
MODELING AND SOLVING
THE PERIODIC MAINTENANCE PROBLEM

ALEXANDER GRIGORIEV • lORIS VAN DE KLUNDERT • FRITS C.R. SPIEKSMA

OR 0362

Modeling and Solving the Periodic Maintenance
Problem

Alexander Grigoriev • Joris van de Klundert • Frits C.R. Spieksma

Department of Quantitative Economics, University of Maastricht, P.O.Box 616, 6200 MD,
Maastricht, The Netherlands

Department of Mathematics, University of Maastricht, P. O.Box 616, 6200 MD,
Maastricht, The Netherlands

Department of Applied Economics, Katholieke Universiteit Leuven, Naamsestraat 69, 3000
Leuven, Belgium

a.grigoriev@ke.unimaas.nl • j. vandeklundert@math.unimaas.nl •
frits. spieksma@econ.kuleuven. ac. be

We study the problem of scheduling maintenance services. Given is a set of m machines and
integral cost-coefficients ai and bi for each machine i (1 :s; i :s; m). Time is discretized into
unit-length periods; in each period at most one machine can be serviced at a given service
cost bi . The operating cost of machine i in a period equals ai times the number of periods
since the last servicing of that machine i. The problem is to find a cyclic maintenance
schedule of a given length T that minimizes total service and operating costs. We call this
problem the Periodic Maintenance Problem or PMP.

In this work we are interested in computing optimal solutions to instances of PMP. We
investigate several models among which integer linear programming formulations for PMP.
Two formulations, referred to as a flow formulation and a set-partitioning formulation, appear
to have good linear programming relaxations. Using these formulations we solve relatively
large instances, thereby employing branch and price techniques. 'vVe exploit the problem
structure by showing how the column generation subproblem can be solved in polynomial
time. Our work leads to the first exact solutions for larger sized problem instances, and we
present extensive computational results.

1. Introduction

The planning and scheduling of preventive maintenance activities is often crucial for the

cost-effectiveness of many large industrial organizations. For instance, manufacturing or

ganizations that have highly sophisticated and complex machinery have long recognized

that efforts spent on preventive maintenance can contribute significantly towards an efficient

running of the organization. Also in service organizations (like medical facilities or gov

ernmental institutions), preventive maintenance is regarded as an important activity that

1

can help to reach the organization's performance goals. However, the costs associated with

preventive maintenance can be significant: there are not only costs involved with the mainte

nance itself, also the costs of production losses during the maintenance have to be taken into

account. Computerized Maintenance Management Systems (CMMS's) are becoming increas

ingly popular as a tool to increase machine-availability and more generally, to improve con

trol over the maintenance activities. Software vendors (see for instance http://www.plant

maintenance.com/index.shtml) offer packages that usually includes a scheduling module that

suggests (among other things) when to service which unit (or machine). This decision is seen

as a re-occurring event, i.e., it is expected that a schedule is of a cyclic nature, and hence

will be executed repeatedly.

There is a huge amount of literature available on preventive maintenance. However,

approaches in literature usually are of a stochastic nature where a probability distribution

is used to describe the failure properties of a machine (see for instance Gertsbakh and

Gertsbakh (2000)). In this work we take a different, completely deterministic, approach (see

Wagner et al. (1964) for an early reference). More specifically, we deal with the problem of

cyclically scheduling maintenance activities under a certain given cost-structure assuming a

fixed cycle length. A precise description is given in the next subsection.

1.1 Problem Description

We consider the following problem. There are a number of machines Nli , i E {I, ... , m},

and there is a time-interval T = {I, 2, ... , T} with T 2: m. During each period of the time

interval T, at most one machine can be serviced. When machine Nli is serviced, a given,

nonnegative, servicing cost of bi is incurred, regardless of the period. A machine Nli that is

not serviced during some period is in operation and incurs an operation cost of ji(t) x ai,

where ai is a given positive integer, and where ji(t) is the number of periods elapsed since

last servicing machine Nli , i E {I, ... , m}. Observe that we assume here that the operating

costs of a machine increase linearly with the number of periods elapsed since last servicing

that machine. The problem is now to determine a maintenance schedule, i.e., to decide for

each period t E T which machine to service (if any), such that total servicing costs and

operating costs are minimized.

There are good reasons to view such problems in a cyclic context. In such a context,

it is assumed that the maintenance schedule will be executed repeatedly. Thus, in period

k x T + t, (k E N, t E T), the same machine that was serviced in period t will be serviced

2

again. In addition, the cost will be considered in this infinite horizon context. Consequently,

the cost of a maintenance schedule is calculated by summing over all t E T the total of

the servicing costs incurred in period t and the operating costs incurred by the machines

which are not serviced in period t. These operating costs are defined in a cyclic context, i.e.,

the last maintenance service may lie in a previous execution of the maintenance schedule.

We will refer to this problem as the Periodic Maintenance Problem (PMP). Notice that in

an optimal solution to P1VIP, each machine is served at least once. Finally, we notice here

explicitly that in PMP T is considered to be an input parameter.

For ease of understanding, we now present a brief example.

Example

Let T = 7, m = 3 and the set of machines is {I, 2, 3}. Further, let bi = 1, i = 1,2,3 and

let al = a2 = 10 and a3 = 1. Consider the solution (1,2,1,2,1,2,3). This sequence of

maintenance services is to be read as follows: in the first period, we service machine 1, in

the second period machine 2, et cetera, until we service in the seventh period machine 3.

Then, this sequence of maintenance services is repeated, i.e., in the 8-th period we service

machine 1 again, followed by machine 2 in period 9, and so on. The cost of this solution

can be computed as follows. Since there is maintenance in each of the seven periods of T,

and since all service costs bi are equal to one, the total servicing costs equal 7. For the

first machine the operating costs are incurred in periods 2, 4, 6 and 7. In periods 2, 4 and

6, these costs equal 10, and in period 7 these costs amount to 20. Thus, machine 1 has a

total operating cost of 50. Similarly, it can be checked that machine 2 has operating costs

of 20+0+ 10+0+ 1 0+0+ 1 0=50, and machine 3 has operating costs of 1 +2+3+4 +5+6=21.

Thus the total cost for this solution is 128. The reader can verify that the solution presented

above is in fact optimal.

