely terms in the true model. The experimenter will still be interested 

in precise estimation of primary terms in the second stage but would now like to minimize bias 

caused by any of the potential terms which may now be present in the true unknown model. 

The design criterion in a second stage needs to give a high weight to the bias component and 

also ensure precision of the primary terms as these are the terms that the experimenter will 

eventually fit. An obvious choice would be to set 0<2 = 0 and use a large value of 0<3 in (8) for 

generating the second stage design. 

Let us consider our subset models Mo, M1 , ... ,Mm as discussed previously, with each model Mk 

defined by its parameters f3k' A Bayesian second stage GD optimal design for model Mk is the 

9 



f d · . X(k) [ X(k) X(k) ] h· h .. . set 0 eSlgn pomts 2 = pri(2) pot(2) W IC mlillmlzes 

(k) . . [1 1 (k)' (k) (k)' (k) )-11 0:3 ) (k)' (k) (k))] GD2 . mm p log X pri(l) X pri(l) + X pri (2) X pri (2) + q log A2 A2 + Iq , (9) 

h X (k) X(k) (k) d I(k) h· d· X X A d I were pri(l)' pri(2)' A2 an q are t e matrIces correspon mg to pri(l), pri(2) , 2 an q 

expanded to model space Mk. Since the Box and Meyer posterior probabilities computed from 

first stage data in (7) reflect model importance, they can be incorporated as weights to average 

the GD criterion when the second stage is selected. The objective is to choose the second stage 

design points so as to minimize GD~k) for each model Mk having a high probability of being the 

'best'model. This is achieved by choosing the second stage design points X2 so as to minimize 

L GD~k) p(MklytJ· 
Mk 

We shall refer to the two-stage approach developed in this Section as the Bayesian GD-MGD 

two-stage procedure; the acronym MGD being used to enforce the analogy that all possible 

models are taken into account in the second stage. 

4 Comparison of two-stage procedures 

In this section, we give an overview of the development of the Bayesian D-D optimal design 

for linear models proposed by Neff (1996) and show that our two-stage strategy developed in 

Sections 3.1 and 3.2, generalize her approach. Neff's (1996) procedure is as follows: The Bayesian 

D-optimality criterion of DMJ which minimizes 1 (X~ Xl + ~ )-11, is used to select the first stage 

design. The parameter T = 5 is recommended in both the first and second stage because of the 

ability to produce designs which are robust to model misspecification. By letting the second 

stage prior distribution of (3 be the first stage posterior, a Bayesian D-optimal design for the full 

model in the second stage is found by choosing X2 so as to minimize I(X~X1 + X2X 2 + ~ )-11· 

However as argued in Section 3.2, the full model is only one of the candidate models and in most 

cases not the most appropriate. Considering the subset models Mo, M 1 , ... ,Mm as discussed 

previously, the posterior variance of (3i is 

where X 1(i) and X 2(i) are the first stage and second stage design matrices respectively expanded 

to model space Mi. A Bayesian D-D optimal design for model Mi is the set of design points X 2(i) 

which minimizes D i =IV2(i)l. Since the posterior Box and Meyer probabilities computed from 
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first stage data as described before reflect model importance, they are incorporated as weights 

as in Section 3.2 so that the second stage design points X2 are obtained by minimizing 

L Di p(Mi IY1). 
Mi 

It can be easily established that our criteria in (4) and (8) generalize the first and second stage 

designs proposed by Neff (1996). We shall for that purpose use the results from Harville (1997), 

that if T represent an r x r matrix and U is an r x t matrix, V an t x rand W is an txt 

matrix and if T is non-singular, then 

(10) 

To obtain the first stage design developed by Neff (1996), we set 0<2 = ; in (4) so that 

GDreff : min {~log I (X~i(l)Xpri(l)) -11 + ~ log 1 ( L1 + !~ ) -11} . 

Using (10), we can easily show that 

IX~i(l)Xpri(l) IIL1 + !~ I = Ix~ Xl + ~ I ' 
which yields the first stage design of Neff (1996). 

The Bayesian second stage D-optimal design developed by Neff (1996) for the full model is found 

by choosing X2 so as to minimize I(X~X1 + X2X2 + ~ )-11 . For finite values of 7 2 and setting 

0<2 = ; and 0<3 = 0 in (8), we obtain 

GDNeff . [11 I( I I )-11 1 I( Iq)-lIJ 2 : mill p og Xpri(l)Xpri(l) + Xpri(2)Xpri(2) + p log L2 + 7 2 . 

