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Dynamic Lot-Sizing models with
Limited Resources

I. INTRODUCTION

This paper considers the lot-size scheduling problem from the
production planner's point of view. Lot-sizing is the process of
determining how much of each product to make and when to make
it. The lot-size decision considers the trade-off between lost pro-
ductivity from frequent set-ups and short runs and the higher
inventory costs arising from longer runs. When the decision has
to consider shared limited production resources, the problem
becomes complex.

A short review of the lot-sizing literature will reveal the
numerous shortcomings with respect to the stated problem. The
traditional Wilson EQQ formula, has the inconvenience of spread-
ing the lot-size decisions over a time continuum when in reality,
most manufacturing decisions are more easily made at discrete
points in time. The decision-maker usually decides at the beginning
of a period whether to schedule a product or not. Moreover de-
mands and costs are assumed to be constant. The issue of discrete
time periods and variability of demands and costs was resolved
by Wagner and Whitin [9]. Given a time-varying demand over
a finite horizon, their model searches for the optimal trade-off
between set-up and inventory costs. Besides the optimal solution
algorithm a number of well-known heuristics were developed such
as periodic order quantity, least unit cost, part period balancing,

* A. D'haeyer ir, Raychem NV ; M. Lambrecht, Doctor in Applied Economics,
K.U.Leuven, We gratefully acknowledge the suggestions and criticism of
Prof. W. Herroelen and Prof. J. Vander Eecken.

179



Silver-Meal heuristic, etc... A description and comparison of these
models are given in [7]. The issue of capacity limits, however, is
handled neither by the EQQ formula nor by the Wagner-Whitin
lot-size algorithm.

The literature dealing with the capacity problem can be divided
into two parts namely the static and the dynamic lot-sizing models
(for single and multi-item- problems). With static we mean that
the demand and the costs for each product are constant through
the (infinite) time horizon. The dynamic models, on the other
hand recognize the fact that production requirements tend to be
anything but uniform, they usually occur in discrete «lumps ».
The static models are dealing with the determination of lot-sizes for
different products under a common constraint such as a limitation
on the number of set-up hours, a constraint on the total amount
invested in inventory or capacity constraints derived from the
medium range or aggregate planning. They usually make use of
the lagrangean multiplier techniques. For a review see [8]. Recent-
ly the dynamic constrained lot-sizing problem received more at-
tention. This very interesting topic will be discussed in this paper.
In section II, a review will be given of the models searching for
optimal solutions. They make use of linear programming or some
more complex non-linear programming techniques. As already
mentioned. the recognition of the capacity problem in a dynamic
environment was trivial, the solution was not. Indeed, none of the
proposed algorithms are fully satisfactory from -a theoretical or
practical point of view. Some of the more practical oriented authors
came up with interesting heuristic approaches. These will be dis-
cussed and criticized in section III. Finally section IV reports on
our experience in an industrial production system.

IL. ALG.ORITHMS FOR THE MULTLPRODUCT CON-
- STRAINED DYNAMIC LOT-SIZING PROBLEM

Consider the problem of finding lot-sizes (production quantities)
for a number of products whose requirements are assumed to be
known over a finite planning horizon. The discrete time periods
can be months or weeks. Aggregate resource constraints (e.g. de-
rived from medium range planning) are taken into consideration.
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These aggregate constraints can be workforce availabilities, limited
production time, etc... The manufacturing process is characterized
by batch-type production operations, a cost is incurred when set-
ting up the production facilities for a given run. The resulting
inventory at the end of each period for each product is penalized.

The existence of a fixed charge (the set-up cost) creates many
problems. Every item that generates a set-up must be treated as
independent, this expands the dimension of the model. The inclusion
of a set-up cost produces a problem of indivisability, in this sence
that if one unit is produced in a certain period the complete set-up
cost is incurred introducing integer variables in the model. The
fixed cost in the objective function introduces non-linearities.in the
cost functions. The resulting large scale, integer, non-linear pro-
gramming model is hard to solve computationally.