Apart from the application sketched in the introduction, PMP and variants of PMP have

real-life applications with different origins such as the scheduling of maintenance services,

multi-item replenishment of stock, and broadcasting of data messages over a communication

channel (see the references in Section 2). In particular, the problem where the cycle length

is not given, but instead a decision variable, has received quite some attention. In the

remainder, we refer to the variant of PMP where T is considered to be a decision variable,

as the Free Periodic Maintenance Problem (FPMP); we use T* to denote the optimal cycle

3

length in FPMP.

Our motivation for investigating PMP, rather than FPMP, is twofold. First of all, PMP

is a practical problem. Especially in the context of constructing maintenance schedules, it

is very natural to fix the cycle length to some constant such as 365, 52, 30, 7, 24 or 60.

Indeed, an organization that implements a cyclic maintenance schedule will, for reasons of

simplicity, ensure that the length of the cyclic schedule coincides with the size of a natural

time- interval such as the number of days per year, or the number of weeks per year, or

the number of days per week. Further, in many practical settings, it is desirable that the

cycle length T is not too large. In fact, even for instances of modest size, for example

m = 2, al = 1, a2 = a, b1 = b2 = 0, the optimal cycle length T* can be fairly large: for this

case, T* 2:: l ffaJ (see Anily et al. (1998)). Thus, one is interested in computing a cyclic

schedule with a cycle length that is bounded from above by some reasonably small (given)

integer B. In such a case, one can find the optimal T :::; B by solving the PMP for each

possible value of T not exceeding B. In both cases, the task is to find a solution of some

specific cycle length that may differ from the optimal length T*. As far as we are aware, the

PlVIP has not been studied before.

A second motivation of our work is that we are interested in solving instances of the

problem to optimality. As we shall see in Section 2, apart from Anily et al. (1998) which

deals with a special case of FPlVIP, most research has focused on complexity results, and

approximation for FPlVIP. From this point of view, we further explore the area of solving

instances to optimality by solving them for a fixed, but not necessarily optimal, T. In

addition, our results provide insight in the effect of varying T on the actual schedule and its

solution, i.e., we investigate the sensitivity of the solution with respect to the cycle length.

This paper is organized as follows. In the next section we present a brief literature review.

Section 3 discusses several models, and how they might be of use in solving the problem to

optimality. Section 4 presents a branch and price algorithm that solves one of the models

of Section 3 to optimality. In Section 5 we present computational results on instances with

three to ten machines and with a number of periods ranging from ten till one hundred.

Section 6 contains the conclusions.

4

2. Literature Review

An area where preventive maintenance scheduling has been applied is in the operational

planning of power generating plants. We refer to Kralj and Petrovic (1988) for an overview

of optimization techniques (including integer programming) in this field, and to Charest

and Ferland (1993) for applying local search techniques to solve a model related to the

set-partitioning model of Section 3.

Anily et al. (1998) consider the special case of FPMP, where bi = 0 for all i E lvI, and they

describe an application in the multi-item replenishment of stock. They prove that there exists

an optimal schedule that is cyclic. Further, they describe a network-flow based algorithm

that has exponential complexity to solve the problem exactly. This approach allows them

to solve instances with up to four machines exactly. In addition, the authors propose two

lower bounds and a greedy heuristic, which performs very well. Notice however that in their

problem setting, the cycle length is a decision variable, and therefore the solutions given by

the heuristic may use a different cycle length then the cycle length of an optimal solution.

The case with three machine and zero servicing costs is investigated in Anily et al. (1999).

In this work the authors introduce an algorithm solving certain instances of the problem to

optimality and for the other instances they present a heuristic algorithm with performance

ratio of l.0333.

Bar Noy et al. (2002) and Kenyon et al. (2000) consider a generalized version of the

FPMP where in each period at most lvI machines can be serviced. Their interest in the

problem is motivated by applications that arise in broadcast scheduling. Bar-Noy et al.

(2002) prove that FPMP is NP-hard. Further, they investigate lower bounds and propose a

~-approximation algorithm. Kenyon et al. (2000) present a polynomial-time approximation

scheme for FPMP with bounded service costs. The version of the problem with non-identical

service times is studied in Kenyon et al. (2001). Recently, Schabanel (2000) shows that the

version of FPMP in which preemptions are allowed, is also NP-hard.

Brakerski et al. (2001) consider the problem of encoding a solution in such a way that

the next machine to be serviced can always be found quickly, given that all service activities

performed up till now are known. Brauner et al. (2001) address related scheduling problems

that arise from compact encodings of solutions.

Another area that is related to the PMP is the so-called parallel machine replacement

problem (see Jones et al. (1991) and McClurg and Chand (2002)). This problem deals with

5

a set of machines whose operational costs increase with age, while in each period there

is the possibility to replace a machine at the expense of purchasing costs. The authors

present a dynamic programming procedure to balance operational costs and purchasing

costs. However, in contrast to the PMP, the parallel machine replacement problem has a

fixed horizon, and is motivated from an economic perspective, incorporating salvage costs,

and the discounting of costs.

We now briefly examine the PMP from a complexity viewpoint. First of all, notice that

the input to PMP consists of 2m + 1 numbers (the ai, bi and T). Thus, an algorithm which

has the parameter T present in its running-time is not a polynomial-time algorithm for PMP.

In fact, all models we present in this paper have (at least) a pseudo-polynomial number of

variables. Second, the reduction in Bar-Noy et al. (2002) shows that FPMP is NP-hard even

when T* is known. This implies indeed that PMP is NP-hard as well, since it may be the

case that T = T*.

3. Modeling PMP

In this section we describe three formulations for PMP. Subsection 3.1 gives a quadratic pro

gramming formulation, Subsection 3.2 describes an integer programming based formulation,

and Subsection 3.3 presents a set-partioning formulation.

3.1 A quadratic programming formulation

Here we introduce a compact and natural, but non-convex quadratic program modeling PMP

with operational costs only, i.e., we first assume bi = 0 for all i E !vI. The model uses a

variable Xi,t E Z+, i E !vI, t E T, which represents the number of periods between the

current period t E T and the last period before t when machine i has been serviced. Clearly,

for any machine i, and any period t, the value of variable Xi,t is obtained by either adding

1 to the value of Xi,t-l, or by setting it to O. Setting the value of Xi,t to 0 corresponds to

servicing machine i in period t. PMP can now be formulated as follows:

min L L aiXi,t

iEM tET

Xi,t+l(Xi,Hl - Xi,t - 1) = 0, i E Nf, t E T \ T;

Xi,l(Xi,l - Xi,T - 1) = 0, i E !vI;

6

(1)

(2)

(3)

Xi,t + Xk,t 2:: 1, i =I k, i E lvI, k E Ai, t E T;

Xi,t E Z+, i E lvI, t E T.

