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When performing an experiment, the observed responses are often influenced by a temporal 
trend due to aging of material, learning effects, equipment wear-out, warm-up effects, etc. 
The construction of run orders that are optimally balanced for time trend effects relies on the 
incorporation of a parametric representation of the time dependence in the response model. 
The parameters of the time trend are then treated as nuisance parameters. However, the price 
one has to pay for by purely parametric modeling is the biased results when the time trend 
is misspecified. This paper presents a design algorithm for the construction of optimal run 
orders when kernel smoothing is used to model the temporal trend nonparametrically. The 
benefits of modeling the time trend nonparametrically are outlined. Besides, the influence 
of the bandwidth and the kernel function on the performance of the optimal run orders is 
investigated. The presented design algorithm shows to be very useful when it is hard to model 
the time dependence parametrically or when the functional form of the time trend is unknown. 
An industrial example illustrates the practical utility of the proposed design algorithm. 

Keywords: Dt-optimality; exchange algorithm; kernel smoothing; run order; non parametric 
regression; simulated annealing; time trend; 
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1 Introduction 

Performing experiments in a time sequence often creates time order dependence in the 
observed responses. Incorporation of time trend effects results into the mathematical 
model 

y = f'(x)a + g'(t)f3 + c, (1) 

with f(x) the p x 1 vector representing the polynomial expansion of x for the response 
model, g(t) the q x 1 vector representing the polynomial expansion for the time trend, 
expressed as a function of time t E [-1, 1], a the p x 1 vector of important parameters 
and f3 the q x 1 vector of parameters of the polynomial time trend. The independent error 
terms c are assumed to have expectation zero and constant variance 0"2. In this paper, no 
interaction effects between x and t are considered, an assumption which holds in many 
practical situations. For n observations, it is convenient to rewrite (1) as 

y = Fa + Gf3 + e, (2) 

with y an n-dimensional vector of observed responses and F and G the n x p and the n x q 
design matrices respectively. When primary interest is in the precision of the parameter 
estimates, the construction of run orders that are optimally balanced for time trends is 
based on maximization of the information on the important parameters a, whereas the 
parameters f3 modeling the time trend are treated as nuisance parameters. The resulting 
run order is called the Vroptimal run order 8Vt . The value of the optimality criterion 
equals 

I 
F'F F'G I 
G'F G'G 

V = = IF'F - F'G(G'G)-lG'FI 
t IG'GI . 

(3) 

In the absence of time trend effects, the V-optimal design 8v maximizes the determinant 
of the information matrix, i.e. V = IF'FI. Atkinson and Donev (1996) compare the 
V-optimal and the Vroptimal design through the trend factor 

TF(8 )={Vt(8Vt )}1IP 
Vt V(8v ) (4) 

The power lip ensures that the trend factor has the dimension of variance. This means 
for instance that a design 8vt with trend factor 0.5 has to be replicated twice in order 
to be equally informative as the V-optimal design. Bradley and Yeh (1980) define a 
design to be trend-free if the treatment effects are orthogonal to the polynomial trend 
components. In the context of regression designs, this condition comes down to F'G = o. 
As a result, a trend-free design has the maximum value of the trend factor, namely 
TF(8vt ) = 1. In situations where it is impossible to obtain completely trend-free run 
orders, TF(8vt ) will be less than 1. Based on Atkinson and Donev (1996), Tack and 
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Vandebroek (2001) present a design algorithm for the construction of cost-efficient run 
orders that are optimally balanced for known time trends. For example, they compute 
optimal run orders for design problems in which drift deteriorates the sensitivity of a 
spectrophotometer or the performance of a polisher used in the electronics industry. 

The next section illustrates that if the time dependence is misspecified, the computed 
Droptimal run orders become less useful. 

2 Misspecification of the time trend 

Every good book on econometric models shows that excluding relevant variables from a 
statistical model leads to biased and inconsistent parameter estimates. On the other hand, 
including an irrelevant variable in the model gives unbiased and consistent parameter 
estimates but the estimated variances of the parameters are larger. In this paper, we 
assume that the response model fin (1) is specified correctly and we confine ourselves to 
potential misspecification of the time trend. The next two sections describe the effects of 
misspecification of the time trend on the bias and the precision of the important parameter 
estimates n. 

2.1 Bias of important parameter estimates 

Consider as an example an experimenter who postulates a polynomial time trend of order 
q = ql. The assumed statistical model then equals 

(5) 

with G 1 the n x ql extended design matrix for the time trend and i31 the vector of ql 
trend parameters. However, if the true time trend contains ql + q2 parameters, the true 
regression model is 

(6) 

with G 2 and i32 related to the q2 trend parameters discarded by the experimenter. Based 
on (5) and (6), it is proven in appendix 1 that the bias introduced by misspecification of 
the time trend is equal to 

This means that underspecifying the order of the time trend leads to biased parameter 
estimates n. For a trend-free design, F'G1 = 0 and (7) simplifies to 

(8) 

As a matter of fact, if the important effects would also be orthogonal to the q2 omitted 
trend parameters, the bias (8) disappears. 

3 



On the other hand, if the fitted response model is 

(9) 

and the true regression model 

(10) 

the parameter estimates & are unbiased. The proof is given in appendix 2. However, in­
cluding irrelevant parameters leads to inefficient estimates. The next section will illustrate 
the loss in precision of the parameter estimates if the order of the trend is overspecified. 

2.2 Precision of important parameter estimates 

Besides biased parameter estimates resulting from model underspecification, the following 
example illustrates how overspecification of the temporal trend leads to a decrease in the 
precision of the important parameter estimates &. An experiment is conducted to evaluate 
the homogeneity of the amount of nitrogen in steel rods. The steel rods are produced 
on a blast-furnace and the three variables under study are the reheating temperature in 
degrees Celsius, the amount of carbon added in terms of percentage and the amount of 
chromium added in terms of percentage. The number of observations equals 20 and the 
coded factor levels are shown in table 1. 

