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We study the problem of scheduling maintenance services. Given is a set of m machines and 
integral cost-coefficients ai and bi for each machine i (1 :s; i :s; m). Time is discretized into 
unit-length periods; in each period at most one machine can be serviced at a given service 
cost bi . The operating cost of machine i in a period equals ai times the number of periods 
since the last servicing of that machine i. The problem is to find a cyclic maintenance 
schedule of a given length T that minimizes total service and operating costs. We call this 
problem the Periodic Maintenance Problem or PMP. 

In this work we are interested in computing optimal solutions to instances of PMP. We 
investigate several models among which integer linear programming formulations for PMP. 
Two formulations, referred to as a flow formulation and a set-partitioning formulation, appear 
to have good linear programming relaxations. Using these formulations we solve relatively 
large instances, thereby employing branch and price techniques. 'vVe exploit the problem 
structure by showing how the column generation subproblem can be solved in polynomial 
time. Our work leads to the first exact solutions for larger sized problem instances, and we 
present extensive computational results. 

1. Introduction 

The planning and scheduling of preventive maintenance activities is often crucial for the 

cost-effectiveness of many large industrial organizations. For instance, manufacturing or

ganizations that have highly sophisticated and complex machinery have long recognized 

that efforts spent on preventive maintenance can contribute significantly towards an efficient 

running of the organization. Also in service organizations (like medical facilities or gov

ernmental institutions), preventive maintenance is regarded as an important activity that 
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can help to reach the organization's performance goals. However, the costs associated with 

preventive maintenance can be significant: there are not only costs involved with the mainte

nance itself, also the costs of production losses during the maintenance have to be taken into 

account. Computerized Maintenance Management Systems (CMMS's) are becoming increas

ingly popular as a tool to increase machine-availability and more generally, to improve con

trol over the maintenance activities. Software vendors (see for instance http://www.plant

maintenance.com/index.shtml) offer packages that usually includes a scheduling module that 

suggests (among other things) when to service which unit (or machine). This decision is seen 

as a re-occurring event, i.e., it is expected that a schedule is of a cyclic nature, and hence 

will be executed repeatedly. 

There is a huge amount of literature available on preventive maintenance. However, 

approaches in literature usually are of a stochastic nature where a probability distribution 

is used to describe the failure properties of a machine (see for instance Gertsbakh and 

Gertsbakh (2000)). In this work we take a different, completely deterministic, approach (see 

Wagner et al. (1964) for an early reference). More specifically, we deal with the problem of 

cyclically scheduling maintenance activities under a certain given cost-structure assuming a 

fixed cycle length. A precise description is given in the next subsection. 

1.1 Problem Description 

We consider the following problem. There are a number of machines Nli , i E {I, ... , m}, 

and there is a time-interval T = {I, 2, ... , T} with T 2: m. During each period of the time

interval T, at most one machine can be serviced. When machine Nli is serviced, a given, 

nonnegative, servicing cost of bi is incurred, regardless of the period. A machine Nli that is 

not serviced during some period is in operation and incurs an operation cost of ji(t) x ai, 

where ai is a given positive integer, and where ji(t) is the number of periods elapsed since 

last servicing machine Nli , i E {I, ... , m}. Observe that we assume here that the operating 

costs of a machine increase linearly with the number of periods elapsed since last servicing 

that machine. The problem is now to determine a maintenance schedule, i.e., to decide for 

each period t E T which machine to service (if any), such that total servicing costs and 

operating costs are minimized. 

There are good reasons to view such problems in a cyclic context. In such a context, 

it is assumed that the maintenance schedule will be executed repeatedly. Thus, in period 

k x T + t, (k E N, t E T), the same machine that was serviced in period t will be serviced 
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again. In addition, the cost will be considered in this infinite horizon context. Consequently, 

the cost of a maintenance schedule is calculated by summing over all t E T the total of 

the servicing costs incurred in period t and the operating costs incurred by the machines 

which are not serviced in period t. These operating costs are defined in a cyclic context, i.e., 

the last maintenance service may lie in a previous execution of the maintenance schedule. 

We will refer to this problem as the Periodic Maintenance Problem (PMP). Notice that in 

an optimal solution to P1VIP, each machine is served at least once. Finally, we notice here 

explicitly that in PMP T is considered to be an input parameter. 

For ease of understanding, we now present a brief example. 

Example 

Let T = 7, m = 3 and the set of machines is {I, 2, 3}. Further, let bi = 1, i = 1,2,3 and 

let al = a2 = 10 and a3 = 1. Consider the solution (1,2,1,2,1,2,3). This sequence of 

maintenance services is to be read as follows: in the first period, we service machine 1, in 

the second period machine 2, et cetera, until we service in the seventh period machine 3. 

Then, this sequence of maintenance services is repeated, i.e., in the 8-th period we service 

machine 1 again, followed by machine 2 in period 9, and so on. The cost of this solution 

can be computed as follows. Since there is maintenance in each of the seven periods of T, 

and since all service costs bi are equal to one, the total servicing costs equal 7. For the 

first machine the operating costs are incurred in periods 2, 4, 6 and 7. In periods 2, 4 and 

6, these costs equal 10, and in period 7 these costs amount to 20. Thus, machine 1 has a 

total operating cost of 50. Similarly, it can be checked that machine 2 has operating costs 

of 20+0+ 10+0+ 1 0+0+ 1 0=50, and machine 3 has operating costs of 1 +2+3+4 +5+6=21. 

Thus the total cost for this solution is 128. The reader can verify that the solution presented 

above is in fact optimal. 

Apart from the application sketched in the introduction, PMP and variants of PMP have 

real-life applications with different origins such as the scheduling of maintenance services, 

multi-item replenishment of stock, and broadcasting of data messages over a communication 

channel (see the references in Section 2). In particular, the problem where the cycle length 

is not given, but instead a decision variable, has received quite some attention. In the 

remainder, we refer to the variant of PMP where T is considered to be a decision variable, 

as the Free Periodic Maintenance Problem (FPMP); we use T* to denote the optimal cycle 
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length in FPMP. 