(4)

(5)

Equations (2) and (3) ensure the required behavior of the Xi,t variables. Equations (4)

imply that no two machines can be served simultaneously. Notice that if for some machine i

one of the associated variables is integral, (2) and (3) together imply that all other variables

corresponding to machine i are integral as well.

Since most of the available software for solving quadratic programming problems only

solve convex quadratic programs, we have not been able so solve problem instances through

the formulation given above. Instead, we now linearize model (1)-(5) and take into account

the servicing costs bi :

min L L (aiXi,t + biYi,t)
iEM tET

Xi,t+l 2:: Xi,t + 1 - NYi,t+l, i E lvI, t E T \ T;

Xi,l 2:: Xi,T + 1 - NYi,l, i E Ai;

L Yi,t :::; 1, t E T;
iEM

Xi,t E Z+, i E lvI, t E T;

Yi,t E {O, I}, i E lvI, t E T,

where N is a sufficiently big number.

(6)

(7)

(8)

(9)

(10)

(ll)

The binary variable Yi,t simply takes on value 1 if we service the i-th machine in period

t and 0 otherwise. The objective (6) minimizes the total costs that now consist of operating

costs and servicing costs. The equations (7) and (8) enforce the variables Xi,t to behave in

the same way as in the previous model. According to (9) we cannot service more than one

machine in a single period. Restrictions (10) and (ll) are the integrality constraints. We

refer to the formulation (6)-(1l) as QF.

Example

We illustrate model (6)-(1l) with the following example. Let T = 7, m = 3 and the set of

machines is {I, 2, 3}. A feasible solution of the formulation is depicted in Table l.

7

Table 1: A feasible solution

Period (t E T): 1 2 3 4 5 6 7
Sequence of maintenance services (machines): 1 3 1 2 1 3 2
Yl,t (service indicator): 1 0 1 0 1 0 0
Y2,t (service indicator): 0 0 0 1 0 0 1
Y3,t (service indicator): 0 1 0 0 0 1 0

Xl,t (state): 0 1 0 1 0 1 2
X2,t (state): 1 2 3 0 1 2 0
X3,t (state): 2 0 1 2 3 0 1

Notice that formulation (6)-(11) involves a so-called big N parameter which renders the

associated linear relaxation to be rather poor. For instance, by setting Yi,t = 11m and

Xi,t = 0, i E lVi, t E T, we satisfy all constraints of the linear relaxation. The value of the

objective function of this solution to the linear relaxation is equal to T 'LiEM bdm which

is an arbitrary bad lower bound for the optimum. This explains the poor computational

performance we obtained using the standard ILP-packages dealing with formulation (6)

(11), see Section 5.3.

Another weak point of this formulation is that we use the fact that the objective is to

minimize the total operating and servicing costs. This means that not every solution that

satisfies (7)-(11) is a meaningful solution to PMP. Thus, to solve the problem under maxi

mization or mixed min-max criteria we cannot even use the linear model described above.

3.2 An integer programming formulation

We now present a formulation that contains O(m x T2) binary variables. We introduce a

variable xt,t, i E lvI, s, t E T, whose value equals 1 if machine i is serviced in period s, and

serviced next (cyclically) in period t + 1, and 0 otherwise. Notice that when s is the last

service in T, we have that t :::; s, because of the cyclicity of the maintenance schedule. Using

costs c(s, t) defined as follows:

C(8, L) ~ {
(t-s)(t-s+1)

2

(T-s+t)(T-s+t+1)
2

8

if s :::; t

if s > t,

the problem can be modeled as follows:

subject to

m}n L L L (aiC(S, t)xt,t + biXt,t)
iEM sETtET

L L x:,t :::; 1, t E T;
iEM sET

'"""' s,t '"""' t+1,s
~Xi = ~ Xi , i E NI, t E T \ T;
sET sET

'"""' s,T _ '"""' 1,s
~Xi - ~Xi ,
sET sET

L Lxt,t 2: 1,
sET tET

i E NI;

i E NI;

x:,t E {O, 1}, i E NI,s E T,t E T.

(12)

(13)

(14)

(15)

(16)

(17)

Inequalities (13) express that in each period at most one machine can be serviced, equalities

(14)-(15) imply that there is a next period in which a machine will be serviced, inequalities

(16) say that each machine is serviced at least once, and finally (17) are the integrality

constraints.

Again, the LP relaxation of this formulation is rather poor. For example, setting xi,t+1 =

x~,t+1 = ... = X;;;+l = ! for all t E T\ T, X;,l = ~ for all i E NI, and all other variables equal

to 0, yields a feasible solution with zero operating costs. Notice how this solution resembles

the example demonstrating the poor behavior of the LP relaxation of (6)-(11). The LP

relaxation is strengthened considerably when we replace (16) by the following constraints

(which are clearly valid for the ILP formulation above):

L Lx:,t + L Lx:,t + L Lx:,t = 1, for all i E NI, 1 < u < T; (18)
s::;ut<s t?u s>t

LLx:,t + L x:,T = 1, for all i E A1; (19)
s>l t<s s::;T

L Lx:,t + Lx;,t = 1, for all i E M. (20)
t<T s>t t?l

Constraints (18)-(20) state that for every machine and for every period u, the sum of the

variables corresponding to pairs (s, t) that contain period It, is one. Notice that the solution

given above violates these constraints. One can view (18)-(20) as a (polynomially sized)

set of valid inequalities for the formulation consisting of (13)-(17); adding these inequalities

9

yields a stengthened formulation. Summarizing, we refer to the formulation consisting of

constraints (12)-(15), (17)-(20) as the flow formulation (F F). In Section 5 we provide com

putational results showing that F F yields promising computational results when solving it

using state of the art standard software CPLEX 7.5.

3.3 A set-partitioning formulation

Yet another formulation, using an exponential number of variables, concludes this modeling

section.

Let 5 be the set of all nonempty subsets of T. Clearly, every s E 5 is a possible set of

periods for servicing a machine i E NI. Let us call s E 5 a service strategy or simply strategy.