Table 1: Factors and factor levels in the nitrogen experiment 

factor 
reheating temperature Xl 

amount of carbon X2 

amount of chromium X3 

coded levels 
-1, 1 

-1, -0.78, 1 
-1, 0.4, 1 

The response model is represented by f'(x) = [1,XI,X2,X3,XIX2,XIX3,X2X3,X~,x~l and the 
observations are expected to be influenced by time trend effects because previous work 
revealed that the nitrogen contents decreased drastically as the day went on. Vroptimal 
run orders will be constructed for the following postulated time trend models: 

As an illustration the Vt-optimal run orders are shown in table 2. The computed Vr 
optimal run order for time trend gl is completely trend-free. However, the trend factor of 
the Vt-optimal run order for time trend g2 equals 0.913 and that of the Vt-optimal run 
order for time trend g3 equals 0.905. Consequently, one observes that the Vt-value of the 
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Table 2: Vt-optimal run orders for different time trends in the nitrogen experiment 

gl(t) g2(t) g3(t) 
run Xl X2 X3 Xl X2 X3 Xl X2 X3 

1 1 1 0.4 -1 -0.78 -1 -1 -1 0.4 
2 -1 -1 1 -1 1 1 1 -0.78 -1 
3 -1 1 -1 1 -1 0.4 -1 1 -1 
4 1 -0.78 0.4 1 1 -1 1 1 1 
5 -1 -1 -1 1 -1 1 1 -0.78 1 
6 -1 -0.78 1 1 1 -1 -1 -1 1 
7 1 1 -1 -1 -0.78 0.4 -1 1 0.4 
8 1 1 1 -1 1 1 1 1 -1 
9 1 -0.78 1 -1 -1 0.4 -1 -0.78 0.4 
10 -1 1 0.4 -1 1 -1 1 -1 -1 
11 -1 -0.78 1 1 1 1 -1 -1 -1 
12 -1 1 1 -1 -0.78 1 1 -0.78 0.4 
13 1 -1 1 -1 -1 -1 -1 1 -1 
14 1 -0.78 -1 1 -1 -1 1 1 0.4 
15 -1 -0.78 -1 1 -0.78 1 1 -1 1 
16 -1 1 -1 -1 1 0.4 -1 -0.78 1 
17 1 -1 0.4 1 -0.78 -1 -1 1 1 
18 1 1 -1 -1 1 -1 1 1 -1 
19 1 1 1 1 1 0.4 -1 -0.78 -1 
20 -1 -1 0.4 -1 -1 1 1 -1 0.4 

optimal run orders diminishes as the order of the postulated time trend becomes larger. 
Alternatively stated, the larger the order of the time trend, the more information is lost 
on the important parameters. 

It is also important to investigate how the computed run orders perform when the true 
temporal trend differs from the postulated one. For the sake of clarity, the true time trend 
will be denoted as g. For several polynomial time trends, table 3 shows the difference in 
terms of percentage between the trend factor of the Vt-optimal run order when the time 
trend is specified correctly as g and the trend factor of the run order computed with pos­
tulated time trend gi. This difference in trend factor is used as a measure of the difference 
in precision of the important parameter estimates. For instance, misspecification of a true 
quadratic time trend g = g2 as a linear time trend gl involves a decrease in the trend 
factor of about 8.13%. Remark that the decrease in information due to misspecification of 
the order of the time trend especially comes true when the true time trend g is of higher 
order than the postulated one. Consequently, the nitrogen experiment shows that due 
to misspecification of the order of the time trend one can end up with a Vroptimal run 
order that is far from the Vt-optimal run order for the true time trend. 
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Table 3: Relative difference in trend factor between Dcoptimal run orders for correct 
specification of the time trend and misspecification of the order of the time trend 

postulated true time trend 
time trend g = gl g = g2 g = g3 

gl 0 8.13 8.77 
g2 0.01 0 11.01 
g3 0.52 0.73 0 

As a conclusion, the bias results of section 2.1 and the precision results of section 2.2 
clearly illustrate the need to develop design methodologies that are less dependent on 
the assumed functional form of the model and that better guard against misspecification 
of the time trend. Besides, many time trend effects due to aging or wear-out have a 
complicated behaviour and the experimenter would benefit from design strategies that 
no longer need a specification of the functional form of the time trend. In this paper, 
the main emphasis is on the construction of run orders that are optimally balanced for 
nonparametric time trends. 

A detailed description of nonparametric and semi parametric regression techniques can be 
found in HardIe (1990). In this paper we confine ourselves to the widely spread and well 
known kernel smoothing technique used in non parametric regression. The next section 
shortly reviews kernel regression and section 4 gives a literature review of the application 
of nonparametric regression techniques in optimal design. Section 5 introduces a new 
design criterion to compute optimal run orders in the presence of nonparametric time 
trends and our design algorithm is outlined in section 6. Section 7 illustrates the benefits 
that result from modeling the time trend nonparametrically. Finally, section 8 provides 
a practical example. 

3 Kernel smoothing in nonparametric regression 

Nonparametric regression forms a collection of techniques for estimating a regression 
curve without making strong assumptions about the shape of the true regression function. 
Suppose we are given n observations {(Xi, Yi)}f=l satisfying the model 

Yi = !(Xi) + ci, (11) 

where {ci}f=l are independent random error terms with zero mean and constant variance 
(J'2 and! is an unknown function. Assume that a ::; Xl < ... < Xn ::; b for finite constants 
a and b. The aim of non parametric regression is to produce a reasonable estimate of the 
unknown function f. This curve estimation procedure is commonly called smoothing and 
the idea is based on local averaging. This means that an estimate of Y at point X is given 
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by 

n 

y(X) = L Wi(X)Yi, (12) 
i=1 

where {Wi(X)}r=1 denotes a sequence of weights that depend on {Xi}~I' Generally speak­
ing, the further away the points Xi from X, the smaller the weight Wi(X). This means that 
only points Xi in the neighbourhood of X are given a non-zero weight Wi(X), Because the 
estimate y is a linear combination of all Yi,these smoothers are often referred to as linear 
smoothers. Based on (12), the n-dimensional vector of estimates Y(Xi) can be written as 

Y= Sy, (13) 

where S is called the smoother matrix with elements 8ij = Wj(Xi) and i,j E {l, ... ,n}. 
The amount of averaging is controlled by the weight sequence {Wi(X)}r=1 which is tuned 
by a smoothing parameter. This smoothing parameter regulates the size of the neigh­
bourhood around X and balances the degree of fidelity to the data against the smoothness 
of the estimated curve. 

Among several methods for choosing the weights Wi(X), we confine ourselves to kernel 
smoothing because it is one of the simplest ways to compute the weight sequence. In 
kernel regression, the smoothing parameter is referred to as the bandwidth A and the 
weights are defined as 

with K the kernel function satisfying 

II K(u)du = 1, 

) ,1 xIK(u)du = 0, 
-1 

(14) 

for 1 = 1, ... ,m - 1 and m called the order of the kernel. The support of K is on [-I,IJ. 
The resulting estimator (12) is often referred to as the Nadaraya-Watson estimator and 
the denominator of (14) divided by nA is called the Rosenblatt-Parzen kernel density 
estimator. 