Manne [5] was the first author providing a means for hand-
ling the problem. His formulation takes into account a characteris-
tic of the Wagner~-Whitin algorithm for the unconstrained single
product problem, namely that in an optimal unconstrained pro-
duction schedule production will not take place if the ending in-
ventory of the previous period is positive. That simply means
that the order. quantity must satisfy production requirements over
an integral number of periods. Manne's [ormulation goes as
follows. Consider a single product, with a time horizon of 3 periods
(T = 3). Then 4 productlon pohcxes (in general 27-!) are con-
sidered : ‘

— produce in period 1, to satisfy production for periods 1, 2 and 3.

— produce in period 1, to satisfy production for periods 1, and 2
and start up in 3.

— produce in period 1, to satisfy the production reqmrements for
period 1 only, and start-up production in period 2, to satlsfy
the requirements for period 2 and 3.

— produce in every period its own production requirements.

For each product there are 27-* sequences or in total N.2T-1,
where N is the number of products.

Let us define:

X : amount produced by means of production sequence j,

product i, in period ¢.

i=1..N
..J where J = 27—
t=1,..T
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dy : requirements in period ¢, product i.

sy @ set-up cost in period ¢, product i,

v, ¢ variable production cost in period f, product i.

h;, : inventory holding cost in period ¢, product i.

I, : inventory at the end of period ¢, product i.

t; : total production, inventory holding and set-up costs for

sequence j, product i.
l; : usage of the resource for a production quantity Xj,.
Ii;t ku Xm
ki : factor that translates the amount produced into the
usage of the resource.
L, : resource constraint in period f.
@®;; : a variable indicating production sequence j for product i.
The great advantage of introducing variables @;; is that for each
®y; it is easy to compute £;:

T .
ty = X I[Su 8(Xijt) + vie . Xije + by . 1]
t_ .

The usage of the resource per period can be found very easily,
since with each @;; a known production sequence is attached.
The model (A) :

N ]
Minimize Z= X X t;.0, (1)
i=1j=1
s. t.
N ]
T X ly.®y<L t=1,..T (2)
i=1j=1
7"
re=1 i=1.N (3)
=1
e;,=>0 (4)
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Expression (1) states the objective of the model, namely, minimize
variable production, set-up and inventory holding costs. Constraint
(2) represents the constrained resources and (3) indicates that for
each i at least one production sequence ®;; must be selected.
Manne [5] suggested to solve problem (A) by means of
linear programming. If it turns out that the @; are all integer in
an optimal solution to model (A), then the resulting solution is
optimal for the original integer problem formulated below

(model B).

Model (B) :
N T
Minimize Z* = £ X [su Yi + vixi + ho L]
i=1t=1
Subject to:
Loy + 24— 1y = dyy i=1,...N
t=1,..T
N
Z k“.x;,SL, t=l,...T
i=1
X < my . Yy i=1,..N
=1,..T
Y.=0or1
where :
x; = production period ¢, product i.

m; = maximum production period ¢, product i.
Y. = integer variable: if x;;, = 0, then Y;, will be zero.
x; > 0, then Y, will be one.

The solution space of model (B) is not restricted to Wagner-
Whitin sequences, and therefore guarantees the optimal solution
if the model is solved as an integer program. There is a great deal
of confusion about these two models in the literature up to now.
The L.P. results of Manne have been interpreted incorrectly by
many authors. They say that if model (A) is solved as an integer
program the optimal solution will be found. In other words, they
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consider the production sequences represented by the variables
@; as the only candidate schedules for an optimal solution to the
original integer program formulated as model (B). All research is
concentrated on model (A), which is optimal only if the L.P.
solution turns out to be integer. In this case Z = Z*. If N is large
in comparison with T, we may expect that model (A) offers a good
approximation to the optimal solution for the following reason :
there are at most T + N positive variables in the L.P. solution of
model (A), and at least one of these variables will be associated
with each of the N constraints (3). Thus, there are at most T
instances for which more than one @; is positive. If N is much
greater than T, the ®; fractional problem is reduced. Some authors
extended model (A) by including hiring, firing and overtime de~
cisions to make the problem more realistic. Different solution tech-
niques were applied such as column generation techniques [2],
lagrangean relaxation methods [4] and decomposition program-
ming [2].