For every pair consisting of a machine i E NI and a strategy s E 5, we can compute the cost

Ci,t incurred when servicing machine i in the periods contained in s as follows: let Ps be the

cardinality of s and let qj, j E {I, 2, ... , Ps}, be the distances between neighboring services

in s. For example, if T = 7 and s = {2, 4, 6} then Ps = 3 and q1 = 4 - 2 = 2, q2 = 6 - 4 = 2,

q3 = 7 - 6 + 2 = 3. The total service and operating cost associated with machine i E NI and

strategy s E 5 is
Ps

Ci,s = bips + ai z=(qj - 1)qj/2.
j=l

So, in the example above the total costs of servicing machine i using strategy s is Ci,s

3bi + ai + ai + 3ai = 3bi + 5ai'

Now we introduce a variable Xi,s which has value 1 if machine i E NI is serviced in the

periods contained in strategy s E 5, and 0 otherwise. This allows for the following Set

Partitioning formulation (5 P):

subject to

z= Xi,s = 1, i E NI;
sES

z= z= Xi,s:::; 1, t E T;
iElvI sES:tEs

Xi,s E {O, I}, i E NI, s E 5,

(21)

(22)

(23)

(24)

Constraints (22) imply that one service strategy has to be selected for each machine, and

constraints (23) ensure that no two strategies make use of a same period. Constraints (24)

10

are the integrality constraints. Despite the exponential size of this integer linear program

it has two important properties. First, its linear relaxation (obtained by replacing (24) by

Xi,s ?: 0 for all i, s) is solvable in time polynomial in m and T (see Section 4). Second,

computational experiments show that the linear relaxation of this integer problem is quite

strong. In the next section we show how to solve S P using a branch and price algorithm.

We conclude this section by showing that the LP relaxation of SP is stronger than the

LP relaxation of F F.

Theorem 1 Let v(FFLP), v(SPLP) be optimal solutions of the linear relaxations of FF

and SP respectively. We have v(FFLP) :s; v(SPLP).

Proof. Let x* = {Xi,s: i E NI; s E S} be any solution to the LP relaxation of SP.

Construct a solution y* = {y~'v: i E NI; u, vET} to the LP-relaxation of F F as follows.

Consider each Xi,s. If s contains a single element u, we set y~,U-l = Xi,s. Else, for each (u, v)

with u, v E s and no t E s such that'Ll :s; t :s; v, we set y~,V-l = Xi,s. In addition, for every

Xi,s, and ('Ll, v) where u is the element in s with highest index, and v is the element in s with

smallest index, we set y~,v-l = Xi,s.

Now let us first show that this solution is feasible. The solution y* satisfies the flow

conservation constraints (14)-(15) from its construction. Similarly, constraint (23) and the

feasibility of x* implies that (13) is satisfied. Further, it follows from constraint (22) and

the construction of y* that (18)-(20) is satisfied. We leave it to the reader to verify that the

objective function values of X* and y* are equal.

Thus, any solution of the LP relaxation of SP can be converted to a corresponding

solution of the LP relaxation of F F with the same value. This completes the proof. 0

4. A branch and price algorithm for PMP

In this section we show how to solve SP using a branch and price algorithm. In Subsection 4.1

we show how column generation can be used to solve the LP relaxation of (21)-(24) without

enumerating all variables Xi,s. Next, in subsection 4.2 we propose a branching scheme that

keeps the structure of the problem intact. We refer to Barnhart et al. (1998) for a general

description of branch and price algorithms.

11

4.1 Column generation algorithm

Its linear relaxation (called SPLP) is obtained by replacing constraints (24) by Xi,s 2: 0 for

all i, s. The corresponding dual problem (called S P D) is

subject to

~~x (2: lLi + 2: Vt)
, iEM tET

Ui + L Vt :::; Ci,s i E lV[, s E S;
tEs

Vt :::; 0 t E T.

(25)

(26)

(27)

The column generation procedure starts with finding a feasible solution for S P LP. To

do that we can use, for example, a trivial integer solution where in the first T periods we

service all machines one by one, and for all remaining periods we service only the machine

with the largest coefficient ai. So, in a initialization step, we generate the set of pairs

N = {(i, Si) : i E lVI} where Si is the set of periods when we service machine i E lVI. Let

us restrict the column set of S P LP to N and let us call the problems restricted to N as

SP LP(N) and SP D(N) respectively.

Next, we find an optimal solution for SP LP(N) and SP D(N) using an LP-solver. Thus,

we obtain a primal-dual pair of solutions (x(N), (u(N),v(N)). We can extend x(N) to a

solution of SP LP by setting the remaining variables to zero. Establishing whether or not

this extended solution is optimal for S P LP can be done by analyzing the corresponding

dual solution (u(N), v(N)). Optimality of x(N) for SPLP depends on the feasibility of

(u(N),v(N)) in SPD. To verify whether all dual constraints are satisfied we have to solve

the following pricing problem:

Price: :3 i E lVI, S E S such that Ui + L Vt > Cis?

tEs

If the dual solution (u(N),v(N)) satisfies all constraints of SPD, then x(N) extended with

zeros is an optimal solution of SP LP. If not, then we have found - by solving the pricing

problem - a machine i and a strategy S whose reduced costs (the left-hand side of the

inequality above minus Cis) are negative. Thus bringing this variable into the basis will

contribute to the objective function's value. Then we update N by adding this variable to

it, and we iterate. The efficiency of this procedure depends to a large extent on the speed

with which the pricing problem can be solved. vVe have the following theorem:

12

Theorem 2 The pricing problem can be solved in O(mT3) time.

Proof. We prove that for each i we need to solve an all-pairs shortest path problem on

a directed graph with O(T) nodes. Since this problem can be solved in O(T3) using the

Floyd-Warshall algorithm (see Ahuja et al. (1993)), the result follows.

Thus, let us now consider a specific machinei, and let us build the following graph

G = (V, A) with V = T and A = {(p, q) : p:S; q, p, q E V}.

For each arc (p, q) E A we define the following costs w:

(q - p)(q - p - 1)
w(p, q) = bi + ai 2 - Vq if p:/ q and

T(T - 1)
w(p,p) = bi + ai 2 - vp.

This completes the construction of G. Notice that all costs ware nonnegative. Let us now

establish a correspondence between a path P in G and a service strategy s for machinei.

Indeed, consider any path P = {tl' t2, ... , td in G. We have the following

Claim: If there exists a path in G from tl to tk with costs less than Q == Ui + Vtl - bi +
ai 'i:.:;!t!I;/ (t - tk) then the current solution is not optimal.