Generally speaking, an increased bandwidth A results into an oversmooth curve with de­
creased variance of y, but with increased bias. On the other hand, defining the smoothing 
parameter so that it corresponds to a very small neighbourhood would make y very wig­
gly. In this case the variability of y would be inflated. The trade-off between bias and 
variance can be made more precise by investigating the large sample properties of the 
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regression estimators. If the sample size n goes to infinity, the bandwidth A to zero and 
nA to infinity, it can be shown that the mean squared error E{i/(x) - y(x) F is equal to 

(15) 

The first two terms denote the squared bias [E{i/(x)} - y(x)F and the last two terms 
represent the variance of i/(x). One easily sees that the bias disappears when the band­
width A goes to zero and the variance disappears when nA goes to infinity. Gasser et 
al. (1985) derive expressions for kernels K that minimize the asymptotic variance. They 
also derive expressions for optimal kernels K, i.e. kernels that minimize the optimal inte­
grated mean squared error l;E{y(x) - y(x)Fdx. The optimal integrated mean squared 
error is calculated as the integrated mean squared error with a bandwidth A for which 
the integrated mean squared error is a minimum. Table 4 provides examples of minimum 
variance kernels and optimal kernels. Note that kernel function K4 is often referred to as 
the Epanechnikov kernel (Epanechnikov, 1969). 

Table 4: Examples of minimum variance kernels and optimal kernels 

order m minimum variance kernel 
Kl 2 1/2 
K2 4 3/8( -5u2 + 3) 
K3 6 15/128(63u4 - 70u2 + 15) 

order m optimal kernel 
K4 2 3/4( -u"2 + 1) 
K5 4 15/32(7u4 - lOu2 + 3) 
K6 6 35/256( -99u6 + 189u4 - 105u2 + 15) 

The accuracy of the estimated curve is not only a function of the kernel K, but de­
pends also on the bandwidth A. Various data-driven methods such as cross-validation 
(Clark, 1977) and generalized cross-validation have been proposed for choosing the band­
width parameter A that minimizes a function of the mean squared error. Ordinary cross­
validation leaves the data points out one at a time and chooses that value of A under 
which the missing data point is best predicted by the remainder of the data. Craven and 
Wahba (1979) introduced generalized cross-validation in which the optimal bandwidth A 
is chosen so as to minimize 

(16) 

with H the hat matrix defined by y = Hy. In nonparametric regression, the hat matrix 
H equals the smoother matrix S. Craven and Wahba (1979) show that, when n goes 
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to infinity, the mean squared error with A determined from minimizing (16), tends to 
a minimum. Calculating the optimal bandwidth based on generalized cross-validation 
is computationally less expensive than ordinary cross-validation and Rice (1984) applies 
generalized cross-validation in kernel smoothing. Because of the fact that prior to the 
experiments no observations Yi are available, these data-driven methods cannot be used 
to select an appropriate bandwidth when designing an experiment. This problem will be 
dealt with in section 8. The next section gives a literature overview of nonparametric 
design of experiments. 

4 N onparametric optimal design 

A few approaches to nonparametric optimal design have been encountered in the litera­
ture. Muller (1984) uses the optimal integrated mean squared error as the criterion to 
be minimized and shows that for univariate and fixed kernel regression, i.e. where the 
same bandwidth is used for any estimation point x, the optimal density of the design 
points is uniform. Muller (1984) also shows that when the bandwidth is a function of x, 
then asymptotically the optimal design density is some function of the roughness of the 
unknown function f and of the order of the kernel function used. 

Based on Muller (1984), Faraway and Rothman (1989) tackle the problem of sequentially 
selecting the design points for a nonparametric regression problem. In sequential design, 
the decision on the position of the next design point is based on the previous observations. 
The advantage of sequential design is that significantly larger precision can be obtained 
for the same sample size as used in non-sequential experimental design. Faraway and 
Rothman (1989) consider univariate kernel regression by which the design points are 
chosen so as to make the density of the actual design points as close as possible to the 
estimated optimal density of the design points. They present a method that both selects 
the local bandwidth required for the regression estimate and the optimal location of 
the next best design point. Faraway (1990) extends this method to the nonparametric 
estimation of surfaces. 

Another application of univariate nonparametric regression in optimal design of experi­
ments comes from Butler (1989). He shows that Q-optimal polynomial designs are also 
Q-optimal for smoothing splines1 if the smoothing parameter is sufficiently large. For 
smaller values of the smoothing parameter, in a number of cases the optimal designs can 
be calculated analytically. Butler (1990) derives multivariate optimal densities of the 
design points for the weighted V-optimality criterion. 

The next section elaborates our approach to the nonparametric representation of the time 

I In spline smoothing, the best compromise between goodness of fit and roughness is obtained by mini­

mizing .z=~=l {Yi - f(Xi)}2 +A J: {J(2) (u)Pd71 .. The cubic spline is the unique solution to this minimization 
problem and is composed of cubic polynomials between any two successive values Xi and Xi+l. Besides, 
the cubic spline and its first two derivatives are continuous at the observation points and at the boundary 
points Xl and Xn the second derivative of j is zero. 
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dependence. Because in this paper primary interest lies in the precision with which the 
parameters a are estimated, we present an extension of the Vt-optimality criterion to 
semiparametric regression designs. 

5 Semiparametric optimal design 

For the parametric model (2), the normal equations for determining a and f3 equal 

F'Fa = F'(y - G(3) (17) 

and 

G'Gf3 = G'(y - Fa). (18) 

In view of what will follow, we rewrite (18) as 

Gf3 = G(G'G)-lG'(y - Fa). (19) 

However, when no assumptions are made about the functional shape of the time trend, 
the model for the observed responses equals 

y = f'(x)a + g(t) + c, (20) 

with g(t) an unknown function representing the time trend. For n observations, the 
partially linear or semiparametric model (20) can be rewritten as 

y=Fa+g+e, 

with time points tl, ... ,tn and g' = [g(t1), ... , g(tn)]. In this case, there is no parameter 
vector f3 and the normal equations (17) and (19) become meaningless. Therefore, Green 
et al. (1985) propose to adapt (17) and (19) to 

F'Fa = F'(y - g) (21) 

arld 

g = G(G'G)-lG'(y - Fa) (22) 

respectively. Besides, they replace the projection matrix G(G'G)-lG' by the smoother 
matrix S defined in (13) and obtain 

g = S(y - Fa). 

For kernel regression, the smoother matrix S is given by 

S= 
K(¥) 

I:~=1 K( 'i :n ) 
10 

K(~) 
I:~, K('i /, ) 

K(~) 
L:~=l K(tj ~tn) 

(23) 

(24) 



The Green-Jennison-Seheult estimators (Green et al., 1985) are then 

CxGJS 

YGJS 

(F'(1 - S)F)-lF'(1 - Sly, 

S(y - F&GJs), 

and the variance-covariance matrix of CxGJS equals 

(25) 
(26) 

(27) 

with F defined as (I - S)F. In this paper, run orders will be preferred that maximize 
the amount of information on the important parameters CxGJs. Based on (27), the cor­
responding optimality criterion equals 

(28) 

Speckman (1988) provides another way of estimating the parameters in model (20) by first 
adjusting F and y for t by defining y = (I - Sly and F = (I - S)F and then regressing 
the residual y on the residual F. The resulting estimators are 

(F'F)-lF'y, 
S(y - FCxpr ). 