.None of the proposed algorithms are satisfactory from a
theoretical and practical point of view. The heuristic approaches
discussed in the next section are also based on model (A). It is our
belief that this is not the best direction for further research, but
for many practical considerations it may be the easiest way.

I11. HEURISTIC APPROACHES

The objective of heuristic approaches is to find solutions for com-
plex decision problems with less computational effort compared
with the optimum seeking algorithms, and at the same time to
approach the optimal solution as close as possible. A good heuristic
tries to incorporate in its procedures knowledge about the character-
istics of the optimal solution, The candidate schedules for an optimal
solution are Wagner-Whitin schedules and convex combinations
of these pure strategies. This last category of sequences makes the
solution to the stated problem very hard to solve. Two heuristic
will now be discussed, first, the Eisenhiit [3] heuristic and second,
the Newson [6] approach. Both are concerned with the search for
combinations of Wagner-Whitin sequences, no convex combinations
are considered. This is of course a severe limitation for the heuristics
available in the literature up to now.
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A. Eisenhiit heuristic [3].

The Eisenhiit heuristic starts from a requirement matrix for each
product in each discrete time period, and then tries to group re-
quirements of different periods in the same lot without exceeding
the capacity constraints. For each requirement a coefficient is
calculated which indicates if cost reductions are possible by in-
cluding the requirement in a lot. The derivation of this « appre-
ciation factor » goes as follows :

Single product :

s+ I(T) T
C(T) =——— where I(T) =hX (t—1).d, (5)
T t=1
s : set-up cost.
h : inventory holding cost per unit, per period.

d, : demand in period ¢, t=1,...T.
I(T) : the cumulative inventory holding cost for a lot in-
cluding requirements from period 1 up to T.
C(T) : combined set-up and inventory holding cost per
period for an order cycle of length T. - e
Note that we assume constant costs through time, which we allow
here only for simplicity of the exposition.

T 1T s |
C(T) = — — (6)
T T2 T

It is clear that

I'(T) =h(T—1).dy

T (T—1).T 2 T
"y t—-1)=—-—n--—oeor (T—1)=— 3% (t—1)
t=1 2 . Tt=1
then
2h T 2
I'(T) is replaced by: —— ¥ (t—1).d,=—.I(T) (7)
T t=1 T
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This relation is an equality if d, = d, for all ¢
Substituting (7) in (6), we obtain :

I(T) —s
c(T) =——— (8)
T2
Let C'(T) — 0, and since T has discrete values we find the un-
constrained order cycles T* if ; I(T*) <s
T +1)>s

This is the well known « Part Period Balancing » criterion.

C'(T) can be interpreted as follows :

for T < T* the term C'(T) will be negative indicating a cost

reduction,

for T > T* C'(T) will be positive indicating a cost increase,
C'(T) is in other words the change in cost by including the re-
quirement of period T in the existing lot.

Multi-product case

Up to now the C'(T)-criterion was based on a single product.
‘Eisenhiit extends this coeffxaent to the multi-product case in the
following way ;

c(T); [(s—KT))/T?; j=1,...]
ur),=— = (9)
(dr); (dr);

j stands for the different products.

(dr); for the demand in period T of product j.
The cost reduction C'(T'); for product j is divided by the require~
ments of the last period included in the lot. This factor must be
calculated for each product and for each period. If U(T); is positive
a cost reduction is expected whereas for negative coefficients no
reduction in cost is possible.