Argument: Notice that Q depends only on hand t k . Consider now the cost of a path

{tl, t2, t3 , ... , tk-l, td in V. Summing the appropriate coefficients w gives:

We now derive:

k-l tl+l-l k
(k - l)bi + ai L L (t - tl) - L Vtt·

l=l t=tt+l l=2

k-l tl+l-l k
(k - l)bi + ai L L (t - tl) - L Vtl < Q <===?

l=l t=tl+l l=2
k tl+l-l k

kbi + ai L 2:= (t - tl) - L Vtl < lLi <===?

Cis - L Vt < Ui'
tEs

It follows that given the first and the last service period, computing a shortest path in

G between the corresponding vertices determines whether there is a strategy to be added to

the master problem. Hence, to solve the pricing problem for machine i we need to compute

shortest paths between every pair of vertices in G. As mentioned above this can be done

using Floyd-Warshall's algorithm in O(T3) operations (see Ahuja et al. (1993)) D

13

Corollary 4.1 The problem S P LP can be solved in time polynomial in m and T.

Proof. The proof of the corollary straightforwardly follows from Theorem 2 and the well

known theorem by Grotschel et al. (1981), stating

There exists a polynomial time algorithm for the separation problem for a family of poly

hedra, if and only if there exists a polynomial time algorithm for the optimization problem

for that family.

Since the pricing problem is nothing else but the separation problem for SP D we have

that optimization problems SPD and SPLP are solvable in time polynomial in m and T.

o
In practice we did not use the approach by Grotschel et al. (1981). Instead of this we

observe that the number of rows in S P (S P LP) is relatively small and we can try to apply

a column generation algorithm to solve the S P LP.

4.2 A Branching Scheme

To solve the original integer programming formulation S P let us introduce the following

branching strategy. Notice that a traditional branching strategy that consists of setting a

variable to 0 versus setting a variable to 1, would not preserve the efficient solvability of

the pricing problem (see Barnhart et al. (1998)). Given a linear programming solution Xi,s,

define S1Lmi(t) = LSES:tES Xi,s for i E NI, t E T.

Lemma 4.2 If the Solldion is fractional, i. e., if there exists a machine io E NI and a strategy

s E S with 0 < Xio,s < 1, then there exists atE T sllch that 0 < 31Lmio (t) < 1.

Proof. Consider machine io E lVI. Let S(io) be the set of strategies 3 for which 0 < Xio,s < 1.

vVe say that strategy Sl contains strategy 32 if, for each period t E 32, we have that t E 31·

Let 30 E S(io) be a strategy that does not contain any other strategy from S(io) (notice that

such a strategy always exists). We argue by contradiction.

Assume that for all t E T the numbers 31.Lmio (t) are equal to either 0 or 1. This implies

that S1Lmio(t) = 1 for all periods t E 30. Since, by (23), LSESXio,s = 1, and since for each

t E So we have that 31Lmio(t) = LSES:tEs Xio,s = 1, it follows that Xio,s = 0 for each strategy

3 E S that uses a period t not used by strategy 30. Due to the fact that 30 does not contain

any strategy from S(io), it follows that for each 3 E S(io) \ 30, there exists a period t E 3

such that t tj. 30. Consequently, Xio,s = 0 for all 3 E S(io) \ 30, and hence Xio,s = 1, which is

a contradiction. 0

14

Let us now describe how this branching scheme preserves the efficient computation of

service strategies. Let the branching rule be simply to decide whether period t E T is used

in a service strategy for machine io E IVI (i.e., sumio(t) = 1, we refer to this as branch 1)

or not (i.e., sumio(t) = 0, we refer to this as branch 2). Considering branch 1, this has the

following consequences for the pricing problem: each arc passing t, i.e., going from some

tl < t to some t2 > t is deleted from the graph and from now on for every child node of

the branching tree machine io is serviced at period t. Moreover, in the graphs associated to

the other machines, we delete all arcs entering node t. So, for these machines, no path will

visit node t. Considering branch 2 is even easier: we simply delete from the graph all arcs

entering t. Obviously, an optimal solution is not excluded by this branching rule and, from

lemma 4.2, we conclude that this rule excludes the current fractional solution.

5. Computational Results

In this section we present computational results for all LP models presented in the previous

sections.

5.1 Technical Details

All experimental results were obtained on an AMD Athlon computer with 2400 XP+/1GB

RAM running Debian GNU /Linux 3.0 with kernel 2.4.18. All calculations were limited

by 100000 branching nodes and by 10000 seconds CPU-time. To compute the optimal

solutions for QP and F F we use the package ILOG OPL-Studio 3.5 using the CPLEX MIP

Solver. In the calculations results we mean by OPT, QP- and FF-nodes, QP- and FF

time respectively: the average maintenance and operating cost of an optimal solution (the

optimal objective value divided by T), the number of nodes in the branching tree needed by

OPL-Studio for QP and FF (expressed by the parameter "MIP-nodes") and the CPU-time

in seconds for Q P and F F (expressed by the parameter" Solving time").

The computational results for SPare obtained using the aforementioned column gen

eration approach. To compute optimal solutions for the linear programs SP LP and SP D

we use the standard package ILOG CPLEX 7.5. The programs were coded in C++. In the

following sections we denote by SP-nodes the number of nodes in the branching tree created

by the algorithm described in Section 4 and we denote by SP-time the CPU-time in seconds

rounded up.

15

5.2 On the column generation

Here we mention two important details concerning the implementation of the branch and

price algorithm described in Section 4. Let us first comment on the choice of an initial

feasible solution.