(29) 
(30) 

The index pr refers to the fact that the estimate Cxpr is computed by regression on partial 
residuals. The variance-covariance matrix of the parameters Cxpr equals 

(31) 

In case of partial residuals the criterion to be maximized then equals 

(32) 

It can easily be shown that if S is a symmetric idempotent matrix, i.e. S = S' = S2, then 
CxGJS and Cxpr will be identical estimators. If the smoother matrix vanishes from (28) 
and (32), then both criteria come down to the V-optimality criterion IF'FI. On the other 
hand, when the temporal trend is modeled parametrically, the smoother matrix S has to 
be replaced by G(G'G)-lG' and both optimality criteria then equal the Dt-optimality 
criterion (3). Finally, when the bandwidth ,\ goes to infinity, it can be verified that both 
criteria (28) and (32) simplify to Dt = IF'(1 - S)FI with S = (1/n)11'. However, a 
major drawback of both estimation procedures is that the resulting estimators are biased. 
Speckman (1988) theoretically proves that for the optimal bandwidth, the asymptotic 
bias of Cxpr is of lower order than the bias of CxGJ s. Section 7 extensively investigates 
bias problems in semiparametric optimal design with finite sample sizes. 
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Remark that with the Green-Jennison-Seheult method and the method based on partial 
residuals the intercept term in response model f(x) is not estimable. Because the row 
elements of the smoother matrix (24) add up to one, the column corresponding to the 
intercept in F = (1- S)F would only contain zero entries. This inevitably leads to singular 
matrices F'F and F'F in (27) and (31) respectively. For that reason, in the sequel of this 
paper the intercept is omitted from the response model f(x). 

The next section describes our proposed design algorithm for the construction of V t-

optimal run orders in the presence of nonparametric time trend effects. 

6 The design algorithm 

Based on the Vt-optimality criterion defined in (3), Tack and Vandebroek (2000a, 2000b, 
2001) developed exchange algorithms for the construction of cost-efficient or budget con­
strained run orders that are optimally balanced for parametric time trends. In this section, 
we present a simulated annealing algorithm for the construction of Vt-optimal run orders 
when the time trend is modeled nonparametrically. 

6.1 Outline of the algorithm 

The aim of the proposed exchange algorithm is the construction of optimal run orders 
by allocating a user-specified number of observations n selected from a candidate set of 
d distinct design points to n out of h available time points so as to maximize the value 
of the Vroptimality criterion (28) or (32). The allocation occurs with replacement since 
the number of design points d is usually smaller than the number of observations n. After 
reading the input, a starting run order is constructed by allocating n randomly chosen 
design points to n randomly chosen time points. Next, the starting run order is subject 
to iterative improvements by evaluating the effect on the criterion value of three different 
design changes. The first design change consists of the deletion of a randomly selected 
design point Xi at time point tk and the addition of a design point Xj i- Xi randomly 
selected from the candidate list at the same time point tk. The second design change 
consists of the interchange of two randomly selected design points (Xi, tk) and (Xj, tl) 
with Xi i- Xj. The last design change concerns the deletion of a randomly chosen design 
point Xi at time point tk and the addition of a design point Xj randomly selected from 
the candidate set at a not yet occupied and randomly chosen time point tl. The design 
change leading to the largest positive effect on the optimality criterion (28) or (32) will be 
executed. This iterative improvement continues as long as a design change increases the 
criterion value. In order to avoid being stuck at a local optimum, the probability of finding 
the global optimum can be increased by repeating the search several times from different 
starting run orders or 'tries'. Additional avoidance of ending up in a local optimum can 
be obtained by applying simulated annealing techniques. Simulated annealing offers the 
ability to migrate through a sequence of local extrema in search of the global solution. 
Simulated annealing is extensively described in the next section and for a detailed outline 
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of the implemented design algorithm, we refer the interested reader to the appendix 3. 

Finally, note that unlike conventional exchange algorithms, we can no longer make use of 
simple update formulas for the optimality criteria (28) and (32). This is due to the fact 
that these optimality criteria cannot be written as sums of outer products. 

6.2 Simulated annealing 

An excellent review of simulated annealing can be found in Rayward-Smith et al. (1996). 
The ideas that form the basis of simulated annealing date back to Metropolis et al. 
(1953). They developed an algorithm to simulate the change in energy of material in 
a heat batch when subjected to a cooling process, until it converges to a frozen state. 
For the behaviour of mechanical systems such as the one described by Metropolis et al. 
(1953), it is impossible to perform an exhaustive analysis of the possible energy states of 
the system. Consequently, one must have recourse to a statistical analysis. For instance, 
when atoms of a molten metal are cooled to a freezing temperature, they will tend to take 
relative positions in a lattice in such a way as to minimize the potential energy of their 
mutual forces. Because of the very large number of atoms and possible arrangements, the 
final state will most likely correspond to only a local energy minimum and not a global 
one. The solidified metal may be reheated and cooled slowly with the hope that it will 
then migrate to a lower energy state. In metallurgy this process is called annealing. In 
statistical mechanics, the probability that a system will transit from the state with energy 
el to the state with higher energy e2 is exp((el - e2)/kT) with k the Boltzmann constant 
and T the absolute temperature. The lower the temperature, the smaller the probability 
of transition to a higher energy state. 

Kirkpatrick et al. (1983) and Cerny (1985) independently showed that the Metropolis 
algorithm could be applied to optimization problems by mapping the elements of the 
physical cooling process onto the elements of a combinatorial optimization problem. By 
this, simulated annealing could be used to find a global extremum of an objective func­
tion that has many local extrema. At the same time, it should be emphasized that the 
algorithm is a heuristic one and that the final optimum is not necessarily global. Firstly, 
an initial solution is randomly chosen or specified depending on available information. 
Suppose that the corresponding value of the objective function equals Ql' Next, a neigh­
bouring solution is randomly chosen. Suppose this neighbouring solution has function 
value Q2. The resulting change in the value of the objective function then equals Q2 - Ql' 
In standard simulated annealing and for a function to be maximized, the move to the 
neighbouring solution is accepted with probability exp((Q2 - Ql)/T) if Q2 < Ql and with 
probability 1 otherwise. The control parameter T acts as the temperature of the annealing 
process. This means that beneficial steps are accepted unconditionally but the detrimental 
steps are accepted according to an auxiliary experiment. A random number is generated 
from the uniform distribution on (0,1) and is compared to the value exp((Q2 - Ql)/T). 
If it is lower than exp((Q2 - Ql)/T), then the neighbouring solution is accepted during 
the next iteration, otherwise the neighbouring solution is rejected. By allowing moves to 
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inferior solutions, the chance of getting stuck in a poor local optimum is reduced. The 
temperature T is initially high, allowing many inferior moves to be accepted. In practice, 
one may choose the initial temperature so that after running the algorithm for a short 
time, an acceptance rate between 40% and 60% is observed. When an equilibrium is 
reached after a user-specified number of iterations at temperature Ti , the temperature is 
reduced to Ti+l according to a specified cooling schedule and the process is repeated. The 
iterations at temperature T; are commonly referred to as plateau i and the number of 
iterations at plateau i is called the length of that plateau. As a rule of thumb, this length 
is chosen as a multiple of the neighbourhood size. Typically, the cooling schedule consists 
of a sequence of monotonically decreasing temperatures in order to reduce the probability 
of moving to a worse solution. A large number of variations in the choice of the cooling 
rate exists. The simplest one is geometric cooling where the temperature from plateau i 
to i + 1 is reduced according to Ti+1 = /l,Ti , with the user-specified cooling rate /l, typically 
in the range 0.85 to 0.95. The process of sequentially reducing the temperature continues 
until the final temperature is zero or until inferior moves are nearly always rejected. 