Constrained multi-product case

If capacity constraints are active Eisenhiit proposes the following
rule : the order size is increased to include the requirement for a
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period T for the product which shows the greatest potential re-
duction per unit. This is repeated until the capacity constraint is
violated or until no additional cost reduction is possible for any
product.

The different steps in the Eisenhiit heuristic can be summarized
as follows :

Step I : construct the requirements matrix, the rows j,j =1,
... ], stand for the different products and the columns i,i = 1, ... N,
for the different periods, the elements (i, j) indicate the require~
ments for product j, period i.

Step 2 : compute for each product, and for each time period,
except the first, U (T);, negative values need not to be taken in con-~
sideration.

Step 3: fill up the available capacity with the requirements
of the first period (no back-orders are allowed). Units of future
periods are pulled into the order in chronological sequence according
to decreasing values of U(T); This procedure is followed: until
either the capacity for period 1 is exceeded or until no cost re-
ductions are possible.

Step 4 : establish a new matrix by deleting the requirements
of period 1 and all requirements pulled into period 1. It is clear
that in this matrix old period 2 is now period 1, etc... or in other
words the matrix contains now N — 1 periods.

Step 5 : repeat steps 2 to 4 until the requirement matrix only
contains the requirements for period N.
Example : Consider a 3-product, 3-period lot-size problem. The set-
up cost is assumed to be 50 for each product in each period, and the
inventory holding cost is 1 per period per product. (We assume
constant costs only for simplicity of the example). One unit re-
quires one capacity unit.

Step 1: 1 2 3
A 20 | 30 | 40
B 40| 25 | 20
C 1020 | 20
capacity
constraint | 120 { 40 | 90
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Step 2:

e.g. U(Z)Az -

30

1 2 3
A 20" 30 40
{0.16 [ —
B 40* 25* 20
[0.25 | —
C 10* 20* 20
{0,37 | —
cap const 120 ' 40 90
(50 —30) /4
= 0,166

Step 3 : The cells indicated with * are allocated to the lots of
the different products. The capacity absorption in period 1 is

115 units.

Step 4:

1 2
A 30 40
[0.06 |
B 0 20
[037]
C 0 20
[037
40 90

Step 5: repeat the procedure for the new requirement matrix.
No improvements can be obtained compared with the already
feasible requirements matrix.

Solution :
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1 21 3

A 201 30 | 40

B 65 0] 20

Cc 30 01} 20
cap. used | 115| 30 | 80
constraint | 120 ] 40 | 90




Comments :

The heuristic of Eisenhiit has some important advantages. First,
the decision rule based on a marginal anlysis is logic and very
easy to apply in practice. Second, the allocation of capacity occurs
period after period, so that only near future (accurate) data are
needed to make decisions. However, our experience in validating
the heuristic on a sample of artificial and real life test problems [1],
shows the method to have some serious disadvantages :

1. The coefficients U(T); are not always nicely decreasing
over time. It is clear that this causes difficulties in the allocation
process. This unstable behavior of the coefficient is due to the
division of C’(T) by the requirement of period T (cfr formula 9).
Instead of using formula (9), we propose to use the following
formula :

s—I1(T) .
u(T); =—C(T); = (T)i (10)

This coefficient decreases always over time and facilitates the
implementation.

2. The FEisenhiit heuristic goes « uni-directional » through the
requirements matrix without feedback to fill up unused capacity.
As a result, the heuristic will end up frequently with an infeasible
solution. This is certainly the greatest disadvantage of the method.
The only way out is to incorporate feed-back mechanisms. The
following rule was tested : if for period ¢, I < ¢ < N, infeas’ibility
was encountered, reallocate the unused capacity in periods 1,
by including requirements in a lot with less promissing apprecxatxon
factors but decreasing the unused capacity.

3. According to the Eisenhiit heuristic it is possible to start
a production run in a period with zero requirements. That means
that the production run satisfies next periods requirements. This
will cause, depending on the cost structure, too high inventory
holding costs.