Our motivation for investigating PMP, rather than FPMP, is twofold. First of all, PMP 

is a practical problem. Especially in the context of constructing maintenance schedules, it 

is very natural to fix the cycle length to some constant such as 365, 52, 30, 7, 24 or 60. 

Indeed, an organization that implements a cyclic maintenance schedule will, for reasons of 

simplicity, ensure that the length of the cyclic schedule coincides with the size of a natural 

time- interval such as the number of days per year, or the number of weeks per year, or 

the number of days per week. Further, in many practical settings, it is desirable that the 

cycle length T is not too large. In fact, even for instances of modest size, for example 

m = 2, al = 1, a2 = a, b1 = b2 = 0, the optimal cycle length T* can be fairly large: for this 

case, T* 2:: l ffaJ (see Anily et al. (1998)). Thus, one is interested in computing a cyclic 

schedule with a cycle length that is bounded from above by some reasonably small (given) 

integer B. In such a case, one can find the optimal T :::; B by solving the PMP for each 

possible value of T not exceeding B. In both cases, the task is to find a solution of some 

specific cycle length that may differ from the optimal length T*. As far as we are aware, the 

PlVIP has not been studied before. 

A second motivation of our work is that we are interested in solving instances of the 

problem to optimality. As we shall see in Section 2, apart from Anily et al. (1998) which 

deals with a special case of FPlVIP, most research has focused on complexity results, and 

approximation for FPlVIP. From this point of view, we further explore the area of solving 

instances to optimality by solving them for a fixed, but not necessarily optimal, T. In 

addition, our results provide insight in the effect of varying T on the actual schedule and its 

solution, i.e., we investigate the sensitivity of the solution with respect to the cycle length. 

This paper is organized as follows. In the next section we present a brief literature review. 

Section 3 discusses several models, and how they might be of use in solving the problem to 

optimality. Section 4 presents a branch and price algorithm that solves one of the models 

of Section 3 to optimality. In Section 5 we present computational results on instances with 

three to ten machines and with a number of periods ranging from ten till one hundred. 

Section 6 contains the conclusions. 
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2. Literature Review 

An area where preventive maintenance scheduling has been applied is in the operational 

planning of power generating plants. We refer to Kralj and Petrovic (1988) for an overview 

of optimization techniques (including integer programming) in this field, and to Charest 

and Ferland (1993) for applying local search techniques to solve a model related to the 

set-partitioning model of Section 3. 

Anily et al. (1998) consider the special case of FPMP, where bi = 0 for all i E lvI, and they 

describe an application in the multi-item replenishment of stock. They prove that there exists 

an optimal schedule that is cyclic. Further, they describe a network-flow based algorithm 

that has exponential complexity to solve the problem exactly. This approach allows them 

to solve instances with up to four machines exactly. In addition, the authors propose two 

lower bounds and a greedy heuristic, which performs very well. Notice however that in their 

problem setting, the cycle length is a decision variable, and therefore the solutions given by 

the heuristic may use a different cycle length then the cycle length of an optimal solution. 

The case with three machine and zero servicing costs is investigated in Anily et al. (1999). 

In this work the authors introduce an algorithm solving certain instances of the problem to 

optimality and for the other instances they present a heuristic algorithm with performance 

ratio of l.0333. 

Bar Noy et al. (2002) and Kenyon et al. (2000) consider a generalized version of the 

FPMP where in each period at most lvI machines can be serviced. Their interest in the 

problem is motivated by applications that arise in broadcast scheduling. Bar-Noy et al. 

(2002) prove that FPMP is NP-hard. Further, they investigate lower bounds and propose a 

~-approximation algorithm. Kenyon et al. (2000) present a polynomial-time approximation 

scheme for FPMP with bounded service costs. The version of the problem with non-identical 

service times is studied in Kenyon et al. (2001). Recently, Schabanel (2000) shows that the 

version of FPMP in which preemptions are allowed, is also NP-hard. 

Brakerski et al. (2001) consider the problem of encoding a solution in such a way that 

the next machine to be serviced can always be found quickly, given that all service activities 

performed up till now are known. Brauner et al. (2001) address related scheduling problems 

that arise from compact encodings of solutions. 

Another area that is related to the PMP is the so-called parallel machine replacement 

problem (see Jones et al. (1991) and McClurg and Chand (2002)). This problem deals with 
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a set of machines whose operational costs increase with age, while in each period there 

is the possibility to replace a machine at the expense of purchasing costs. The authors 

present a dynamic programming procedure to balance operational costs and purchasing 

costs. However, in contrast to the PMP, the parallel machine replacement problem has a 

fixed horizon, and is motivated from an economic perspective, incorporating salvage costs, 

and the discounting of costs. 

We now briefly examine the PMP from a complexity viewpoint. First of all, notice that 

the input to PMP consists of 2m + 1 numbers (the ai, bi and T). Thus, an algorithm which 

has the parameter T present in its running-time is not a polynomial-time algorithm for PMP. 

In fact, all models we present in this paper have (at least) a pseudo-polynomial number of 

variables. Second, the reduction in Bar-Noy et al. (2002) shows that FPMP is NP-hard even 

when T* is known. This implies indeed that PMP is NP-hard as well, since it may be the 

case that T = T*. 

3. Modeling PMP 

In this section we describe three formulations for PMP. Subsection 3.1 gives a quadratic pro

gramming formulation, Subsection 3.2 describes an integer programming based formulation, 

and Subsection 3.3 presents a set-partioning formulation. 

3.1 A quadratic programming formulation 

Here we introduce a compact and natural, but non-convex quadratic program modeling PMP 

with operational costs only, i.e., we first assume bi = 0 for all i E !vI. The model uses a 

variable Xi,t E Z+, i E !vI, t E T, which represents the number of periods between the 

current period t E T and the last period before t when machine i has been serviced. Clearly, 

for any machine i, and any period t, the value of variable Xi,t is obtained by either adding 

1 to the value of Xi,t-l, or by setting it to O. Setting the value of Xi,t to 0 corresponds to 

servicing machine i in period t. PMP can now be formulated as follows: 

min L L aiXi,t 

iEM tET 

Xi,t+l(Xi,Hl - Xi,t - 1) = 0, i E Nf, t E T \ T; 

Xi,l(Xi,l - Xi,T - 1) = 0, i E !vI; 
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Xi,t + Xk,t 2:: 1, i =I k, i E lvI, k E Ai, t E T; 

Xi,t E Z+, i E lvI, t E T. 