Using (10), we can again show that 

(11) 

The expression on the right hand side of (11) is identical to the Bayesian second stage D-optimal 

design criterion of Neff (1996) for the full model. 
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5 An alternative approach for generating the first stage design 

utilizing prior probabilities 

In Section 3, information on the prior model space was not used in the first stage and only the 

full model was considered when selecting the first stage design. In this section, we present an 

alternative approach for designing the first stage experiment that explicitly incorporates prior 

model information and accounts for model uncertainty by considering running the GD optimality 

criterion over all possible models in the first stage itself. As in Section 3.1, the experimenter has 

a model with (p+ q) regressors and the total number of plausible models is 2q . Consequently each 

candidate model Mi contains all primary terms and a subset of qi (0 S qi S q) potential terms. 

Now as described in Section 3.1, the prior probabilities, p(Mi) reflect model importance of each 

of the 2q plausible models and thus can be incorporated as weights to average the GD criterion 

when a first stage design is selected similar to the approach utilizing posterior probabilities in 

Section 3.2. Thus the first stage design Xl = [ Xpri(l) Xpot(l) 1 can be obtained by minimizing 

L GDik) p(Mk) 
Mk 

where 

(k) . 1 1 ((k)' (k) )-11 0<2 (k) Iq [ I ( 
(k)) -Ill 

GD I : mm p log Xpri(l) Xpri(l) + q log Ll + ~ , (12) 

and a large weight placed on the lack of fit component to increase knowledge on the true model. 

X (k) L(k) (k) . . 
pri(l)' 1 and Iq are the matnces correspondmg to Xpri(l), Ll and Iq expanded to model 

space Mk. Once the first stage design Xl is obtained, the second stage design X 2 can be ob­

tained along the same procedure as in Section 3.2. 

The procedure above makes sense as the prior model probabilities p(Mi) are explicitly used in the 

first stage and the optimality criterion accounts for all possible models. Once data is collected 

from the first stage, the classical Bayes' Theorem updates these priors to the posteriors, p(MiIYl) 

for use in the second stage. In essence the two-stage process is summarised as 

L GD~k) p(MkIYl) 
Mk 

We shall refer to this approach as a Bayesian MGD-MGD two-stage procedure; the acronym 

MGD again enforcing the analogy that the optimality criteria sweeps over all possible models 

in both stages. 
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6 Analysis Strategy for the two-stage approaches 

In a two-stage design strategy, the first stage is designed with respect to some criteria and then 

conditional on the information provided by first stage data, the second stage is chosen to create 

certain desirable conditions in the combined design. Statistical inferences are then based on all 

the observations as if the experiment had been completed in a single stage. The two-stage proce­

dures described in Sections 3 and 5 are mainly used as devices for generating a combined design 

with less dependence on the choice of the primary terms. The experimenter will eventually fit 

the primary model (1) by least squares but with the combined two-stage design, departures of 

the response estimator fj from the true response 7)(x) will be minimized resulting in genuine and 

less biased predictions. If the experimenter wishes to have more knowledge on the process, the 

effect of potential terms can be investigated by forward stepwise selection or other regression 

diagnostics as suggested by DMJ. 

7 Illustration of the two-stage procedures 

In this section we present a simple example of the two-stage procedures developed in Sections 3 

and 5. Consider the two-dimensional problem where the primary model consists of p = 4 terms, 

130 + f3lxl + f32x2 + f3l2xlx2 and the full model has q = 2 extra potential terms: f311xI + f322X~, 
The design region we consider is the 5 x 5 grid on [-1, +IJ2. Suppose the experimenter has 

resources for 16 runs in the experiment. In case model uncertainty is completely ignored, the 

experimenter can design the experiment using a classical D-optimal design for the primary terms 

model only. Alternatively if he/she wants to protect against the potential terms, then the design 

procedure of DMJ which is obtained by minimizing I (XIX + K) -11 can be used. 

As an alternative approach to the single stage procedures above, we may also design the ex­

periment using the two-stage approaches developed in Sections 3 and 5. Since the second stage 

design is dependent on the first stage, response data from the first stage experiment are needed 

in the computation of the posterior probabilities used as weights in the second stage criterion. 