In summary we can say that fairly good results were obtained
by introducing the following modifications in the heuristic :

— one, use formula (10).
— two, do not start a production run if the period requirement is
zero.
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— three, incorporate feedback mechanisms to avoid infeasibility.

Note that the Eisenhiit appreciation factor was based on the
Part Period Balancing lot-sizing technique. Alternative rules can
be found based on other unconstrained lot-sizing heuristics. We
dirived an appreciation factor based on the Silver-Meal heuristic,
which has been found to be the best heuristic [7].

rery s+ IKT)
C(T) = — (see equation 5)
e T T

I(T) s+IT) s+IT) s+IT)
S S e e T Ty

let M(T) =s+I(T)
then M(T + 1) =s+ I(T) +I'(T)

M(T+1) (T+1)M(T)

c(T) = _
T T
M(T+1) M(T)
» T+1 T
C(T) = (11)
 T/T+1

Let C'(T) ~> 0, then the order cycle T* is found if :

M(T*) M(T* + 1)
< :
T T + 1

or the average cost per period for an order cycle of length T* is
smaller than the average cost for an order cycle of length T* + 1.
This is in fact the Silver-Meal heuristic [7].

The appreciation factor is :

M(T) M(T+1)
T  T+1
U(T+1);=( ); (12)
T/T+1
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A positive U(T + 1); means that cost reductions may be expected
by including the requirements of period T + 1 in the lot. For
T =1 there is no coefficient, note however that this is not a dis-
advantage since first period requirements must always be satisfied.
The disadvantage of this coefficient is that for highly fluctuating
requirements the coefficient becomes unstable. The advantage of
the proposed coefficient (12) is that the underlying Silver-Meal
procedure is better than the Part Period Balancing method [7].
If the capacity constraints are not too restrictive better results are
obtained.

B. Capacitated lot-size problem (C LS P)-—P. Newson [6]

Newson [6] also developed a heuristic for a production facility
with limited fixed resources. He first considers the single product -
case and next the multi-item problem.

The single-product lot-sizing scheduling problem (with no
capacity constraints) may be represented as a shortest route pro-
blem. Consider the three-period single product model of figure 1.

fig 1

There are 2T-1 or for our example 4 paths through the net-
work of our three period problem, corresponding to the 4 pure
production plans (see section II). Each arc b; represents the
amount produced in period i -+ 1, to satisfy production require-
ments for period i+ 1,...j, the corresponding cost (set-up and
holding costs) is denoted by c¢;;. There are always T'(T+1)/2 arcs
in the network. The minimum cost path through the network is
the-optimal unconstrained production plan. Denote this cost by ¢°.
Under the assumption of limited resources a Next Best Path
(NBP) will be defined as the path which relieves some infeasibility
at the least marginal cost. It is an optimal path through the net-
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work with the currently infeasible arcs deleted. Suppose e.g. that
the optimal unconstrained solution is infeasible in period ¢+ 1,
which means that the capacity limitation is exceeded in period
t + 1. The arcs which are responsible for this infeasibility, for
example arc b,; (production in period ¢ + 1, to satisfy requirements
up to j) must of course be eliminated from the network as well as
the arcs of higher order namely arcs by, [>>], since they represent an
even greater amount of production and hence infeasibility. ,

The optimal path through this reduced network is the Next
Best Path, with total cost equal to c¥*%. The decrease in infeasibility
in period ¢ + 1, is denoted by

— 0
Aw, g = Wy — whow,

where w,,, denotes the capacity absorption in period ¢ + 1.