7 Parametric and semiparametric optimal designs 

This section explicates the benefits of the application of semiparametric regression tech­
niques in optimum design. Consider as an example the design of an experiment with 
36 observations, the candidate set of design points taken from the 32 factorial and 36 
equally spaced time points. The response model is represented by the polynomial expan­
sion fl(X) = [Xl, X2, XlX2, xi, x§]. Firstly, parametric Vcoptimal run orders are computed 
for the following postulated time trends: 

g~(t) [t], 
g;(t) [t, t2], 

g~(t) [t,t2 ,t3 ], 

g~(t) [t,t2 ,t3 ,t4 ]. 

On the other hand, semiparametric Vt-optimal run orders are computed for kernel func­
tion Kl = 1/2 and for varying bandwidths between 0.1 and 1.0 and step size 0.1. The 
optimality criterion used to compute the run orders is based on partial residuals and is 
given in (32). The computed parametric and semiparametric Vcoptimal designs mainly 
differ from each other in the number of replicates at the different design points. These 
numbers are shown in figure 1. The parametric design problems are referred to as PD, 
whereas the semiparametric design problems are indicated with the label SPD. The V­
optimal design is also depicted. For the parametric design problems with time trend g2, g3 
or g4, the assignment of the observations to the different design points is the same. Two 
distinct assignments are obtained for the semiparametric design problems: one for the 
bandwidth equal to 0.1 and one for bandwidths larger than or equal to 0.2. From figure 
lone also observes that unlike the V-optimal design and the parametric Vcoptimal run 
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orders-for which all observations lie on the boundary of the design region-the semipara­
metric Droptimal run orders have a number of observations at the center of the design 
region. This means that in case of semiparametric regression, the observations are spread 
more uniformly across the entire experimental region. 

X2 X2 

7 2 6 6 3 6 6 3 6 6 3 6 

3 0 3 3 0 3 3 0 3 3 0 3 

6 3 6 6 3 6 6 3 6 6 3 6 

(a) PD, gl (b) PD, g2 (c) PD, g3 (d) PD, g4 
X2 

5 4 5 5 3 5 7 2 6 

3 3 4 3 4 3 3 0 3 

4 3 5 5 3 5 6 3 6 

(e) SPD, ,\ = 0.1 (f) SPD, ,\ 2: 0.2 (g) V-optimality 

Figure 1: Number of replicates at the different design points of the parametric and semi­
parametric Droptimal run orders 

In order to compare both the bias and the precision of the parameter estimates ii, the 
parametric and the semiparametric Droptimal run orders are compared to each other for 
the following five true time trends: 

91 (t) 30t, 
92(t) 30t2, 
93(t) -30t + 60t3, 
94(t) 150t2 - 180t4, 
95(t) 30sin(27ft). 

A simulation study is performed with error terms drawn from the N(O, 1) distribution and 
the parameter vector Q equal to [50, -30, 30, -15, 15]'. For each Droptimal run order and 
for each true time trend 9i(t) with i E {I, ... ,5}, we computed the euclidean distance 
between the true parameter vector Q and the average of the estimated parameters ii over 
all 100,000 simulations. The bias results are shown in table 5. One easily sees that if the 
order of the true time trend 9(t) is larger than the order of the postulated time trend 
g(t), the parametric optimal run orders involve much more biased parameter estimates 
as compared to modeling the time trend nonparametrically. By this, modeling the time 
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dependence non parametrically clearly outperforms a parametric fit when the order of the 
time trend is underspecified. 

Table 5: Euclidean distances between the true parameter vector a and the average of the 
estimated parameters & over all 100,000 simulations 

gl 92 93 94 95 
PD, gl 0.0021 9.4648 10.2994 11.2533 14.5530 
PD, g2 0.0009 0.0009 8.2797 12.0224 8.7602 
PD, g3 0.0021 0.0021 0.0021 12.6183 8.3857 
PD, g4 0.0013 0.0013 0.0013 0.0013 16.8298 
SPD, A = 0.1 0.0624 0.5037 0.3076 3.4603 0.3955 
SPD, A = 0.2 0.2360 1.0118 1.1400 5.9583 1.5212 
SPD, A = 0.3 0.2045 0.7578 1.0983 5.0607 1.8243 
SPD, A = 0.4 0.5125 0.7284 2.3089 5.0045 6.0847 
SPD, A = 0.5 0.7115 l.2072 3.6678 7.0479 2.3271 
SPD, A = 0.6 0.8335 l.3651 2.2101 9.7911 8.0871 
SPD, A = 0.7 l.2761 0.7371 5.5284 3.9205 3.7472 
SPD, A = 0.8 0.9423 1.1078 5.9178 3.5715 4.5849 
SPD, A = 0.9 0.3956 2.1261 2.5921 l.7797 5.4625 
SPD, A = 1.0 0.2534 5.9866 l.3790 4.2145 4.6569 

On the other hand, in terms of the precision of the important parameter estimates &, 
the results are somewhat different. Table 6 displays the trend factors of the computed 
parametric and semi parametric run orders. The table reveals that the trend factors of 
the parametric run orders are considerably larger than those of the semi parametric run 
orders. This means that the outperformance of the semiparametric run orders in terms of 
the bias of the parameter estimates goes at the expense of the precision of the estimates. 
To combine both bias and precision, the parametric and the semiparametric run orders 
will be compared to each other with regard to the determinant of the mean squared error 
matrix 

M = E{(& - a)(& - a)'}. (33) 

For instance, element (i, j) of matrix M is equal to E{ (&i -a;)(&j - ajl) = covar(&i, &j)+ 
bias(&;)bias(&j). The computation of the matrix M is based on simulations in which the 
expectation is replaced by the average over all 100,000 simulation runs. 