We assume that the true model from which data will be simulated is 

y = 45.0 + 11.5 Xl + 12.8 X2 + 13.6 X1X2 - 7.4 xi + c. (13) 

Note that the true model comprises all primary terms and one potential term, namely the 

quadratic effect of Xl. Parameters of the true model reflect more importance on the primary 
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terms as these are the terms that the experimenter will eventually fit. We assume c ~ N(O, 1) 

and the illustration will be for one simulation only. Other simulations showed similar first stage 

and combined designs. We assume an equal partition in the two stages so that nl = 8 and 

n2 = 8. The choices of 0<2 and 0<3 in the two stages follow the discussions in Section 3. In the 

first stage, since the true model is unknown, values of 0<2 = 20, i.e. a large weight on the lack of 

fit component, and 0<3 = 0 are appropriate. In the second stage, since bias reduction will now 

be most important, we use 0<2 = 0 and 0<3 = 10. T = 5 is used in both stages for the GD-MGD 

approach and T = 1 in the two-stages of the MGD-MGD procedure. Further justification for 

these choices of the parameters and distribution of sample sizes in both stages are provided in 

Section 8.1. 

In Table 1, we also present the prior and posterior probabilities on the model space for all 

possible models computed from (6) and (7) respectively. The primary terms model has highest 

prior probability as this is the model which the experimenter had certainty on before collecting 

first stage data. But once first stage data is obtained, as expected, the true model (13) 'enjoys' 

the highest posterior probability. The values of the different determinants of the GD criterion 

Table 1: Prior and Posterior model probabilities 

Terms in Mi p(Mi) using (6), Scaled p(Mi) P(MiIYl) p(MiIYl) 

Section 3.1 (GD-MGD) (MGD-MGD) 

1 Xl X2 X12 1 0.69444 0 0.00335 

1 Xl X2 X12 xi (True Model) 0.2 0.13889 0.93466 0.86550 

1 Xl X2 X12 x~ 0.2 0.13889 0 0.00538 

1 Xl X2 X12 Xi x~ 0.2 X 0.2 0.02778 0.06534 0.12577 

in (3) will be used as measures of efficiency of the precision, lack of fit and bias components. 

I I-l/P 
The measure of precision of the primary terms is given by DXPd = X;~i X;ri , a measure 

1/ I' Il /
q of the lack of fit component is Diof = IL*I- q and Dbia.s = A* A* + Iq represents the degree 

of bias, where 

and 

X;ri and X;ot represent the design points for the primary and potential terms expanded to con­

tain regressors in the true model only. Note that the minimum bias design arises when the alias 

matrix, A* = 0 and consequently Dbia.s = IIq11/q = 1, irrespective of the number of potential 

terms in the true model. Further DXpd ' Diof and Dbias have been defined such that the smaller 
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the value obtained, the better the design performs with respect to that criterion. 

Figure 1, shows the D-optimal design for the primary terms model and that of DMJ for 8 and 

16 runs. As expected the D-optimal design spans at the extremes of the design region and have 

large bias components. The DMJ designs have improved coverage over the factor space, better 

bias and lack of fit properties than the D-optimal designs. The designs of run size 8 in Panels 1 

and 3 are included to enable comparison with the first stage design in the two-stage procedures. 

Figure 2, shows the first stage and combined stage designs for both the GD-MGD and MGD­

MGD approaches developed in Sections 3 and 5. The lack of fit properties in the first stage 

for both approaches in Panels 1 and 3 are excellent suggesting that the design will have good 

discriminating properties and diagnose any model inadequacy. For the combined design, both 

approaches result in drastic reductions in the bias effect compared to those of the D-optimal and 

DMJ designs in Panels 3 and 4 of Figure 1 and still have good variance properties of the assumed 

model. The MGD-MGD procedure gives the lowest bias component compared to all the design 

procedures and good coverage over the factor space in both the first and second stage. This 

example suggest that the two-stage approaches developed work well and the resulting design 

has good variance properties, lack of fit and excellent bias properties with respect to potential 

terms. They also have improved coverage over the factor space. 

Using the D-optimal, DMJ, GD-MGD and MGD-MGD designs in Panels 2 and 4 of Figures 1 

and 2 respectively, 16 observations were simulated from the true model (13), assuming as before 

that E: ~ N(O, 1). Since the experimenter will eventually fit the primary terms model only, these 

16 runs corresponding to each design were used to fit the primary model (1). We can then for 

each design obtain the predicted values, fj = X~ri (3pri. 