(4) 

(5) 

Equations (2) and (3) ensure the required behavior of the Xi,t variables. Equations (4) 

imply that no two machines can be served simultaneously. Notice that if for some machine i 

one of the associated variables is integral, (2) and (3) together imply that all other variables 

corresponding to machine i are integral as well. 

Since most of the available software for solving quadratic programming problems only 

solve convex quadratic programs, we have not been able so solve problem instances through 

the formulation given above. Instead, we now linearize model (1)-(5) and take into account 

the servicing costs bi : 

min L L (aiXi,t + biYi,t) 
iEM tET 

Xi,t+l 2:: Xi,t + 1 - NYi,t+l, i E lvI, t E T \ T; 

Xi,l 2:: Xi,T + 1 - NYi,l, i E Ai; 

L Yi,t :::; 1, t E T; 
iEM 

Xi,t E Z+, i E lvI, t E T; 

Yi,t E {O, I}, i E lvI, t E T, 

where N is a sufficiently big number. 

(6) 

(7) 

(8) 

(9) 

(10) 

(ll) 

The binary variable Yi,t simply takes on value 1 if we service the i-th machine in period 

t and 0 otherwise. The objective (6) minimizes the total costs that now consist of operating 

costs and servicing costs. The equations (7) and (8) enforce the variables Xi,t to behave in 

the same way as in the previous model. According to (9) we cannot service more than one 

machine in a single period. Restrictions (10) and (ll) are the integrality constraints. We 

refer to the formulation (6)-(1l) as QF. 

Example 

We illustrate model (6)-(1l) with the following example. Let T = 7, m = 3 and the set of 

machines is {I, 2, 3}. A feasible solution of the formulation is depicted in Table l. 
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Table 1: A feasible solution 

Period (t E T): 1 2 3 4 5 6 7 
Sequence of maintenance services (machines): 1 3 1 2 1 3 2 
Yl,t (service indicator): 1 0 1 0 1 0 0 
Y2,t (service indicator): 0 0 0 1 0 0 1 
Y3,t (service indicator): 0 1 0 0 0 1 0 

Xl,t (state): 0 1 0 1 0 1 2 
X2,t (state): 1 2 3 0 1 2 0 
X3,t (state): 2 0 1 2 3 0 1 

Notice that formulation (6)-(11) involves a so-called big N parameter which renders the 

associated linear relaxation to be rather poor. For instance, by setting Yi,t = 11m and 

Xi,t = 0, i E lVi, t E T, we satisfy all constraints of the linear relaxation. The value of the 

objective function of this solution to the linear relaxation is equal to T 'LiEM bdm which 

is an arbitrary bad lower bound for the optimum. This explains the poor computational 

performance we obtained using the standard ILP-packages dealing with formulation (6)

(11), see Section 5.3. 

Another weak point of this formulation is that we use the fact that the objective is to 

minimize the total operating and servicing costs. This means that not every solution that 

satisfies (7)-(11) is a meaningful solution to PMP. Thus, to solve the problem under maxi

mization or mixed min-max criteria we cannot even use the linear model described above. 

3.2 An integer programming formulation 

We now present a formulation that contains O(m x T2) binary variables. We introduce a 

variable xt,t, i E lvI, s, t E T, whose value equals 1 if machine i is serviced in period s, and 

serviced next (cyclically) in period t + 1, and 0 otherwise. Notice that when s is the last 

service in T, we have that t :::; s, because of the cyclicity of the maintenance schedule. Using 

costs c(s, t) defined as follows: 

C(8, L) ~ { 
(t-s)(t-s+1) 

2 

(T-s+t)(T-s+t+1) 
2 
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the problem can be modeled as follows: 

subject to 

m}n L L L (aiC(S, t)xt,t + biXt,t) 
iEM sETtET 

L L x:,t :::; 1, t E T; 
iEM sET 

'"""' s,t '"""' t+1,s 
~Xi = ~ Xi , i E NI, t E T \ T; 
sET sET 

'"""' s,T _ '"""' 1,s 
~Xi - ~Xi , 
sET sET 

L Lxt,t 2: 1, 
sET tET 

i E NI; 

i E NI; 

x:,t E {O, 1}, i E NI,s E T,t E T. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Inequalities (13) express that in each period at most one machine can be serviced, equalities 

(14)-(15) imply that there is a next period in which a machine will be serviced, inequalities 

(16) say that each machine is serviced at least once, and finally (17) are the integrality 

constraints. 

Again, the LP relaxation of this formulation is rather poor. For example, setting xi,t+1 = 

x~,t+1 = ... = X;;;+l = ! for all t E T\ T, X;,l = ~ for all i E NI, and all other variables equal 

to 0, yields a feasible solution with zero operating costs. Notice how this solution resembles 

the example demonstrating the poor behavior of the LP relaxation of (6)-(11). The LP 

relaxation is strengthened considerably when we replace (16) by the following constraints 

(which are clearly valid for the ILP formulation above): 

L Lx:,t + L Lx:,t + L Lx:,t = 1, for all i E NI, 1 < u < T; (18) 
s::;ut<s t?u s>t 

LLx:,t + L x:,T = 1, for all i E A1; (19) 
s>l t<s s::;T 

L Lx:,t + Lx;,t = 1, for all i E M. (20) 
t<T s>t t?l 

Constraints (18)-(20) state that for every machine and for every period u, the sum of the 

variables corresponding to pairs (s, t) that contain period It, is one. Notice that the solution 

given above violates these constraints. One can view (18)-(20) as a (polynomially sized) 

set of valid inequalities for the formulation consisting of (13)-(17); adding these inequalities 
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yields a stengthened formulation. Summarizing, we refer to the formulation consisting of 

constraints (12)-(15), (17)-(20) as the flow formulation (F F). In Section 5 we provide com

putational results showing that F F yields promising computational results when solving it 

using state of the art standard software CPLEX 7.5. 