The difference in cost between the old and new production plan
is equal to B

Ac = cNW —¢°®

Ac
The coefficient D] =
Aw; _

is  the implied marginal cost of capacity in the selected infeasible
period. This procedure continues until all infeasibilities are eli-
minated. We will now develop the extension of the NBP-concept
to multi-product problems. If more products are involved, the pro-
blem becomes more complex. Indeed, arcs to be deleted must now
be carefully chosen so that the deletion is least likely to effect
adversely the final feasible solution. For that reason a criterion
which selects among NBP's (for each product) should be a reliable
measure of present and future efficiency of that NBP. A NBP
.must be selected for each infeasible period and for each product.
For the derivation of a multi-dimensional DJ, Newson reasons as
follows. :

Define t© as any period ¢ (¢ =1,2,... T) for which the available
capacity is exceeded.

Define §(f,) = 0 if the capacity is not exceeded in period t.

. - =1 if the capacity is exceeded in ¢.
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AC;
DJit = i=1,...,N (13)
Z, [6(f) . Aw,] < as defined

The NBP to enter solution has the minimum non-negative D], or

minyt D] = 0

The nominator gives the difference in cost between the previous
and the new defined NBP for product i, if period © was the selected
infeasible period. The denominator is an identification of the change
in infeasibility over the horizon, since Awt, gives the change in
capacity absorption between the old and new program . (for pro-
duct i) and §(f,) indicates whether period ¢ is feasible or not. We
are assured of a decrease in infeasibility in period v by construction
(we eliminated the necessary arcs), but the NBP may have de-
creased infeasibilities elsewhere (as we sum over all ¢). It is also
possible that the denominator is negative indicating an overall
increase in infeasibility. Therefore we only select positive DJ;t
coefficients. For each 1 there will be N NBP's. If there are Q in-
feasible periods, there will be N. Q NBP’'s among which a selection
is done.

Algorithm :

1. For each infeasible period =, determine a NBP for each product
(remember that the arcs which are responsible for infeasibility
must be eliminated ; it is clear that at least one path through
the network must exist). ‘

2. Evaluate the DJ for all NBP's according to formula (13), and
select the minimum DJ;v > 0. For the selected product that
enters the solution, the eliminated arcs are definitely cancelled,
whereas for the non-selected products the old network is re-
stored.

3. If the solution is still infeasible go to 1, otherwise stop.
An example will illustrate the procedure. Consider the same example
as in section III.A. Before starting the Newson heuristic, we will
determine the unconstrained lot-sizes by means of a shortest route
algorithm. The networks for the 3-products 3-periods example are
as follows, with the shortest route indicated by means of heavy
arrows : :
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-160

80 90
product A: 50 50 50
115
75 - .75
product B : 50 _.@SO—SO
115

' 70 70
product C: 50 ——0—750&)—50

The resulting optimal unconstrained lot sizes are :

1 | 2] 3
A 501 0| 40
B 81 0 0
C 50| 0 0
total 185 0] 40
Avail cap. | 120 | 40 | 90

According to the Newson heuristic :

Step 1 : the capacity limit is exceeded in the first period. This
meanst = lor §(f,) = 1,8(f.) =0,8(f:) = 0. ’
A NBP must be determined for each product. The resulting net-
works after the elimination of arcs responsible for the infeasibilities
are given below. The corresponding NBP is indicated by heavy

lines.
90
product A: (Om=50 50 ——O——h}

75 70
product B : M&)‘%
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and the two possible NBP’s for product C:

70 70

product C m—‘h
| 70 70

O O30 2O0—30 20

calculation of the DJ-coefficients :

Step 2:

product A: Ac, = 140—130=10
Awgy, = 0— 70 =-—-70 X0= 0
Aws; = 40— 0= 40 X0= 0
z 8(f)-Aw, = 30
t
DJ4, = + 10/30 = 0,33
product B; Acy = 120—115=5
Awp, = 0—45 =45 X0= 0
Awgy = 0— 0= 0 X0= 0
45
DJg = 5/45 = 0,11
product C:
solution C, Ace = 120—110=10
Awe, = 00— 40 = —40 X0= 0
Awgy= 0— 0= 0 X0= 0
40

DJ¢, = 10/40 = 0,25
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solution C, Awey = 50—30= 20 =~ X 1=20

Awe; = 0— 0= 0 X0= 0
Awes = 0—20 =—20 X0= 0
20

DJ., = 10/20 = 0,5
The minimum DJ; > 0 is DJg, = 0,11.