The predicted values for the range of values -1 :s: Xl = X2 :s: + 1 for the four design scenarios are 

plotted in Figure 3. The actual true model (13) is also included in the Figure. The differences or 

vertical deviations from the true assumed model represents "model bias" values over the range of 

x-values. In case of the D-optimal design, the endpoints results in rather small bias compared to 

the other design scenarios and as expected large bias errors occur near the design center as there 

is no data available there. In case of the DMJ and the two-stage designs moderate errors are 

revealed at the design center and the design perimeter with the most reduction in bias occurring 

with the two-stage procedures. This is so as the two-stage designs have improved coverage over 

the design region. 
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Figure 1: D-optimal and DMJ designs for 8 and 16 runs 
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Figure 2: GD-MGD and MGD-MGD designs for the first and combined stage 
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Figure 3: Predicted values under different design scenarios. 

8 Further evaluation of the two-stage procedures 

The performance of the Bayesian two-stage optimal designs presented in Sections 3 and 5 will 

be evaluated over several more simulations using additional examples, relative to the classical 

one-stage designs and the procedure of Neff (1996) presented in Section 4. Since the second 

stage design of both our procedures and that of Neff (1996) are dependent on first stage data 

through the Box and Meyer posterior probabilities, we need to evaluate their performance via a 

simulation approach. The performance of each design will be measured by its efficiency relative 

to a true assumed model in the simulations. 200 simulations will be performed and each will 

produce first stage data and consequently the posterior probabilities for use as the measure of 

fit in selecting the second stage design. The error e ~ N(O, 1) is assumed in all the simulations. 

The unique stage competitors to the Bayesian two-stage optimal design are the traditional D­

optimal design for the primary terms model and the Bayesian D-optimal design of DMJ. 
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As in Section 7, the values of the different determinants of the GD criterion in (3) will be used 

as measures of efficiency of the precision, lack of fit and bias components of the different designs. 

The performance of the two-stage procedures are then measured by the average of Dxp,,' Diof 

and D bias over the different 200 simulations, i.e. 

200 

"'Do 
~ xprl 

ADO = ..:.i=_l=--__ 
x P" 200 

200 

LDbias 

* i=l 
ADbias = 200 

The one-stage traditional non-Bayesian D-optimal design and one-stage Bayesian D-optimal de­

sign of DMJ are not data dependent and can thus be evaluated over the n design runs by the 

single measures Dxp,,' Diof and Dbias for the true model. 

8.1 Preliminary Evaluations for choice of parameters and sample sizes 

Before making recommendations on the choice of the parameters T, a2, a3 and sample sizes 

in the two-stage procedure, it was necessary to assess the performance of the two-stage designs 

with several different values of these implicit parameters in a simulation approach. In connection 

with sample sizes for each stage, we shall follow the recommendations of Neff and Myers (1998), 

Lin, Myers and Ye (2000) and Ruggoo and Vandebroek (2002) who suggest that efficiency and 

robustness is gained from a two-stage design of size n = 2(p + q + 2) with half of the design 

points allocated to each stage of the design. Based on our various simulation studies, it is also 

recommended to use a value of T = 5 in the GD-MGD approach and a value of T = 1 in the 

MGD-MGD approach in both stages. A good default choice for the weight of the lack of fit com­

ponent in the first stage is a2 = 20. In the second stage, a3 = 10 gives reliable and good results. 

Simulation studies undertaken with larger values of a3 in the second stage do result in some 

further reduction of the bias component but it takes a toll on the precision component which 

increases rapidly. As was pointed out earlier, a combined design approach would necessarily be 

a trade-off between the different components and these values of T, a2, ag are recommended 

for their ability to produce satisfactory designs with respect to a combined criterion involving 

precision, lack of fit and bias properties. 

8.2 Evaluation Phase 

We consider the following cases for our evaluation purposes. The design region that we consider 

is the 5 x 5 x 5 grid on [-1, +1]3. 
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Case I : 

Let the primary model under consideration for the numerical evaluation be defined with p = 5 

terms, x(pri) = {I, Xl, X2, X3, xi}. Suppose that the expected response was possibly misspeci­

fied and the full model comprises an additional q = 3 potential terms, x(pot) = {XIX2, x~, x5}. 
For simulation purposes, we shall assume that the true model consists of the five primary terms 

and one of the three potential terms so that 

y = 42.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xI - 7.4 x§ + €. 

Case II : 

In this case, p = 5 primary terms, x(pri) = {I, Xl, X2, X3, XIX2} and the misspecified full model 

comprises an additional q = 4 potential terms, x(pot) = {xi, XIX3, X~, X§}. First stage data is 

simulated from the true model with the five primary terms and two of the four potential terms 

as below 

y = 42.0 + 11.2 Xl + 14.5 X2 + 10.6 X3 + 12.5 XIX2 + 8.9 xI - 9.9 XIX3 + €. 