3.3 A set-partitioning formulation 

Yet another formulation, using an exponential number of variables, concludes this modeling 

section. 

Let 5 be the set of all nonempty subsets of T. Clearly, every s E 5 is a possible set of 

periods for servicing a machine i E NI. Let us call s E 5 a service strategy or simply strategy. 

For every pair consisting of a machine i E NI and a strategy s E 5, we can compute the cost 

Ci,t incurred when servicing machine i in the periods contained in s as follows: let Ps be the 

cardinality of s and let qj, j E {I, 2, ... , Ps}, be the distances between neighboring services 

in s. For example, if T = 7 and s = {2, 4, 6} then Ps = 3 and q1 = 4 - 2 = 2, q2 = 6 - 4 = 2, 

q3 = 7 - 6 + 2 = 3. The total service and operating cost associated with machine i E NI and 

strategy s E 5 is 
Ps 

Ci,s = bips + ai z=(qj - 1)qj/2. 
j=l 

So, in the example above the total costs of servicing machine i using strategy s is Ci,s 

3bi + ai + ai + 3ai = 3bi + 5ai' 

Now we introduce a variable Xi,s which has value 1 if machine i E NI is serviced in the 

periods contained in strategy s E 5, and 0 otherwise. This allows for the following Set 

Partitioning formulation (5 P): 

subject to 

z= Xi,s = 1, i E NI; 
sES 

z= z= Xi,s:::; 1, t E T; 
iElvI sES:tEs 

Xi,s E {O, I}, i E NI, s E 5, 

(21) 

(22) 

(23) 

(24) 

Constraints (22) imply that one service strategy has to be selected for each machine, and 

constraints (23) ensure that no two strategies make use of a same period. Constraints (24) 
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are the integrality constraints. Despite the exponential size of this integer linear program 

it has two important properties. First, its linear relaxation (obtained by replacing (24) by 

Xi,s ?: 0 for all i, s) is solvable in time polynomial in m and T (see Section 4). Second, 

computational experiments show that the linear relaxation of this integer problem is quite 

strong. In the next section we show how to solve S P using a branch and price algorithm. 

We conclude this section by showing that the LP relaxation of SP is stronger than the 

LP relaxation of F F. 

Theorem 1 Let v(FFLP), v(SPLP) be optimal solutions of the linear relaxations of FF 

and SP respectively. We have v(FFLP) :s; v(SPLP). 

Proof. Let x* = {Xi,s: i E NI; s E S} be any solution to the LP relaxation of SP. 

Construct a solution y* = {y~'v: i E NI; u, vET} to the LP-relaxation of F F as follows. 

Consider each Xi,s. If s contains a single element u, we set y~,U-l = Xi,s. Else, for each (u, v) 

with u, v E s and no t E s such that'Ll :s; t :s; v, we set y~,V-l = Xi,s. In addition, for every 

Xi,s, and ('Ll, v) where u is the element in s with highest index, and v is the element in s with 

smallest index, we set y~,v-l = Xi,s. 

Now let us first show that this solution is feasible. The solution y* satisfies the flow 

conservation constraints (14)-(15) from its construction. Similarly, constraint (23) and the 

feasibility of x* implies that (13) is satisfied. Further, it follows from constraint (22) and 

the construction of y* that (18)-(20) is satisfied. We leave it to the reader to verify that the 

objective function values of X* and y* are equal. 

Thus, any solution of the LP relaxation of SP can be converted to a corresponding 

solution of the LP relaxation of F F with the same value. This completes the proof. 0 

4. A branch and price algorithm for PMP 

In this section we show how to solve SP using a branch and price algorithm. In Subsection 4.1 

we show how column generation can be used to solve the LP relaxation of (21)-(24) without 

enumerating all variables Xi,s. Next, in subsection 4.2 we propose a branching scheme that 

keeps the structure of the problem intact. We refer to Barnhart et al. (1998) for a general 

description of branch and price algorithms. 
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4.1 Column generation algorithm 

Its linear relaxation (called SPLP) is obtained by replacing constraints (24) by Xi,s 2: 0 for 

all i, s. The corresponding dual problem (called S P D) is 

subject to 

~~x (2: lLi + 2: Vt) 
, iEM tET 

Ui + L Vt :::; Ci,s i E lV[, s E S; 
tEs 

Vt :::; 0 t E T. 

(25) 

(26) 

(27) 

The column generation procedure starts with finding a feasible solution for S P LP. To 

do that we can use, for example, a trivial integer solution where in the first T periods we 

service all machines one by one, and for all remaining periods we service only the machine 

with the largest coefficient ai. So, in a initialization step, we generate the set of pairs 

N = {(i, Si) : i E lVI} where Si is the set of periods when we service machine i E lVI. Let 

us restrict the column set of S P LP to N and let us call the problems restricted to N as 

SP LP(N) and SP D(N) respectively. 

Next, we find an optimal solution for SP LP(N) and SP D(N) using an LP-solver. Thus, 

we obtain a primal-dual pair of solutions (x(N), (u(N),v(N)). We can extend x(N) to a 

solution of SP LP by setting the remaining variables to zero. Establishing whether or not 

this extended solution is optimal for S P LP can be done by analyzing the corresponding 

dual solution (u(N), v(N)). Optimality of x(N) for SPLP depends on the feasibility of 

(u(N),v(N)) in SPD. To verify whether all dual constraints are satisfied we have to solve 

the following pricing problem: 

Price: :3 i E lVI, S E S such that Ui + L Vt > Cis? 

tEs 

If the dual solution (u(N),v(N)) satisfies all constraints of SPD, then x(N) extended with 

zeros is an optimal solution of SP LP. If not, then we have found - by solving the pricing 

problem - a machine i and a strategy S whose reduced costs (the left-hand side of the 

inequality above minus Cis) are negative. Thus bringing this variable into the basis will 

contribute to the objective function's value. Then we update N by adding this variable to 

it, and we iterate. The efficiency of this procedure depends to a large extent on the speed 

with which the pricing problem can be solved. vVe have the following theorem: 

12 



Theorem 2 The pricing problem can be solved in O(mT3) time. 