In the initialization phase of the algorithm we are free to choose any set of pairs (columns

of LP) N = {(i, Si) : i E .M} We have tested two sets of initial LP columns in our

implementation. The first one contains the pairs (i, Si) such that Si = {i} for any i =1= 1 and

for i = 1 we have Sl = {1, m + 1, m + 2, ... ,T}. This set corresponds to the trivial feasible

solution of P IvI P where we first service all the machines in order 1 up to m and then from time

interval m+ 1 onwards, we service machine 1 only. We shall refer to this set of initial columns

as the simple solution. Another set of initial columns is formed by the greedy solution, see

Anily et al. (1998). Recall that the greedy solution can be obtained by the following simple

rule: at each time interval t we service the machine which would have the maximal aggregated

operating cost in time interval t + 1. In our experiments we have noticed that the choice of

an initial solution can have a large impact on the resulting computation time. For example,

to solve the LP-relaxation of SP in case m = 4, T = 33, a = (10,10,10,1), b = (0,0,0,0),

the algorithm starting with the simple solution generates 312 columns and stops within 7

seconds, whereas the algorithm starting with the greedy solution generates 4383 columns and

stops only after 488 seconds. In another instance, m = 3, T = 21, a = (50,2,1), b = (0,0,0),

the algorithm starting with the simple solution generates 41 nodes in the branching tree and

stops in 13 seconds, while the algorithm starting with greedy solution provides the integer

solution in the first node of the branching tree and stops in 1 second. We conclude that the

choice of an initial column set has a significant impact on the running times achieved. In

the tables describing the experiments, we report the calculation results for SP with the best

running time from the two starting solutions. To specify the initial set of columns we use

the following notation: by default we use the greedy solution and we mark solutions provided

by the algorithm starting with the simple sol1dion by a superscript "s".

Secondly, in a column generation approach there is freedom concerning what variables

with negative reduced costs (as found by the solution of the pricing problem) to add to the

set N of columns active in the current LP. For instance, one could add all variables with

negative reduced costs. For reasons of convenience we have opted in our implementation to

consider two strategies. In the first strategy, we add one column at each iteration, namely

16

the one that has the smallest reduced costs (this corresponds to the most violated constraint

in the dual problem). In the second strategy, we add at most m columns per iteration:

for each machine we find a column with the smallest reduced costs. In the computational

results we use by default the first version of the algorithm and we mark results obtained by

the second version by superscript "m". Again, we report the calculation results with the

best running time.

5.3 Different formulations

First of all, as promised in Section 3, we illustrate the difference between formulation QP,

flow formulation F F and the set partitioning formulation SP. Table 2 presents computa

tional results on the 3 machine instances introduced in Anily et al. (1998), where we have

chosen T to be the optimal schedule length as computed in Anily et al. (1998). Recall that,

in order to be able to compare results with a different T, we express the optimum value

(0 PT) as the average operating cost per period.

We conclude from Table 2 that as the schedule length increases, the number of nodes in

QP, as well as the computation times, increase enormously. However, each model is able to

deal with the smaller sized instances (T ::; 5). We also observe that the computation times

for the other two formulations are much better than QP. Therefore we concentrate in the

remainder on the formulations S P and F F only.

5.4 The Quality of the Lower Bound

Now, we focus on the general performance of the column generation algorithm for SP LP

and the branch and price algorithm for SP versus the LP based branch and bound algorithm

that the Cplex MIP solver uses to solve F F. Again, we consider instances from Anily et

al. (1998) on four machines, with servicing costs bi = 0, and we report the solution value in

terms of the average operating cost per period. We have chosen T to be the optimal schedule

length as computed by Anily et al. (1998).

The computational results depicted in Table 3 show that the lower bounds provided by

the two linear programming relaxations are very good; in particular the LP-relaxation of

formulation SP misses the integral optimum 5 times and the LP-relaxation of formulation

F F misses the integral optimum 8 times (out of 30). Observe also that these values are

obtained in a very short time, usually within a second.

17

Table 2: Formulations QP, FF, and SP

T a OPT QP- QP-time FF- F F-time SP- SP-time
nodes sec. nodes sec. nodes sec.

3 1,1,1 3.0 14 1 1 1 1 1
3 2,1,1 4.0 9 1 1 1 1 1
3 2,2,1 5.0 13 1 1 1 1 1
4 5,1,1 5.5 20 1 1 1 1 1
4 5,2,1 7.0 38 1 1 1 1 1
5 5,5,1 10.0 70 1 1 1 1 1
4 10,1,1 8.0 29 1 1 1 1 1
4 10,2,1 9.5 37 1 1 1 1 1
6 10,5,1 13.3333 156 1 3 1 9 1
16 10,10,1 17.25 197040 114 1 1 1 1
8 30,1,1 14.5 194 1 1 1 1 1
17 30,2,1 17.2941 142837 89 1 1 33 2
8 30,5,1 22.25 437 1 2 1 1 1
9 30,10,1 28.4444 1169 1 33 1 15 1
13 30,30,1 42.9231 17099 9 1 1 1 1
10 50,1,1 19.0 351 1 1 1 1 1
21 50,2,1 22.6667 766220 604 1 1 1 1
10 50,5,1 29.5 1397 2 1 1 1 1
10 50,10,1 36.5 1377 1 1 1 1 1
15 50,30,1 55.0 44664 27 17 1 27 1
17 50,50,1 66.8235 184068 114 1 1 1 1

18

Table 3: Instances with four machines

T a OPT FF- FF-time v(FFLP) SP- SP-time v(SP LP)
nodes sec. nodes sec.

4 1,1,1,1 6.0 1 1 6.0 1 1 6.0
9 2,1,1,1 7.3333 1 1 7.3333 1 1 7.3333
10 2,2,1,1 8.8 1 1 8.8 1 1 8.8
15 2,2,2,1 10.4 1 1 10.4 1 1 10.4
6 5,1,1,1 10.0 1 1 10.0 1 1 10.0
16 5,2,1,1 11.75 1 1 11.75 1 1 11.75
22 5,2,2,1 13.7273 99 6 13.5 1 3 13.7273
6 5,5,1,1 15.0 1 1 15.0 1 1 15.0
6 5,5,2,1 17.5 1 1 17.5 1 1 17.5

24 5,5,5,1 22.25 1 2 22.25 158 38 22.258

6 10,1,1,1 12.5 1 1 12.5 1 1 12.5
6 10,2,1,1 15.0 1 1 15.0 1 1 15.0
6 10,2,2,1 17.5 1 1 17.5 1 1 17.5
8 10,5,1,1 19.5 1 1 19.5 1 1 19.5
6 10,5,2,1 22.5 1 1 22.5 1 1 22.5
8 10,5,5,1 27.875 1 1 27.25 19 1 27.25
8 10,10,1,1 24.5 1 1 24.5 1 1 24.5
6 10,10,2,1 27.5 1 1 27.5 1 1 27.5
9 10,10,5,1 34.0 10 1 32.8889 15 1 32.8889