Case III : 

Finally the model we consider is with (p + q) = 10 terms comprising 5 primary terms namely, 

x(pri) = {I, Xl, X2, X3, xi} and 5 potential terms, x(pot) = {XIX2, XIX3, X2X3, X~, xD. For 

the simulation purposes, the true model has p = 5 primary and q = 3 potential terms 

y = 40.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xi + 9.8 XlX2 - 7.4 XlX3 - 8.7 x§ + €. 

In all the above cases, primary terms are believed to be important and are assigned larger 

coefficients than potential terms assumed to be unity in the simulated data. The results of 

the evaluations are shown in Tables 2 to 4. As expected, the D-optimal designs have the most 

desirable precision characteristics but the worst bias. The designs of DMJ and the two-stage 

approach of Neff (1996) allow for testing lack of fit and results in some reduction of the bias. 

In case of our two-stage approaches, the small loss in precision in all cases is compensated 

by a drastic reduction in the bias component. As argued in Section 7, the minimum possible 

bias is one, so that our two-stage approaches perform excellently with respect to the bias and 

outperforms the D-optimal designs and those proposed by DMJ and Neff (1996), whilst still 

maintaining very good precision of the primary terms. Both the GD-MGD and MGD-MGD 
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Table 2: Evaluation of the two-stage designs and single stage competitors 

Case I y = 42.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xI - 7.4 x§ + E. 

Two-Stage Approach AD* xpri ADiof ADbias 

(nl = n2 = 10) 

GD-MGD 0.046308 0.046103 1.006845 

MGD-MGD 0.046084 0.046428 1.004525 

Neff (1996) 0.039017 0.039151 1.113426 

One-Stage Approach D* Diot Dbiru; 
(n= 20) 

Xpri 

D-optimal (Primary Terms) 0.034299 2.428570 

DMJ 0.038914 0.049374 1.279301 

Table 3: Evaluation of the two-stage designs and single stage competitors 

Case II Y = 42.0 + 11.2 Xl + 14.5 X2 + 10.6 X3 + 12.5 XIX2 + 8.9 xI 
- 9.9 XIX3 + E. 

Two-Stage Approach AD* xpri ADiof ADbias 

(nl = n2 = 11) 

GD-MGD 0.037508 0.040165 1.009899 

MGD-MGD 0.036782 0.036739 1.008554 

Neff (1996) 0.027304 0.028956 1.222622 

One-Stage Approach D* Diof Dbias 
(n = 22) 

Xpri 

D-optimal (Primary Terms) 0.022887 1.581590 

DMJ 0.02958 0.031216 1.273629 
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Table 4: Evaluation of the two-stage designs and single stage competitors 

Case III y = 40.0 + 11.5 Xl + 12.8 X2 + 10.5 X3 + 14.6 xi + 9.8 XIX2 

- 7.4 XIX3 - 8.7 x~ + c. 

Two-Stage Approach AD' ADiof ADbias 
(nl = n2 = 12) 

xpri 

GD-MGD 0.035264 0.031280 1.005077 

MGD-MGD 0.037010 0.031256 1.006440 

Neff (1996) 0.031655 0.021330 1.089927 

One-Stage Approach D' Diof Dbias 
(n = 24) 

Xpri 

D-optimal (Primary Terms) 0.028421 1.344158 

DMJ 0.031606 0.023785 1.135410 

perform well and can be recommended to generate two-stage designs with reduced dependence 

on model uncertainty. The MGD-MGD procedure gives the most desirable variance and bias 

characteristics for the combined design in Cases I and II. Based on our extensive simulations 

carried out, our preference would be to use the MGD-MGD approach as the procedure intuitively 

uses both prior and posterior information in the design generation. 

9 Conclusion 

The increasing number of experimenters turning to computer programs rather than statistical 

consultants for design assistance, creates an ever increasing need to have D-optimal and similar 

designs to be less dependent on implicit assumptions and more able to produce designs that 

are less sensitive to model misspecification. This suggests that a good design should provide 

protection against the possibility of model inadequacy whilst assuring good estimation of the 

assumed model. The two-stage procedure developed is flexible as it allows to take care of lack of 

fit in the first stage of the experimental process. The second stage then allows proper estimation 

of the proposed model whilst protecting with the greatest sensitivity possible any inadequacies in 

the model. As Steinberg and Hunter (1984), point out," by designing experiments sequentially, 

we can in a sense, approximate this happy situation by "peeking" at the answer and modifying 
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the design accordingly." The two-stage approach suggested within the Bayesian paradigm is 

powerful and can be easily implemented in a wide range of situations. 
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