Proof. We prove that for each i we need to solve an all-pairs shortest path problem on 

a directed graph with O(T) nodes. Since this problem can be solved in O(T3) using the 

Floyd-Warshall algorithm (see Ahuja et al. (1993)), the result follows. 

Thus, let us now consider a specific machinei, and let us build the following graph 

G = (V, A) with V = T and A = {(p, q) : p:S; q, p, q E V}. 

For each arc (p, q) E A we define the following costs w: 

(q - p)(q - p - 1) 
w(p, q) = bi + ai 2 - Vq if p:/ q and 

T(T - 1) 
w(p,p) = bi + ai 2 - vp. 

This completes the construction of G. Notice that all costs ware nonnegative. Let us now 

establish a correspondence between a path P in G and a service strategy s for machinei. 

Indeed, consider any path P = {tl' t2, ... , td in G. We have the following 

Claim: If there exists a path in G from tl to tk with costs less than Q == Ui + Vtl - bi + 
ai 'i:.:;!t!I;/ (t - tk) then the current solution is not optimal. 

Argument: Notice that Q depends only on hand t k . Consider now the cost of a path 

{tl, t2, t3 , ... , tk-l, td in V. Summing the appropriate coefficients w gives: 

We now derive: 

k-l tl+l-l k 
(k - l)bi + ai L L (t - tl) - L Vtt· 

l=l t=tt+l l=2 

k-l tl+l-l k 
(k - l)bi + ai L L (t - tl) - L Vtl < Q <===? 

l=l t=tl+l l=2 
k tl+l-l k 

kbi + ai L 2:= (t - tl) - L Vtl < lLi <===? 

Cis - L Vt < Ui' 
tEs 

It follows that given the first and the last service period, computing a shortest path in 

G between the corresponding vertices determines whether there is a strategy to be added to 

the master problem. Hence, to solve the pricing problem for machine i we need to compute 

shortest paths between every pair of vertices in G. As mentioned above this can be done 

using Floyd-Warshall's algorithm in O(T3) operations (see Ahuja et al. (1993)) D 
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Corollary 4.1 The problem S P LP can be solved in time polynomial in m and T. 

Proof. The proof of the corollary straightforwardly follows from Theorem 2 and the well

known theorem by Grotschel et al. (1981), stating 

There exists a polynomial time algorithm for the separation problem for a family of poly

hedra, if and only if there exists a polynomial time algorithm for the optimization problem 

for that family. 

Since the pricing problem is nothing else but the separation problem for SP D we have 

that optimization problems SPD and SPLP are solvable in time polynomial in m and T. 

o 
In practice we did not use the approach by Grotschel et al. (1981). Instead of this we 

observe that the number of rows in S P (S P LP) is relatively small and we can try to apply 

a column generation algorithm to solve the S P LP. 

4.2 A Branching Scheme 

To solve the original integer programming formulation S P let us introduce the following 

branching strategy. Notice that a traditional branching strategy that consists of setting a 

variable to 0 versus setting a variable to 1, would not preserve the efficient solvability of 

the pricing problem (see Barnhart et al. (1998)). Given a linear programming solution Xi,s, 

define S1Lmi(t) = LSES:tES Xi,s for i E NI, t E T. 

Lemma 4.2 If the Solldion is fractional, i. e., if there exists a machine io E NI and a strategy 

s E S with 0 < Xio,s < 1, then there exists atE T sllch that 0 < 31Lmio (t) < 1. 

Proof. Consider machine io E lVI. Let S(io) be the set of strategies 3 for which 0 < Xio,s < 1. 

vVe say that strategy Sl contains strategy 32 if, for each period t E 32, we have that t E 31· 

Let 30 E S(io) be a strategy that does not contain any other strategy from S(io) (notice that 

such a strategy always exists). We argue by contradiction. 

Assume that for all t E T the numbers 31.Lmio (t) are equal to either 0 or 1. This implies 

that S1Lmio(t) = 1 for all periods t E 30. Since, by (23), LSESXio,s = 1, and since for each 

t E So we have that 31Lmio(t) = LSES:tEs Xio,s = 1, it follows that Xio,s = 0 for each strategy 

3 E S that uses a period t not used by strategy 30. Due to the fact that 30 does not contain 

any strategy from S(io), it follows that for each 3 E S(io) \ 30, there exists a period t E 3 

such that t tj. 30. Consequently, Xio,s = 0 for all 3 E S(io) \ 30, and hence Xio,s = 1, which is 

a contradiction. 0 
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Let us now describe how this branching scheme preserves the efficient computation of 

service strategies. Let the branching rule be simply to decide whether period t E T is used 

in a service strategy for machine io E IVI (i.e., sumio(t) = 1, we refer to this as branch 1) 

or not (i.e., sumio(t) = 0, we refer to this as branch 2). Considering branch 1, this has the 

following consequences for the pricing problem: each arc passing t, i.e., going from some 

tl < t to some t2 > t is deleted from the graph and from now on for every child node of 

the branching tree machine io is serviced at period t. Moreover, in the graphs associated to 

the other machines, we delete all arcs entering node t. So, for these machines, no path will 

visit node t. Considering branch 2 is even easier: we simply delete from the graph all arcs 

entering t. Obviously, an optimal solution is not excluded by this branching rule and, from 

lemma 4.2, we conclude that this rule excludes the current fractional solution. 

5. Computational Results 

In this section we present computational results for all LP models presented in the previous 

sections. 

5.1 Technical Details 

All experimental results were obtained on an AMD Athlon computer with 2400 XP+/1GB 

RAM running Debian GNU /Linux 3.0 with kernel 2.4.18. All calculations were limited 

by 100000 branching nodes and by 10000 seconds CPU-time. To compute the optimal 

solutions for QP and F F we use the package ILOG OPL-Studio 3.5 using the CPLEX MIP 

Solver. In the calculations results we mean by OPT, QP- and FF-nodes, QP- and FF

time respectively: the average maintenance and operating cost of an optimal solution (the 

optimal objective value divided by T), the number of nodes in the branching tree needed by 

OPL-Studio for QP and FF (expressed by the parameter "MIP-nodes") and the CPU-time 

in seconds for Q P and F F (expressed by the parameter" Solving time"). 