33 10,10,10,1 40.4545 3 9 40.4545 178 178 40.45458

8 30,1,1,1 21.75 1 1 21.75 1 1 21.75
8 30,5,1,1 29.5 1 1 29.5 1 1 29.5
10 30,5,5,1 40.5 3 1 39.5 17 1 39.5
8 30,10,1,1 37.0 1 1 37.0 1 1 37.0
12 30,10,5,1 49.6667 88 2 48.0 23 1 48.0
30 30,10,10,1 58.3333 123 14 57.9231 198m 198m 58.33338m

26 30,30,1,1 55.8462 1 3 55.8462 1 3 55.8462
24 30,30,5,1 70.5 36 5 70.4231 198 48 70.5
14 30,30,10,1 81.5 20 1 80.4231 23 1 80.7857
19 30,30,30,1 108.4737 1 1 108.4737 1 1 108.4737

19

Notice further that even in case of a positive integrality gap OPL-Studio can provide an

integral solution for F F analyzing only one node of the searching tree. The reason for this

is that the OPL-Studio MIP-solver is based on a branch and cut algorithm which creates

a number of cuts (actually there are 9 types of different cuts) that can lead to an integer

solution right in the root-node of the searching tree (see Table 3).

Finally, we point out that for the instance with m = 4, a = (30,10,10,1), b = (0,0,0,0),

and cycle length T = 30 (Table 3) we find a solution with OPT = 58.3333. This value is

better than the solution of OPT = 58.42 reported in Anily et al. (1998).

5.5 Symmetry

In order to test the proposed solution approaches for large values of T, we have composed

symmetrical instances where ai = 1 and bi = ° for all machines i E IvI. The structure

present in these instances ensures that optimal solutions are not hard to come by, however,

we are interested in the performance of the algorithms for these instances. Table 4 displays

computational results for m = 3. For all these instances, the integrality gap of formulation

SP equals zero; in contrast, v(F F LP) = 3 for all instances considered.

We conclude from the results in Table 4 that these instances are not so easy to solve,

especially for the branch and price algorithm. Although the integrality gap of formulation

SP for these instances equals zero, and solving the problem in the root node is often suffi

cient, many calls to the column generation procedure are needed to prove optimality. The

computation times for formulation F F are better, despite the fact that it uses much more

nodes in the search tree. Thus, we conclude that the column generation algorithm spends

relatively much time on solving the LP-relaxations of these instances.

We notice also that in these symmetrical instances the algorithm based on solving for

mulation SP performs better if we start with the simple solution as an initial set of columns

in LP rather than starting with the greedy solution.

5.6 Maintenance Costs

In this section we investigate the impact of strictly positive servicing costs bi . To construct

the instances considered in Table 5 we use a subset of the instances from Anily et al. (1998)

on five machines; we set T = 24 for all the instances (notice that this may not correspond

an optimal cycle length), and we choose the servicing costs b as indicated in Table 5. More

20

Table 4: Symmetric instances

T OPT FF- F F-time SP- SP-time
nodes sec. nodes sec.

50 3.04 57 33 pm 51 8m

51 3.0 1 13 P 2P
52 3.0385 111 42 78 1548
53 3.0377 75 40 78 2478
54 3.0 1 14 P 328
55 3.0364 94 50 pm 1178m
56 3.0357 156 55 1P 5908
57 3.0 1 19 P 468
58 3.0345 69 52 18 3668
59 3.0339 61 57 38 4078
60 3.0 1 22 P 1708
61 3.0328 104 66 38m 7158m

62 3.0323 107 75 18m 14378m

63 3.0 1 28 P 1958
64 3.0313 61 77 58 14318
65 3.0308 80 94 38m 10988m
66 3.0 1 31 pm 4708m
67 3.0299 135 102 18m 5468m
68 3.0294 162 134 pm 7838m
69 3.0 1 46 18 60P
70 3.0286 110 149 78 51508
80 3.025 182 258 pm 11678m

90 3.0 1 771 P 10938
100 3.02 217 1655 pm 26188m

21

in particular, for each choice of a we compared three choices of b, namely b = 0, b = a, and

b = (30,10,5,2,1).

Since for all instances of Table 5 the branch and price algorithm based on solving for

mulation S P performs worse than the implementation based on formulation F F we do not

report here the results for S P.

It is hard to infer general statements from the results presented in Table 5; however, it

is safe to conclude that having positive servicing costs makes the problem more difficult to

solve. Only for the case with a = (30,10,5, 1, 1) the instance with b = ° is the most difficult

one to solve; for all other choices of a either b = a or b = (30,10,5,2,1) is the more difficult

one. Also, the integrality gap increases in the absence of servicing costs b = 0. Thus, the

results in Table 5 indicate that the impact of having different servicing costs on the running

time can be significant.

5.7 Cases with Many Machines

Finally, we investigate how the number of machines affects the performance of the algorithms.

We have selected five instances with ten machines introduced in Anily et al. (1998) with

servicing costs b = 0, and we define a relatively modest cycle length of T = 18. The results

are described in Table 6.

We conclude from these results that the algorithm based on the formulation S P performs

better than the OPL implementation based on formulation F F. We explain this as follows.

First, from the experiments with these instances we find that the linear relaxation provided

by formulation SP is much stronger than the linear relaxation of formulation F F. Second,

when the number of machines is increased by one, the size of formulation F F is enlarged with

at least 2T rows (constraints), while the size offormulation S P grows with just one single row.

Indeed, for some instances, for example the one with a = (10,10,10,10,10,10,10,10,10,1),

we could not even solve formulation F F in 12 hours. We see also that if the integrality gap

is not zero then the algorithm based on formulation F F needs much more processing time

and branching nodes than for instances with a small number of machines (and a nonzero

integrality gap).

22

Table 5: Instances with positive maintenance costs

a b OPT FF- F F-time v(FFLP)
nodes sec.