The results are displayed in table 7. It follows that in almost every case where the order of 
the time trend is underspecified, the determinant· of M for the semiparametric run orders 
is smaller than that for the parametric run orders. Consequently, if the order of the 
postulated time trend is under specified , one benefits from modeling the time dependence 
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Table 6: Trend factors 

TF 
PD, gl 0.9999 
PD, g2 0.9274 
PD, g3 0.9273 
PD, g4 0.8711 
SPD, A = 0.1 0.6365 
SPD, A = 0.2 0.7103 
SPD, A = 0.3 0.7207 
SPD, A = 0.4 0.7221 
SPD, A = 0.5 0.7233 
SPD, A = 0.6 0.7248 
SPD, A = 0.7 0.7257 
SPD, A = 0.8 0.7260 
SPD, A = 0.9 0.7262 
SPD, A = 1.0 0.7266 

nonparametrically. It is very important to point out that this result is independent of the 
bandwidth chosen. 

Summing up, if one has no certainty or knowledge about the form of the time trend or if 
the behaviour of the time trend is very hard to model parametrically, one benefits from 
modeling the time dependence nonparametrically. Table 7 has shown that in cases where 
the order of the parametric time trend is underspecified, modeling the time dependence 
nonparametrically clearly outperforms a purely parametric approach. This outperfor­
mance can be explained from the fact that in such cases the parametric run orders suffer 
more from the bias problem than the semiparametric run orders. An alternative way 
to guard against misspecification of the time trend may be to model a parametric time 
trend of high order. However, this approach is limited by an important computational 
consideration. In order to avoid singular design matrices, the number of observations 
and the number of distinct design points both have to be larger than the sum of the 
number of parameters in the response model and the trend model, i.e. n ::: p + q. For 
example, this means that for the full second-order factorial in two variables (p = 6) and 
nine observations (n = 9), the order q of the postulated time trend cannot be larger than 
three. Consequently, for true time trends of fourth order or more such as sines of high 
frequency for instance, the parametric Vt-optimal run orders would still suffer from the 
bias problem. The next section illustrates the use of the simulated annealing algorithm 
for a real-life example. 
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Table 7: 1071MI for the 'Dr optimal run orders 

91 92 93 94 95 
PD, gl 4.36 4655 660 5634 11676 
PD, g2 4.30 4.30 1350 7894 8121 
PD, g3 4.29 4.29 4.29 9764 2304 
PD, g4 4.77 4.77 4.77 4.77 40385 
SPD, A = 0.1 35 84 100 2467 143 
SPD, A = 0.2 39 177 544 5402 937 
SPD, A = 0.3 32 177 497 4806 1082 
SPD, A = 0.4 97 134 482 5494 1786 
SPD, A = 0.5 136 415 631 5612 1668 
SPD, A = 0.6 187 694 623 5712 2369 
SPD, A = 0.7 563 276 652 3651 2009 
SPD, A = 0.8 217 353 671 3567 2045 
SPD, A = 0.9 76 515 507 2948 2289 
SPD, A = 1.0 26 872 344 5114 1964 

8 Reactor example 

An industrial example is outlined to demonstrate the wide range of practical design prob­
lems that can be tackled with the presented design algorithm. An experiment is set up 
to evaluate the rate of conversion of a chemical reactor. After a screening experiment 
the experimenters found that the following variables are important to be investigated: 
feed rate Xl, temperature X2, concentration X3 and the amount of catalyst added X4. The 
factors and the corresponding factor levels are shown in table 8. The assumed response 
model is represented by 

Based on table 8, running the full factorial design would involve 3 x 3 x 2 x 2 = 36 factor 
level combinations but due to a restriction in the amount of raw material available, the 
number of observations is limited to 18. The design problem comes to efficiently selecting 
18 out of the total number of 36 factor level combinations without replacement. The 
experimenters know that the reactor data may be influenced by an unknown time trend 
due to build-up of deposits on the reactor wall. Previous experience showed that the 
influence of deposits on the measurements is very complicated and extremely difficult 
to quantify. Therefore, the experimenters decide to guard against misspecification by 
modeling the time dependence nonparametrically. 

The aim of this example is to demonstrate the influence of the estimation method, the 
kernel function and the bandwidth on the properties of the semiparametric 'Dr optimal 
run orders. For varying bandwidths between 0.2 and 1.0 with step size 0.2 and the kernel 
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Table 8: Factors and factor levels in the reactor experiment 

factor 
feed rate Xl (liters/min) 
temperature X2 (degrees Celsius) 
concentration X3 (%) 
catalyst X4 (%) 

levels 
50, 70, 90 

200, 230, 260 
5, 8 

0.5,2 

coded levels 
-1, 0, 1 
-1, 0, 1 

-1, 1 
-1, 1 

functions of table 4, the design algorithm is used to compute run orders that maximize 
optimality criterion (28) or (32). The computed semiparametric Droptimal run orders 
contain observations at almost every corner point of the form (±1, ±1, ±1, ±1). This 
means that design points on the corners of the experimental region have the highest 
chance of being selected by the semiparametric Vroptimality criterion. 

To compare the semiparametric run orders to a purely parametric fitting, a simulation 
study is conducted with a equal to [10, -10, 10,20,30, -20, 20, -10, -10, -40, -30, 50]', 
time trend g(t) = 50sin(7rt) and error terms drawn from the N(O, 1) distribution. For the 
parametric run orders computed with a first-order and a second-order polynomial time 
trend, 1010IMI is equal to 2.95 and 8.70 respectively. The results for the semiparametric 
run orders are shown in table 9. 

Table 9: 1010lMI for the semiparametric Vt-optimal run orders of the reactor experiment 

Green-Jennison-Seheult 
), KI (m = 2) K2 (m = 4) K3 (m = 6) K4 (m = 2) K5 (m = 4) K6 (m = 6) 

0.2 1.51 1.71 2.35 1.95 1.98 3.11 
0.4 2.62 1.34 1.85 2.84 1.63 1.88 
0.6 1.55 1.33 2.27 2.01 1.94 1.78 
0.8 1.88 1.26 3.40 1.65 2.14 2.96 
1.0 1.66 2.08 1.08 1.32 1.95 2.10 

partial residuals 
), KI (m = 2) K2 (m = 4) K3 (m = 6) K4 (m = 2) K5 (m = 4) K6 (m = 6) 

0.2 1.61 1.42 1.45 2.00 1.42 2.24 
0.4 2.12 1.94 1.14 2.36 2.25 1.22 
0.6 1.41 1.63 2.38 1.97 1.42 1.85 
0.8 1.68 2.33 3.14 1.09 2.22 1.25 
1.0 3.55 2.11 1.55 1.99 1.25 2.58 

The simulation study reveals that the computed semiparametric run orders outperform 
the parametric run orders for almost every combination of bandwidth, kernel function 
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and estimation method. By this, the fact that the semiparametric run orders outperform 
the parametric ones is independent of the estimation method, the kernel function and 
the bandwidth chosen. The simulation study does not show an obvious pattern in the 
influence of this choice on the determinant of the mean squared error matrix M. However, 
studying the bias properties and the precision of the parameter estimates separately, truly 
leads to some useful insights. 