The computational results for SPare obtained using the aforementioned column gen

eration approach. To compute optimal solutions for the linear programs SP LP and SP D 

we use the standard package ILOG CPLEX 7.5. The programs were coded in C++. In the 

following sections we denote by SP-nodes the number of nodes in the branching tree created 

by the algorithm described in Section 4 and we denote by SP-time the CPU-time in seconds 

rounded up. 
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5.2 On the column generation 

Here we mention two important details concerning the implementation of the branch and 

price algorithm described in Section 4. Let us first comment on the choice of an initial 

feasible solution. 

In the initialization phase of the algorithm we are free to choose any set of pairs (columns 

of LP) N = {( i, Si) : i E .M} We have tested two sets of initial LP columns in our 

implementation. The first one contains the pairs (i, Si) such that Si = {i} for any i =1= 1 and 

for i = 1 we have Sl = {1, m + 1, m + 2, ... ,T}. This set corresponds to the trivial feasible 

solution of P IvI P where we first service all the machines in order 1 up to m and then from time 

interval m+ 1 onwards, we service machine 1 only. We shall refer to this set of initial columns 

as the simple solution. Another set of initial columns is formed by the greedy solution, see 

Anily et al. (1998). Recall that the greedy solution can be obtained by the following simple 

rule: at each time interval t we service the machine which would have the maximal aggregated 

operating cost in time interval t + 1. In our experiments we have noticed that the choice of 

an initial solution can have a large impact on the resulting computation time. For example, 

to solve the LP-relaxation of SP in case m = 4, T = 33, a = (10,10,10,1), b = (0,0,0,0), 

the algorithm starting with the simple solution generates 312 columns and stops within 7 

seconds, whereas the algorithm starting with the greedy solution generates 4383 columns and 

stops only after 488 seconds. In another instance, m = 3, T = 21, a = (50,2,1), b = (0,0,0), 

the algorithm starting with the simple solution generates 41 nodes in the branching tree and 

stops in 13 seconds, while the algorithm starting with greedy solution provides the integer 

solution in the first node of the branching tree and stops in 1 second. We conclude that the 

choice of an initial column set has a significant impact on the running times achieved. In 

the tables describing the experiments, we report the calculation results for SP with the best 

running time from the two starting solutions. To specify the initial set of columns we use 

the following notation: by default we use the greedy solution and we mark solutions provided 

by the algorithm starting with the simple sol1dion by a superscript "s". 

Secondly, in a column generation approach there is freedom concerning what variables 

with negative reduced costs (as found by the solution of the pricing problem) to add to the 

set N of columns active in the current LP. For instance, one could add all variables with 

negative reduced costs. For reasons of convenience we have opted in our implementation to 

consider two strategies. In the first strategy, we add one column at each iteration, namely 
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the one that has the smallest reduced costs (this corresponds to the most violated constraint 

in the dual problem). In the second strategy, we add at most m columns per iteration: 

for each machine we find a column with the smallest reduced costs. In the computational 

results we use by default the first version of the algorithm and we mark results obtained by 

the second version by superscript "m". Again, we report the calculation results with the 

best running time. 

5.3 Different formulations 

First of all, as promised in Section 3, we illustrate the difference between formulation QP, 

flow formulation F F and the set partitioning formulation SP. Table 2 presents computa

tional results on the 3 machine instances introduced in Anily et al. (1998), where we have 

chosen T to be the optimal schedule length as computed in Anily et al. (1998). Recall that, 

in order to be able to compare results with a different T, we express the optimum value 

( 0 PT) as the average operating cost per period. 

We conclude from Table 2 that as the schedule length increases, the number of nodes in 

QP, as well as the computation times, increase enormously. However, each model is able to 

deal with the smaller sized instances (T ::; 5). We also observe that the computation times 

for the other two formulations are much better than QP. Therefore we concentrate in the 

remainder on the formulations S P and F F only. 

5.4 The Quality of the Lower Bound 

Now, we focus on the general performance of the column generation algorithm for SP LP 

and the branch and price algorithm for SP versus the LP based branch and bound algorithm 

that the Cplex MIP solver uses to solve F F. Again, we consider instances from Anily et 

al. (1998) on four machines, with servicing costs bi = 0, and we report the solution value in 

terms of the average operating cost per period. We have chosen T to be the optimal schedule 

length as computed by Anily et al. (1998). 

The computational results depicted in Table 3 show that the lower bounds provided by 

the two linear programming relaxations are very good; in particular the LP-relaxation of 

formulation SP misses the integral optimum 5 times and the LP-relaxation of formulation 

F F misses the integral optimum 8 times (out of 30). Observe also that these values are 

obtained in a very short time, usually within a second. 
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Table 2: Formulations QP, FF, and SP 

T a OPT QP- QP-time FF- F F-time SP- SP-time 
nodes sec. nodes sec. nodes sec. 

3 1,1,1 3.0 14 1 1 1 1 1 
3 2,1,1 4.0 9 1 1 1 1 1 
3 2,2,1 5.0 13 1 1 1 1 1 
4 5,1,1 5.5 20 1 1 1 1 1 
4 5,2,1 7.0 38 1 1 1 1 1 
5 5,5,1 10.0 70 1 1 1 1 1 
4 10,1,1 8.0 29 1 1 1 1 1 
4 10,2,1 9.5 37 1 1 1 1 1 
6 10,5,1 13.3333 156 1 3 1 9 1 
16 10,10,1 17.25 197040 114 1 1 1 1 
8 30,1,1 14.5 194 1 1 1 1 1 
17 30,2,1 17.2941 142837 89 1 1 33 2 
8 30,5,1 22.25 437 1 2 1 1 1 
9 30,10,1 28.4444 1169 1 33 1 15 1 
13 30,30,1 42.9231 17099 9 1 1 1 1 
10 50,1,1 19.0 351 1 1 1 1 1 
21 50,2,1 22.6667 766220 604 1 1 1 1 
10 50,5,1 29.5 1397 2 1 1 1 1 
10 50,10,1 36.5 1377 1 1 1 1 1 
15 50,30,1 55.0 44664 27 17 1 27 1 
17 50,50,1 66.8235 184068 114 1 1 1 1 
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Table 3: Instances with four machines 

T a OPT FF- FF-time v(FFLP) SP- SP-time v(SP LP) 
nodes sec. nodes sec. 