5,1,1,1,1 0,0,0,0,0 15.0 1 3 15.0
5,1,1,1,1 5,1,1,1,1 17.3333 1 3 17.3333
5,1,1,1,1 30,10,5,2,1 27.0417 86 10 26.9333
5,5,1,1,1 0,0,0,0,0 21.9583 3289 20 21.75
5,5,1,1,1 5,5,1,1,1 25.4167 15858 66 25.1429
5,5,1,1,1 30,10,5,2,1 33.8333 469 9 33.7143
5,5,5,1,1 0,0,0,0,0 29.5 1 2 29.5
5,5,5,1,1 5,5,5,1,1 33.5 1 2 33.5
5,5,5,1,1 30,10,5,2,1 41.125 542 7 40.8214
5,5,5,5,1 0,0,0,0,0 40.375 59750 260 39.5
5,5,5,5,1 5,5,5,5,1 44.875 82879 357 44.10
5,5,5,5,1 30,10,5,2,1 50.375 25289 127 49.35
10,5,1,1,1 0,0,0,0,0 26.75 1 7 26.75
10,5,1,1,1 10,5,1,1,1 32.125 310 38 31.8333
10,5,1,1,1 30,10,5,2,1 41.0 5394 169 40.4167
10,10,5,1,1 0,0,0,0,0 43.5 4515 208 42.9091
10,10,5,1,1 10,10,5,1,1 50.9583 27114 829 50.2
10,10,5,1,1 30,10,5,2,1 56.125 3223 180 55.3833
30,10,5,1,1 0,0,0,0,0 61.4167 1443 71 60.8462
30,10,5,1,1 30,10,5,1,1 77.4167 912 61 76.5909
30,10,5,1,1 30,10,5,2,1 77.5 1042 67 76.6818
30,30,1,1,1 0,0,0,0,0 69.0 177 25 68.7692
30,30,1,1,1 30,30,1,1,1 91.75 61 18 91.6364
30,30,1,1,1 30,10,5,2,1 84.6667 528 54 83.7436
30,30,30,1,1 0,0,0,0,0 129.5 24292 122 126.9474
30,30,30,1,1 30,30,30,1,1 155.875 13947 74 153.7647
30,30,30,1,1 30,10,5,2,1 142.7917 24652 152 139.3860
30,30,30,30,1 0,0,0,0,0 207.75 18793 89 204.0
30,30,30,30,1 30,30,30,30,1 236.5417 23764 120 232.7826
30,30,30,30,1 30,10,5,2,1 218.2917 15191 67 214.5326

23

Table 6: Instances with m = 10

a OPT FF- F F-time v(FFLP) SP- SP-time v(SPLP)
nodes sec. nodes sec.

1,1,1,1,1, 49.0 » 100000 45.0 P IS 49.0s

1,1,1,1,1
10,9,8,7,6, 232.0 » 100000 225.76 93sm 298m 232.0sm
5,4,3,2,1
10,10,10,10,10, 413.5 » 100000 393.5 3s 2S 413.5s

10,10,10,10,1
100,1,1,1,1, 126.5 1 5 126.5 1m 1m 126.5m

1,1,1,1,1
1000,1,1,1,1, 576.5 1 3 576.5 23sm 7sm 576.5sm

1,1,1,1,1

6. Conclusions

In this paper we have proposed several models for a periodic maintenance scheduling prob

lem that has applications in many different areas. In contrast to previous research, our

approach has been to fix the length of the period to a given constant T. We describe several

natural mathematical programming formulations, most of which are integer linear programs.

We have investigated the computational behavior of these formulations when solving them

exactly using LP based branch and bound. One of the formulations is a set partitioning

formulation, that contains a number of variables that is exponential in the cycle length T.

Among the formulations considered, this formulation has the strongest linear relaxation. We

have shown how this formulation can be solved using a column generation approach, and

how the corresponding pricing problem can be solved efficiently. This results in a branch and

price algorithm. When comparing the computational results of this approach to the results

obtained through a flow formulation, we conclude that for instances with many machines the

branch and price algorithm seems more suited, whereas for instances with positive servicing

costs the flow formulation dominates.

References

Ahuja, R.K., T.F. Magnanti, J.B. Orlin. 1993. Network Flows. Prentice-Hall, Englewood

Cliffs, New Jersey.

24

Anily, S., C.A. Glass, R. Hassin. 1998. The scheduling of maintenance service. Discrete

Applied Mathematics 82 27-42.

Anily, S., C.A. Glass, R. Hassin. 1999. Scheduling of maintenance services to three machines.

Annals of Operations Research 86 375-391.

Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance. 1998.

Branch-and-Price: Column generation for solving huge integer programs. Operations

Research 46 316-329.

Bar-Noy, A., R. Bhatia, J.S. Naor, B. Schieber. 2002. Minimizing service and operation

costs of periodic scheduling. Mathematics of Operations Research 27 518-544.

Brakerski, Z., V. Dreizin, B. Patt-Shamir. 2001. Dispatching in Perfectly-Periodic Schedules.

Manuscript, Department of Electrical Engineering, Tel-Aviv University.

Brauner, N., Y. Crama, A. Grigoriev, J.J. van de Klundert. 2001. On the complexity of

high multiplicty scheduling problems. Working paper GEMME 0110, University of Lige.

Charest, M., J.A. Ferland. 1993. Preventive maintenance scheduling of power generating

units. Annals of Operations Research 41 185-206.

Gertsbakh, LB., E. Gertsbakh. 2000. Reliability Theory with Applications to Preventive

Maintenance. Springer Verlag, Heidelberg.

Jones, P., J. Zydiak, W. Hopp. 1991. Parallel machine replacement. Naval Research Logistics

38 351-365.

Grotschel, M., L. Lovasz, A. Schrijver. 1981. The ellipsoid method and its consequences in

combinatorial optimization. Gombinatorica 1 169-197.

Kenyon, C., N. Schabanel. 2001. The Data Broadcast Problem with Non-Uniform Trans

mission Times. Research Report 2001-43, Laboratoire de l'Informatique du Parallelisme,

Ecole Normale Superieure de Lyon.

C. Kenyon, C., N. Schabanel, N. Young. 2000. Polynomial-Time Approximation Scheme

for Data Broadcast. 32nd AGM Symposi1lm on Theory of Gomp1liing (STOG 2000).

659-666.

Kralj, B.L., R. Petrovic. 1988. Optimal preventive maintenance scheduling of thermal gen

erating units in power systems - A survey of problem formulations and solution methods.

European Journal of Operational Research 35 1-15.

25

McClurg, T., S. Chand. 2002. A parallel machine replacement model. Naval Research

Logistics 49 275-287.

Schabanel, N. 2000. The databroadcast problem with preemption. [2000]. 17th International

Symposium on Theoritical Aspects of Computer Science (STAGS 2000), Lecture Notes

in Computer Science 1770, 181-192.

'Wagner, H.M., R.J. Giglio, R.G. Glaser. 1964. Preventive maintenance scheduling by math

ematical programming. Management Science 10 316-334.

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