Therefore the reduced product B network will enter the solution
and the arc bys is definitely cancelled. The result of this first run is :

1 2 3
A 50 0 | 40
B 40 | 45 0
C 50 0 0

total 140 | 45 | 40
Avail cap. | 120 | 40 | 90

Although we reduced the infeasibility in period 1, we introduced
an infeasibility in ‘period 2. Therefore © will now be equal to 1
and 2. And we start the previous procedure again.

After four additional runs through the algorithm we obtain the

same constrained solution as the one obtained by the Eisenhiit

method, illustrated in section II1.3.

The Newson heuristic has a number of interesting advantages :

1. If the sum of capacities is greater than the sum of the require-
ments for each product, for all periods, then the heunstxc will
~always find a feasible solution.

2. The algorithm can easily be extended to mclude more than one
constraint.

The disadvantage is that for highly constrained resources in grow-

ing industries, several runs through the algorithm are necessary in

order to find the first feasible solution. The computer time is
much larger compared with the Eisenhiit heuristic.
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IV. IMPLEMENTATION - CASE STUDY [1]

The production system we analyzed can be characterized as a
job-shop or intermittent system according to a sequential 3 ma-
chine- N product production process. The finishing operations
(cutting, printing of a tradename or reference number, pack-
aging,...) were excluded from the planning process. To provide
effective managerial support to the decision making in production
planning, it is useful to partition these decisions in a hierarchical
framework (long range, medium range and short range planning).
Aggregate decisions are made first and impose constraints within
which more detailed decisions have to be made such as the lot-size
decisions discussed in this paper. In turn, detailed decisions provide
the feedback to evaluate the quality of aggregate decision making.
Each hierarchical level has its own characteristics such as the length
of the planning horizon, the level of detail of the required infor-
mation and the managers in charge of the execution of the plans.
What is really needed is an interaction mechanism among the
different hierarchical levels in order to improve the decisions at
all levels. We consider this problem as being of the utmost im-
portance in the design of integrated production systems. To assure
this linkage the intervention of the decision maker is necessary
and techniques embedded in the process must be flexible enough
to meet changing business circumstances.

Our integrated production system goes along the following
lines :

Step 1: The existing and forecasted order portfolio was
broken down into its components through the use of a bill of
materials file. This process gives the requirements structure for
the different operations departments.

Step 2 : Infinite loading. A time phased production program
is constructed in the absence of capacity constraints.

Step 3: Aggregate production model. The infinite loading
program of step 2 is used as input for a graphical aggregate pro-
duction model that results in a capacity plan for the major bottle~
neck machine groups.

The cumulative production program is projected against the cumul-
ative effective working time in different shift regimes with and
without overtime. The purpose is to find a capacity smoothing plan
that balances the overtime-undertime costs and the costs associated
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with inventory build-up.

Step 4: Finite loading. The capacity plan gives the con-
straints for our constrained lot-size submodel. At this stage of the
procedure the lot-size heuristics discussed in this paper were tested.
Our modified Eisenhiit heuristic was used because it requires less
computational effort. In order to avoid infeasibilities, feedback
mechanisms had to be incorporated and manual intervention was
still necessary to find feasible plans. An eight week planning
horizon was used. The capacity constraints were those of the
major bottleneck machine group. The resulting lot-sizes were
compared with the capacity limits of the other two machine groups
and adjustments were made when necessary. The set-up and
change-over time were also introduced in the lot-size submodel.

Step 5: Operations scheduling. As a result of step 4 a week-
to-week production plan is obtained, these plans are the input for
the day-to-day sequencing problem for the different machine
groups. Existing scheduling algorithms were used for this se-
quencing problem.
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