Table 10 shows the trend factor for each semiparametric Dcoptimal run order. Some 
important conclusions can be drawn. Firstly, the table reveals that for a given bandwidth 
and kernel function, in almost every case the Dt-optimal run order for the Green-Jennison­
Seheult criterion (28) has a larger trend factor than the corresponding run order computed 
with the criterion based on partial residuals. Besides, it holds in general that the larger 
the bandwidth, the higher the trend factor of the optimal run order. Alternatively stated, 
the generalized variance of the important parameter estimates decreases as the bandwidth 
grows larger. This observation is in accordance with the results of table 6 in section 7 
and a similar conclusion was obtained by Speckman (1988) in a regression context instead 
of a design context. Thirdly, for a given bandwidth, a minimum variance kernel nearly 
always involves a larger trend factor than when the optimal kernel of the same order is 
used. Finally, the low order kernels Kl and K4 lead in almost every case to the largest 
values of the trend factor. We conclude that in terms of the Droptimality criterion, the 
Green-Jennison-Seheult criterion (28), high bandwidths and minimum variance kernels 
of low order have to be preferred. For instance, the Dt-optimal run order for the Green­
Jennison-Seheult criterion, A = l.0 and kernel function Kl has trend factor 0.771, whereas 
the trend factor of the Droptimal run order for criterion (32), A = 0.2 and kernel function 
K6 is 0.663. 

However, one has to be careful with following the directives made in terms of the general­
ized variance. It is also important to investigate the bias properties of the semi parametric 
run orders. For each Vt-optimal run order, the Euclidean distance between the parameter 
vector a and the average parameter estimates & over all 100,000 simulations is calculated. 
The results are shown in table 11. Whereas in terms of Dt-optimality, the Green-Jennison­
Seheult criterion and large bandwidths are recommended, it can clearly be seen that, in 
general, for a given kernel function the optimal run order for the Green-Jennison-Seheult 
criterion and A = l.0 suffers more from the bias problem than the optimal run orders 
for the criterion based on partial residuals and a small bandwidth. Besides, for a given 
estimation method and a particular bandwidth, the bias of the optimal run order com­
puted with the minimum variance kernel of low order, namely K 1, is in general larger 
than the bias of the optimal run order computed with the optimal kernel of the highest 
order, namely K 6 . It follows from the bias properties that the preference for the Green­
Jennison-Seheult criterion with a large bandwidth and a low order minimum variance 
kernel has to be weakened in favour of the estimation method based on partial residuals 
and small bandwidths. 

Summing up, the outperformance of the semiparametric run orders is independent of the 
choice of the estimation method, the bandwidth and the kernel function. The aim of 
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Table 10: Trend factor for the semiparametric Vt-optimal run orders of the reactor ex­
periment 

G reen-J ennison-Seheul t 
A Kl (m = 2) K2 (m = 4) K3 (m = 6) K4 (m = 2) K5 (m = 4) K6 (m = 6) 

0.2 0.718 0.722 0.720 0.718 0.717 0.714 
0.4 0.764 0.710 0.657 0.754 0.670 0.710 
0.6 0.770 0.729 0.740 0.761 0.734 0.678 
0.8 0.771 0.766 0.725 0.771 0.754 0.722 
l.0 0.771 0.769 0.749 0.771 0.761 0.739 

partial residuals 
A Kl (m = 2) K2 (m = 4) K3 (m = 6) K4 (m = 2) K5 (m = 4) K6 (m = 6) 

0.2 0.675 0.665 0.670 0.666 0.668 0.663 
0.4 0.748 0.661 0.661 0.737 0.648 0.667 
0.6 0.767 0.704 0.684 0.758 0.696 0.644 
0.8 0.769 0.755 0.695 0.768 0.730 0.681 
l.0 0.770 0.760 0.732 0.771 0.757 0.728 

this section was to investigate how this choice influences the balance between bias and 
precision of the outperforming semiparametric run orders. Using the Green-Jennison­
Seheult estimation method with a large bandwidth and a minimum variance kernel of low 
order involves an increased precision but goes at the expense of the bias. On the other 
hand, applying the estimation method based on partial residuals, using a small bandwidth 
and an optimal kernel leads to reduced bias and goes at the cost of the precision of the 
important parameter estimates. The balance desired depends on the design problem at 
hand and must be chosen by the experimenter himself. 

9 Conclusion 

This paper has presented an extension of the Vt-optimality criterion to design problems 
in which the response is modeled semiparametrically. A design algorithm is provided 
for the construction of run orders that are optimally balanced for nonparametric time 
trends. The advantage of modeling the time dependence nonparametrically lies in the 
fact that it outperforms a full parametric approach in terms of the combined effect of bias 
and precision of the important parameter estimates when the parametric time trend is 
underspecified. The outperformance of the semiparametric run orders is independent of 
the estimation method, the bandwidth and the kernel function chosen. This choice only 
influences the balance between bias and precision of the outperforming semiparametric 
run orders. For instance, preferring the Green-Jennison-Seheult estimators with a high 
bandwidth value and a minimum variance kernel of low order benefits the precision of 
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Table 11: Euclidean distance for the semiparametric Vt-optimal run orders of the reactor 
experiment 

G reen-J ennison-Seheult 
.A K1 (m = 2) K2 (m = 4) K3 (m = 6) K4 (m = 2) K5 (m = 4) K6 (m = 6) 

0.2 19.9 22.7 25.4 8.2 7.8 25.1 
0.4 25.9 12.6 17.9 20.0 10.2 23.3 
0.6 14.2 11.4 25.4 27.5 20.1 9.7 
0.8 22.5 27.9 7.7 23.0 24.8 14.1 
1.0 28.0 18.3 24.2 28.1 22.9 23.9 

partial residuals 
.A K1 (m = 2) K2 (m = 4) K3 (m=6) K4 (m = 2) K5 (m = 4) K6 (m = 6) 

0.2 12.9 5.6 10.0 11.4 9.0 6.6 
0.4 26.1 12.3 22.0 6.4 10.4 4.7 
0.6 15.6 11.2 16.2 23.3 9.9 5.2 
0.8 18.4 19.2 5.2 23.5 11.3 9.6 
1.0 26.3 19.4 7.6 11.3 23.4 11.8 

the parameter estimates and goes at the expense of the parameter bias. On the contrary, 
reduced biased is obtained by using the estimation method based on partial residuals, 
small bandwidth values and optimal kernels. The choice is up to the experimenter and 
depends on his or her preference. 