4 1,1,1,1 6.0 1 1 6.0 1 1 6.0 
9 2,1,1,1 7.3333 1 1 7.3333 1 1 7.3333 
10 2,2,1,1 8.8 1 1 8.8 1 1 8.8 
15 2,2,2,1 10.4 1 1 10.4 1 1 10.4 
6 5,1,1,1 10.0 1 1 10.0 1 1 10.0 
16 5,2,1,1 11.75 1 1 11.75 1 1 11.75 
22 5,2,2,1 13.7273 99 6 13.5 1 3 13.7273 
6 5,5,1,1 15.0 1 1 15.0 1 1 15.0 
6 5,5,2,1 17.5 1 1 17.5 1 1 17.5 

24 5,5,5,1 22.25 1 2 22.25 158 38 22.258 

6 10,1,1,1 12.5 1 1 12.5 1 1 12.5 
6 10,2,1,1 15.0 1 1 15.0 1 1 15.0 
6 10,2,2,1 17.5 1 1 17.5 1 1 17.5 
8 10,5,1,1 19.5 1 1 19.5 1 1 19.5 
6 10,5,2,1 22.5 1 1 22.5 1 1 22.5 
8 10,5,5,1 27.875 1 1 27.25 19 1 27.25 
8 10,10,1,1 24.5 1 1 24.5 1 1 24.5 
6 10,10,2,1 27.5 1 1 27.5 1 1 27.5 
9 10,10,5,1 34.0 10 1 32.8889 15 1 32.8889 

33 10,10,10,1 40.4545 3 9 40.4545 178 178 40.45458 

8 30,1,1,1 21.75 1 1 21.75 1 1 21.75 
8 30,5,1,1 29.5 1 1 29.5 1 1 29.5 
10 30,5,5,1 40.5 3 1 39.5 17 1 39.5 
8 30,10,1,1 37.0 1 1 37.0 1 1 37.0 
12 30,10,5,1 49.6667 88 2 48.0 23 1 48.0 
30 30,10,10,1 58.3333 123 14 57.9231 198m 198m 58.33338m 

26 30,30,1,1 55.8462 1 3 55.8462 1 3 55.8462 
24 30,30,5,1 70.5 36 5 70.4231 198 48 70.5 
14 30,30,10,1 81.5 20 1 80.4231 23 1 80.7857 
19 30,30,30,1 108.4737 1 1 108.4737 1 1 108.4737 
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Notice further that even in case of a positive integrality gap OPL-Studio can provide an 

integral solution for F F analyzing only one node of the searching tree. The reason for this 

is that the OPL-Studio MIP-solver is based on a branch and cut algorithm which creates 

a number of cuts (actually there are 9 types of different cuts) that can lead to an integer 

solution right in the root-node of the searching tree (see Table 3). 

Finally, we point out that for the instance with m = 4, a = (30,10,10,1), b = (0,0,0,0), 

and cycle length T = 30 (Table 3) we find a solution with OPT = 58.3333. This value is 

better than the solution of OPT = 58.42 reported in Anily et al. (1998). 

5.5 Symmetry 

In order to test the proposed solution approaches for large values of T, we have composed 

symmetrical instances where ai = 1 and bi = ° for all machines i E IvI. The structure 

present in these instances ensures that optimal solutions are not hard to come by, however, 

we are interested in the performance of the algorithms for these instances. Table 4 displays 

computational results for m = 3. For all these instances, the integrality gap of formulation 

SP equals zero; in contrast, v(F F LP) = 3 for all instances considered. 

We conclude from the results in Table 4 that these instances are not so easy to solve, 

especially for the branch and price algorithm. Although the integrality gap of formulation 

SP for these instances equals zero, and solving the problem in the root node is often suffi

cient, many calls to the column generation procedure are needed to prove optimality. The 

computation times for formulation F F are better, despite the fact that it uses much more 

nodes in the search tree. Thus, we conclude that the column generation algorithm spends 

relatively much time on solving the LP-relaxations of these instances. 

We notice also that in these symmetrical instances the algorithm based on solving for

mulation SP performs better if we start with the simple solution as an initial set of columns 

in LP rather than starting with the greedy solution. 

5.6 Maintenance Costs 

In this section we investigate the impact of strictly positive servicing costs bi . To construct 

the instances considered in Table 5 we use a subset of the instances from Anily et al. (1998) 

on five machines; we set T = 24 for all the instances (notice that this may not correspond 

an optimal cycle length), and we choose the servicing costs b as indicated in Table 5. More 
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Table 4: Symmetric instances 

T OPT FF- F F-time SP- SP-time 
nodes sec. nodes sec. 

50 3.04 57 33 pm 51 8m 

51 3.0 1 13 P 2P 
52 3.0385 111 42 78 1548 
53 3.0377 75 40 78 2478 
54 3.0 1 14 P 328 
55 3.0364 94 50 pm 1178m 
56 3.0357 156 55 1P 5908 
57 3.0 1 19 P 468 
58 3.0345 69 52 18 3668 
59 3.0339 61 57 38 4078 
60 3.0 1 22 P 1708 
61 3.0328 104 66 38m 7158m 

62 3.0323 107 75 18m 14378m 

63 3.0 1 28 P 1958 
64 3.0313 61 77 58 14318 
65 3.0308 80 94 38m 10988m 
66 3.0 1 31 pm 4708m 
67 3.0299 135 102 18m 5468m 
68 3.0294 162 134 pm 7838m 
69 3.0 1 46 18 60P 
70 3.0286 110 149 78 51508 
80 3.025 182 258 pm 11678m 

90 3.0 1 771 P 10938 
100 3.02 217 1655 pm 26188m 
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in particular, for each choice of a we compared three choices of b, namely b = 0, b = a, and 

b = (30,10,5,2,1). 

Since for all instances of Table 5 the branch and price algorithm based on solving for

mulation S P performs worse than the implementation based on formulation F F we do not 

report here the results for S P. 

It is hard to infer general statements from the results presented in Table 5; however, it 

is safe to conclude that having positive servicing costs makes the problem more difficult to 

solve. Only for the case with a = (30,10,5, 1, 1) the instance with b = ° is the most difficult 

one to solve; for all other choices of a either b = a or b = (30,10,5,2,1) is the more difficult 

one. Also, the integrality gap increases in the absence of servicing costs b = 0. Thus, the 

results in Table 5 indicate that the impact of having different servicing costs on the running 

time can be significant. 

5.7 Cases with Many Machines 

Finally, we investigate how the number of machines affects the performance of the algorithms. 

We have selected five instances with ten machines introduced in Anily et al. (1998) with 

servicing costs b = 0, and we define a relatively modest cycle length of T = 18. The results 

are described in Table 6. 

We conclude from these results that the algorithm based on the formulation S P performs 

better than the OPL implementation based on formulation F F. We explain this as follows. 

First, from the experiments with these instances we find that the linear relaxation provided 

by formulation SP is much stronger than the linear relaxation of formulation F F. Second, 

when the number of machines is increased by one, the size of formulation F F is enlarged with 

at least 2T rows (constraints), while the size offormulation S P grows with just one single row. 

Indeed, for some instances, for example the one with a = (10,10,10,10,10,10,10,10,10,1), 

we could not even solve formulation F F in 12 hours. We see also that if the integrality gap 

is not zero then the algorithm based on formulation F F needs much more processing time 

and branching nodes than for instances with a small number of machines (and a nonzero 

integrality gap). 
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Table 5: Instances with positive maintenance costs 

a b OPT FF- F F-time v(FFLP) 
nodes sec. 

5,1,1,1,1 0,0,0,0,0 15.0 1 3 15.0 
5,1,1,1,1 5,1,1,1,1 17.3333 1 3 17.3333 
5,1,1,1,1 30,10,5,2,1 27.0417 86 10 26.9333 
5,5,1,1,1 0,0,0,0,0 21.9583 3289 20 21.75 
5,5,1,1,1 5,5,1,1,1 25.4167 15858 66 25.1429 
5,5,1,1,1 30,10,5,2,1 33.8333 469 9 33.7143 
5,5,5,1,1 0,0,0,0,0 29.5 1 2 29.5 
5,5,5,1,1 5,5,5,1,1 33.5 1 2 33.5 
5,5,5,1,1 30,10,5,2,1 41.125 542 7 40.8214 
5,5,5,5,1 0,0,0,0,0 40.375 59750 260 39.5 
5,5,5,5,1 5,5,5,5,1 44.875 82879 357 44.10 
5,5,5,5,1 30,10,5,2,1 50.375 25289 127 49.35 
10,5,1,1,1 0,0,0,0,0 26.75 1 7 26.75 
10,5,1,1,1 10,5,1,1,1 32.125 310 38 31.8333 
10,5,1,1,1 30,10,5,2,1 41.0 5394 169 40.4167 
10,10,5,1,1 0,0,0,0,0 43.5 4515 208 42.9091 
10,10,5,1,1 10,10,5,1,1 50.9583 27114 829 50.2 
10,10,5,1,1 30,10,5,2,1 56.125 3223 180 55.3833 
30,10,5,1,1 0,0,0,0,0 61.4167 1443 71 60.8462 
30,10,5,1,1 30,10,5,1,1 77.4167 912 61 76.5909 
30,10,5,1,1 30,10,5,2,1 77.5 1042 67 76.6818 
30,30,1,1,1 0,0,0,0,0 69.0 177 25 68.7692 
30,30,1,1,1 30,30,1,1,1 91.75 61 18 91.6364 
30,30,1,1,1 30,10,5,2,1 84.6667 528 54 83.7436 
30,30,30,1,1 0,0,0,0,0 129.5 24292 122 126.9474 
30,30,30,1,1 30,30,30,1,1 155.875 13947 74 153.7647 
30,30,30,1,1 30,10,5,2,1 142.7917 24652 152 139.3860 
30,30,30,30,1 0,0,0,0,0 207.75 18793 89 204.0 
30,30,30,30,1 30,30,30,30,1 236.5417 23764 120 232.7826 
30,30,30,30,1 30,10,5,2,1 218.2917 15191 67 214.5326 
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Table 6: Instances with m = 10 

a OPT FF- F F-time v(FFLP) SP- SP-time v(SPLP) 
nodes sec. nodes sec. 

1,1,1,1,1, 49.0 » 100000 45.0 P IS 49.0s 

1,1,1,1,1 
10,9,8,7,6, 232.0 » 100000 225.76 93sm 298m 232.0sm 
5,4,3,2,1 
10,10,10,10,10, 413.5 » 100000 393.5 3s 2S 413.5s 

10,10,10,10,1 
100,1,1,1,1, 126.5 1 5 126.5 1m 1m 126.5m 

1,1,1,1,1 
1000,1,1,1,1, 576.5 1 3 576.5 23sm 7sm 576.5sm 

1,1,1,1,1 

6. Conclusions 

In this paper we have proposed several models for a periodic maintenance scheduling prob

lem that has applications in many different areas. In contrast to previous research, our 

approach has been to fix the length of the period to a given constant T. We describe several 

natural mathematical programming formulations, most of which are integer linear programs. 

We have investigated the computational behavior of these formulations when solving them 

exactly using LP based branch and bound. One of the formulations is a set partitioning 

formulation, that contains a number of variables that is exponential in the cycle length T. 

Among the formulations considered, this formulation has the strongest linear relaxation. We 

have shown how this formulation can be solved using a column generation approach, and 

how the corresponding pricing problem can be solved efficiently. This results in a branch and 

price algorithm. When comparing the computational results of this approach to the results 

obtained through a flow formulation, we conclude that for instances with many machines the 

branch and price algorithm seems more suited, whereas for instances with positive servicing 

costs the flow formulation dominates. 
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