Appendix 1: Parameter bias for q = ql 

For the statistical model 

y = Fa: + Gd31 + e, (1.1) 

the least-squares estimators & and /31 are found by minimizing the quantity 

(1.2) 

Setting the derivative of (1.2) with respect to & and /31 equal to zero, gives the normal 
equations 

F'(y - G1/3), 
G~(y - Fa). 

It is handy to rewrite the normal equations for /31 as 

/31 = (G~G1)-1G~(y - Fa). 
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Substituting (1.3) in the normal equations for 0: gives 

If the true regression model is given by 

(1.5) 

then the expected value of the parameter estimates (1.4) is equal to 

E(o:) [F'{I - Gl(G~Gl)-IG~}FrlF'{I - Gl(G~Gl)-IG~}E(y), 

[F' {I - Gl(G~Gl)-IG~}FrlF' {I - Gl(G~Gl)-IG~}E(Fa + G 1f31 + G 2f32 + e), 
[F'{I - Gl(G~Gl)-IG~}FrlF'{I - Gl(G~Gl)-IG~}(Fa + G 1f31 + G2f32 + E(e)), 

[F'{I - Gl(G~Gl)-IGDFrlF'{I - Gl(G~Gl)-IG~}(Fa + G 1f31 + G2f32), 

a + [F'{I - Gl(G~GltlG~}FrlF'{I - Gl(G~Gl)-IG~}Glf31 

+[F'{I - Gl(G~Gl)-IG~}FrlF'{I - Gl(G~Gl)-IG~}G2f32' 

a + [F'{I - Gl(G~Gl)-IG~}FrlF'{I - Gl(G~Gl)-IGDG2f32' 

By this, the parameter bias equals 

Appendix 2: Parameter bias for q = ql + q2 

For the statistical model 

y = Fa + G 1f31 + G2f32 + e = Z"( + G 2f32 + e, 

with Z = [F GIl and"( = [a' f3~1', the least-squares estimators are given by 

[lJ = {[ ~~ ] [Z G 2l r1 
[ ~~ ] y, 

= [~~; ~~~22 r1 
[ ~~ ] y. 

If the true regression model is 

then the expected value of the parameter estimates (2.2) is equal to 

[ Z'Z 
G;Z 

Z'G ] -1 [ Z' ] G;G~2 G; E(y), 

[ 
Z'Z 
G;Z 

Z'G2 ] -1 [ Z'Z"( ] 
G;G; G;Z"(' 
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Based on theorem 8.5.11 of Harville (1997), it follows that 

with Q = G~G2 - G~Z(ZIZtIZ'G2' It can now easily be verified that 

E(i) = 'Y (2.6) 

and 

(2.7) 

Expression (2.6) also implies that 

E(&) - a = O. (2.8) 

Consequently, the parameter estimates & are unbiased when the order of the time trend 
is overspecified. 

Appendix 3: The design algorithm 

In the outline of the algorithm, the list of d candidate design points is written as D = 

{Xl,'" ,x,z} and the list of h available time points is given as H = {tl , ... ,th}' A 
run order is described by a series R = {(Xi, tj )} and the corresponding criterion value 
(28) or (32) is denoted as Q. For instance, the initial run order is denoted as Ro with 
criterion value Qo. I denotes the number of the plateau, fJ, the length of each plateau 
and w the user-specified number of plateaus. This number w has to be chosen such that 
the probability of accepting a detrimental move becomes almost negligible for the final 
plateau. Ry denotes the run order at the end of plateau 'Y and the corresponding criterion 
value equals Q"/' Besides, the number of initial run orders or tries equals II and v is 
a user-specified number determining the stopping criterion after the final plateau w has 
been reached. The stopping criterion is satisfied if no further significant improvement of 
the run order is obtained. 

The input to the algorithm consists of the number of observations n, the number of 
factors, the polynomial expansion f(x) of the response model, the list of candidate points 
D with potential restrictions on the number of replicates per design point, the list of time 
points H, the estimation method, the kernel function K, the bandwidth A, the number 
of starting designs II, the stopping criterion v, the initial temperature, the number of 
plateaus w, the length of each plateau fJ, and the cooling rate K. After reading the input, 
the standard simulated annealing algorithm with geometric cooling proceeds as follows: 

1. Set Qop, = 0 and Rop, = n. 
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2. Repeat 1/ times: 

(a) Set Q = 0 and R = n. 
(b) Repeat n times: 

i. Randomly choose Xi E D. 

ii. Randomly choose tk E H. 

iii. Set R = R U {(Xi, tkn. 

iv. Set H = H \ {tk}. 

(c) Update Q. 

(d) Set Qo = Q and Ro = R. 

(e) Set 'Y = l. 

(f) Repeat J1. times: 

i. Select a random design change (1): 
Randomly choose (",(1) ttl)) E Rand x(l) ED with x(l) ...J. x(l). --,. , k J , I J . 

compute the relative effect 6(1) on Q of deleting (x~l), til)) and adding (x;l), til)). 

ii. Select a random design change (2): 
Randomly choose (x(2) t(2)) and (x\2) t<2)) E R with x(2) ...J. x(21. 

. , , h' J ' 'I , I J . 

compute the relative effect 6(2) on Q of interchanging (x~2) , ti2)) and (x;2), ti2 )). 

iii. Select a random design change (3): 
Randomly choose (x(3) t(3)) E R x(3) ED and t(3) E H: 

• 1, , k 'J l 

compute the relative effect 6(3) on Q of deleting (x?), ti3)) and adding (xJ3) ,tl3)). 

iv. Set 6 = max{6(l), 6(2), 6(3)}. 

v. If (6 S 1) then generate a random number ~ E (0,1). 

vi. If ((6 > 1) or ((6 S 1) and (~< exp((l- 6-1)7-1)))) then 

A. Q=6Q 

B, If 6 = 6(1) then R = R\ {(x~l), til)n U {(x?)A1)n. 

C If 6 = 6(2) then R = R\ {(x(2) P)) (x(2) t(2))} U {(x(2) t(2)) (x\2) t(2))} 
. z 'k , J' l t 'l ' J' k . 

D. If 6 = 6(3) then R = R \ {(x~3) A3)n U {(X}3), ti3)n and H = H \ {ti3)} U 

{tP)}· 

(g) Set Q1' = Q and ~ = R. 

(h) If (C'Y < w) or (C'Y ::::: w) and (Q1' > (1 + v)Q"I- I ))) then 

i. Set 7 = K.7. 

ii. Set 'Y = 'Y + l. 
iii. go to step (g) 

(i) If Q > Qapt then 

i. Set Qapt = Q. 
ii. Set Rapt = R. 
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3. Write Qopt and Ropt ' 

The algorithm is implemented in Fortran and uses the random number generator 'rand' of 
the Netlib library of Bell Labs and the NAG Fortran Library routine 'f03aaf' to calculate 
the determinant of a matrix. The output of the algorithm consists of the semi parametric 
'Dt-optimal run order Ropt with corresponding criterion value Qopt. 
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